
Research Article

A New Approach to Solve Intuitionistic Fuzzy Optimization
Problem Using Possibility, Necessity, and Credibility Measures

Dipankar Chakraborty,1 Dipak Kumar Jana,2 and Tapan Kumar Roy3

1 Department of Mathematics, Heritage Institute of Technology, Anandapur, Kolkata, West Bengal 700107, India
2Department of Applied Science, Haldia Institute of Technology, Haldia, Purba Midnapur, West Bengal 721657, India
3Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal 711103, India

Correspondence should be addressed to Dipak Kumar Jana; dipakjana@gmail.com

Received 27 February 2014; Revised 23 July 2014; Accepted 9 September 2014; Published 25 September 2014

Academic Editor: Wansheng Tang

Copyright © 2014 Dipankar Chakraborty et al. 
is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Corresponding to chance constraints, real-life possibility, necessity, and credibility measures on intuitionistic fuzzy set are de�ned.
For the �rst time the mathematical and graphical representations of di�erent types of measures in trapezoidal intuitionistic fuzzy
environment are de�ned in this paper.We have developed intuitionistic fuzzy chance constraintsmodel (CCM) based on possibility
and necessity measures. We have also proposed a new method for solving an intuitionistic fuzzy CCM using chance operators. To
validate the proposed method, we have discussed three di�erent approaches to solve the intuitionistic fuzzy linear programming
(IFLPP) using possibility, necessity and credibility measures. Numerical and graphical representations of optimal solutions of the
given example at di�erent possibility and necessity, levels have been discussed.

1. Introduction

In the real world some data oen provide imprecision
and vagueness at certain level. Such vagueness has been
represented through fuzzy sets. Zadeh [1] �rst introduced
the fuzzy sets. 
e perception of intuitionistic fuzzy set (IFS)
can be analysed as an unconventional approach to de�ne a
fuzzy set where available information is not adequate for the
de�nition of an imprecise concept by means of a usual fuzzy
set. 
is IFS was �rst introduced by Atanassov [2]. Many
researchers have shown their interest in the study of intuition-
istic fuzzy sets/numbers [3–7]. Fuzzy sets are de�ned by the
membership function in all its entirety (c.f. Pramanik et al.
[8, 9]), but IFS is characterized by amembership function and
a nonmembership function so that the sum of both values lies
between zero and one [10]. Esmailzadeh and Esmailzadeh [11]
provided newdistance between triangular intuitionistic fuzzy
numbers.

Recently, the IFN has also found its application in fuzzy
optimization. Angelov [12] proposed the optimization in
an intuitionistic fuzzy environment. Dubey and Mehra [13]
solved linear programming with triangular intuitionistic

fuzzy number. Parvathi andMalathi [14] developed intuition-
istic fuzzy simplex method. Hussain and Kumar [15] and
Nagoor Gani and Abbas [16] proposed a method for solving
intuitionistic fuzzy transportation problem. Ye [17] discussed
expected value method for intuitionistic trapezoidal fuzzy
multicriteria decision-making problems. Wan and Dong [18]
used possibility degree method for interval-valued intuition-
istic fuzzy for decision making.

Possibility, necessity, and credibility measures have a
signi�cant role in fuzzy and intuitionistic fuzzy optimiza-
tion. Buckley [19] introduced possibility and necessity in
optimization and Jamison and Lodwick [20] developed the
construction of consistent possibility and necessity measures.
Duality in fuzzy linear programming with possibility and
necessity relations has been developed by Ramı́k [21]. Iskan-
der [22] suggested an approach for possibility and necessity
dominance indices in stochastic fuzzy linear programming.
Sakawa et al. [23] used possibility and necessity to solve
fuzzy random bilevel linear programming. Pathak et al. [24]
discussed a possibility and necessity approach to solve fuzzy
production inventory model for deteriorating items with
shortages under the e�ect of time dependent learning and
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forgetting. Maity [25] established possibility and necessity
representations of fuzzy inequality and its application to
two warehouse production-inventory problem. Wu [26] pre-
sented possibility and necessity measures fuzzy optimization
problems based on the embedding theorem. Xu and Zhou
[27] discussed possibility, necessity, and credibility measures
for fuzzy optimization. Maity and Maiti [28] developed the
possibility and necessity constraints and their defuzzi�cation
for multiitem production-inventory scenario via optimal
control theory. Das et al. [29] presented a two-warehouse
supply-chain model under possibility, necessity, and credibil-
itymeasures. Panda et al. [30] proposed a single period inven-
torymodelwith imperfect production and stochastic demand
under chance and imprecise constraints. Intuitionistic fuzzy-
valued possibility and necessitymeasures have been devolved
by Ban [31] using measure theory. With our best knowledge,
however, none of them introduced chance constraints model
based on possibility, necessity, and credibility measures on
intuitionistic fuzzy set for membership and nonmembership
functions.


e rest of this paper is organized into di�erent section
as follows demonstrating the deduction of our theory and its
application. In Section 2, we recall some preliminary knowl-
edge about intuitionistic fuzzy and its arithmetic operation.
Section 3 has provided possibility, necessity, and credibility
measures in trapezoidal intuitionistic fuzzy number and its
graphical representation. In Section 4, we have proposed
intuitionistic fuzzy chance constraint models based on pos-
sibility, necessity, and credibility measures. 
e solution
methodology of the proposed models using chance operator
has been discussed in Section 5. In Section 6, a numerical
example is presented to validate the proposed method.

e numerical and graphical results at di�erent possibility
and necessity levels of the given problems have also been
discussed here. Section 7 summarizes the paper and also
discusses about the scope of future work.

2. Preliminaries

De	nition 1 (intuitionistic fuzzy set [2, 10]). Let � be a given
set and let � ⊂ � be a set. An IFS �∗ in � is given by �∗ =
{⟨�, ��(�), ]�(�)⟩; � ∈ �}, where �� : � → [0, 1] and ]� :
� → [0, 1] de�ne the degree of membership and the degree
of nonmembership of the element � ∈ � to � ⊂ � satisfying
the condition 0 ≤ ��(�) + ]�(�) ≤ 1.

De	nition 2 (intuitionistic fuzzy number [7]). An IFN �̃� is

(i) an intuitionistic fuzzy subset on real line,

(ii) there exist  ∈ R, such that ��̃�() = 1, and
]�̃�() = 0.

(iii) convex for the membership function ��̃� ; that is,
��̃�(��1 + (1 − �)�2) ≥ min(��̃�(�1), ��̃�(�2)), �1,�2 ∈ �, � ∈ [0, 1].

(iv) concave for the nonmembership function ]�̃� ; that is,
]�̃�(��1+(1−�)�2) ≤ max(]�̃�(�1), ]�̃�(�2)), �1, �2 ∈�, � ∈ [0, 1].

0

1

a�1 a�4a1 a2 a3 a4

Figure 1: Membership and nonmembership functions of TIFN.

De	nition 3 (trapezoidal intuitionistic fuzzy number

(TIFN)). Let ��1 ≤ �1 ≤ �2 ≤ �3 ≤ �4 ≤ ��4. A TIFN �̃� in
R written as (�1, �2, �3, �4)(��1, �2, �3, ��4) has membership
function (c.f. Figure 1)

��̃� (�) =

{{{{{{{
{{{{{{{
{

� − �1
�2 − �1

, �1 ≤ � ≤ �2;
1, �2 ≤ � ≤ �3;�4 − �
�4 − �3

, �3 ≤ � ≤ �4;
0, otherwise,

(1)

and nonmembership function

]�̃� (�) =

{{{{{{{
{{{{{{{
{

�2 − �
�2 − ��1

, ��1 ≤ � ≤ �2;
0, �2 ≤ � ≤ �3;� − �3
��4 − �3

, �3 ≤ � ≤ ��4;
1, otherwise.

(2)

De	nition 4 (triangular intuitionistic fuzzy number (TrIFN)).

Let ��1 ≤ �1 ≤ �2 ≤ �3 ≤ ��3. A TrIFN �̃� in R written as

(�1, �2, �3)(��1, �2, ��3) has membership function (c.f. Figure 2)

��̃� (�) =

{{{{{{{
{{{{{{{
{

� − �1
�2 − �1

, �1 ≤ � ≤ �2;
1, � = �2;�3 − �
�3 − �2

, �2 ≤ � ≤ �3;
0, otherwise,

(3)

and nonmembership function

]�̃� (�) =

{{{{{{{
{{{{{{{
{

�2 − �
�2 − ��1

, ��1 ≤ � ≤ �2;
0, � = �2;� − �2
��3 − �2

, �2 ≤ � ≤ ��3;
1, otherwise.

(4)

De	nition 5. A positive TIFN �̃� is denoted by �̃� =
(�1, �2, �3, �4)(��1, �2, �3, ��4), where all �� > 0 for all � = 1, 2,
3, 4, and ��� > 0 for � = 1, 4.
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Figure 2: Membership and nonmembership functions of TrIFN.

De	nition 6. Two TIFN �̃� = (�1, �2, �3, �4)(��1, �2, �3, ��4) and
�̃� = (�1, �2, �3, �4)(��1, �2, �3, ��4) are said to be equal if and only
if �1 = �1, �2 = �2, �3 = �3, �4 = �4, ��1 = ��1 and ��4 = ��4.

De	nition 7. Let �̃� = (�1, �2, �3, �4)(��1, �2, �3, ��4) and �̃� =
(�1, �2, �3, �4)(��1, �2, �3, ��4) be two TIFN; then

(i) �̃� ⊕ �̃� = (�1 + �1, �2 + �2, �3 + �3, �4 + �4)(��1 + ��1, �2 +
�2, �3 + �3, ��4 + ��4);

(ii) ��̃� = �(�1, �2, �3, �4)(��1, �2, �3, ��4) = (��1, ��2, ��3,
��4)(���1, ��2, ��3, ���4) if � ≥ 0;

(iii) ��̃� = �(�1, �2, �3, �4)(��1, �2, �3, ��4) = (��4, ��3, ��2,
��1)(���4, ��3, ��2, ���1) if � < 0;

(iv) �̃� ⊖ �̃� = (�1 − �4, �2 − �3, �3 − �2, �4 − �1)(��1 − ��4, �2 −
�3, �3 − �2, ��4 − ��1);

(v) �̃� ⊗ �̃� = (�1�1, �2�2, �3�3, �4�4)(��1��1, �2�2, �3�3, ��4��4).

3. Possibility, Necessity, and Credibility
Measures of Intuitionistic Fuzzy Number

De	nition 8. Let �̃� and �̃� be two IFN with membership
function ��̃� , �	̃� and nonmembership function ]�̃� , ]	̃� ,
respectively, and � is the set of real numbers. 
en

Pos
 (�̃� ∗ �̃�) = sup {min (��̃� , �	̃�) , �, $ ∈ �, � ∗ $}

Pos
]
(�̃� ∗ �̃�) = sup {min (]�̃� , ]	̃�) , �, $ ∈ �, � ∗ $} ,

Nes
 (�̃� ∗ �̃�) = inf {max (��̃� , �	̃�) , �, $ ∈ �, � ∗ $}

Nes
]
(�̃� ∗ �̃�) = inf {max (]�̃� , ]	̃�) , �, $ ∈ �, � ∗ $} ,

(5)

where the abbreviations Pos
 and Pos
]
represent possibility

of membership and nonmembership function, and Nes
 and
Nes

]
represent necessity ofmembership and nonmembership

function. ∗ is any of the relations <, >, ≤, ≥, =.


e dual relationship of possibility and necessity gives

Nes
 (�̃� ∗ �̃�) = 1 − Pos
 (�̃� ∗ �̃�)

Nes
]
(�̃� ∗ �̃�) = 1 − Pos

]
(�̃� ∗ �̃�) ,

(6)

where �̃� ∗ �̃� represents complement of the event �̃� ∗ �̃�.

De	nition 9. Let �̃� be a IFN. 
en the intuitionistic fuzzy

measures of �̃� for membership and nonmembership func-
tion are

Me
 {�̃�} = �Pos
 {�̃�} + (1 − �)Nec
 {�̃�}

Me
]
{�̃�} = �Pos

]
{�̃�} + (1 − �)Nec

]
{�̃�} ,

(7)

where the abbreviation Me
 and Me
]
represent measures of

membership and nonmembership functions and � (0 ≤ � ≤
1) is the optimistic-pessimistic parameter to determine the
combined attitude of a decision maker.

If � = 1 then Me
 = Pos
, Me
]

= Pos
]
; it means

the decision maker is optimistic and maximum chance of �̃�
holds.

If � = 0, then Me
 = Nes
, Me
]

= Nes
]
; it means

the decision maker is pessimistic and minimal chance of �̃�
holds.

If � = 0.5, then Me
 = Cr
, Me
]

= Cr
]
, where Cr is

the credibility measure; it means the decision maker takes
compromise attitude.

3.1. Measures of Trapezoidal Intuitionistic Fuzzy Number. Let

�̃� = (�1, �2, �3, �4)(��1, �2, �3, ��4) and �̃� = (�1, �2, �3, �4)
(��1, �2, �3, ��4) be two TIFN. FromDe�nition 8 the possibilities

of �̃� ≤ �̃� for membership and nonmembership functions
(c.f. Figures 3 and 4) are as follows:

Pos
 (�̃� ≤ �̃�) =
{{{
{{{
{

1, �2 ≤ �3;
�4 − �1

�4 − �3 + �2 − �1
, �1 < �4, �2 > �3;

0, �4 ≤ �1,

Pos
]
(�̃� ≤ �̃�) =

{{{{
{{{{
{

0, �2 ≤ �3;
�2 − �3

�2 − ��1 + ��4 − �3
, �2 > �3, ��4 > ��1;

1, ��4 ≤ ��1.
(8)
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Figure 3: Membership function of TIFN �̃� and �̃� and Pos
(�̃� ≤
�̃�).
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Figure 4: Nonmembership function of TIFN �̃� and �̃� and
Pos

]
(�̃� ≤ �̃�).

From the De�nition 8 the possibilities of �̃� ≥ �̃� for
membership andnonmembership function (c.f. Figures 5 and
6) are as follows:

Pos
 (�̃� ≥ �̃�) =
{{{
{{{
{

1, �3 ≥ �2;
�4 − �1

�4 − �3 + �2 − �1
, �3 < �2, �4 > �1;

0, �4 ≤ �1,

Pos
]
(�̃� ≥ �̃�) =

{{{{
{{{{
{

0, �2 ≤ �3;
�2 − �3

�2 − ��1 + ��4 − �3
, �2 > �3, ��4 > ��1;

1, ��1 ≥ ��4.
(9)
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Figure 5: Membership function of TIFN �̃� and �̃� and Pos
(�̃� ≥
�̃�).
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Figure 6: Nonmembership function of TIFN �̃� and �̃� and
Pos

]
(�̃� ≥ �̃�).

Now, by De�nition 8, necessity of the event �̃� ≤ �̃� are
as follows:

Nes
 (�̃� ≤ �̃�) = 1 − Pos
 (�̃� > �̃�)

=
{{{
{{{
{

0, �3 ≥ �1;
�1 − �3

�4 − �3 − �2 + �1
, �1 > �3, �4 > �2;

1, �2 ≥ �4,

Nes
]
(�̃� ≤ �̃�) = 1 − Pos

]
(�̃� > �̃�)

=
{{{{
{{{{
{

0, �2 ≥ ��4;
��4 − �2

��4 − �3 − �2 + ��1
, �2 < ��4, �3 < �1;

1, �3 ≥ ��1.
(10)
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By De�nition 8 necessity of the event �̃� ≥ �̃� are as follows:
Nes
 (�̃� ≥ �̃�) = 1 − Pos
 (�̃� < �̃�)

=
{{{
{{{
{

0, �2 ≤ �4;
�2 − �4

�2 − �1 − �4 + �3
, �2 > �4, �1 < �3;

1, �1 ≥ �3,

Nes
]
(�̃� ≥ �̃�) = 1 − Pos

]
(�̃� < �̃�)

=
{{{{
{{{{
{

0, �3 ≤ ��1;
�3 − ��1

�2 − ��1 − ��4 + �3
, �3 > ��1, �2 > ��4;

1, �2 ≤ ��4.
(11)

By De�nition 9 measures of the event �̃� ≤ �̃� are as follows:
Me
 (�̃� ≤ �̃�)

= �Pos
 (�̃� ≤ �̃�) + (1 − �)Nes
 (�̃� ≤ �̃�)

=

{{{{{{{{{{
{{{{{{{{{{
{

0, �4 ≤ �1;
� �4 − �1
�4 − �3 + �2 − �1

, �3 > �2, �1 < �2;
�, �3 > �2, �1 < �3;
� + (1 − �) �1 − �3

�4 − �3 − �2 + �1
, �1 > �3, �4 > �2;

1, �2 ≥ �4,
Me

]
(�̃� ≤ �̃�)

= �Pos
]
(�̃� ≤ �̃�) + (1 − �)Nes

]
(�̃� ≤ �̃�)

=

{{{{{{{{{{
{{{{{{{{{{
{

1, ��4 ≤ ��1;
� �2 − �3
�2 − ��1 + ��4 − �3

+ (1 − �) , ��4 > ��1, �2 > �3;
(1 − �) , �2 < �3, ��1 < �3;
(1 − �) ��4 − �2

��4 − �3 − �2 + ��1
, �3 < ��1, ��4 > �2;

0, �2 ≥ ��4.
(12)

By De�nition 9 measures of the event �̃� ≥ �̃� are as follows:
Me
 (�̃� ≥ �̃�)

= �Pos
 (�̃� ≥ �̃�) + (1 − �)Nes
 (�̃� ≥ �̃�)

=

{{{{{{{{{{
{{{{{{{{{{
{

1, �3 ≤ �2;
(1 − �) �2 − �4

�2 − �1 − �4 + �3
+ �, �3 > �1, �4 < �2;

�, �4 > �2, �2 < �3;
� �4 − �1
�4 − �3 + �2 − �1

, �3 < �2, �4 > �1;
0, �1 ≥ �4,

Me
]
(�̃� ≥ �̃�)

= �Pos
]
(�̃� ≥ �̃�) + (1 − �)Nes

]
(�̃� ≥ �̃�)

=

{{{{{{{{{{
{{{{{{{{{{
{

0, �3 ≤ ��1;
(1 − �) �3 − ��1

�2 − ��1 − ��4 + �3
, �3 > ��1, �2 > ��4;

(1 − �) , �2 < ��4, �2 < �3;
(1 − �) + � �2 − �3

�2 − ��1 + ��4 − �3
, �3 < �2, ��4 > ��1;

1, ��1 ≥ ��4.
(13)

For � = 0.5,

Cr
 (�̃� ≤ 	̃�)=

{{{{{{{{{{{{
{{{{{{{{{{{{
{

0, �1 ≤ �1;
�4 − �1

2 (�4 − �3 + �2 − �1)
, �4 > �1, �2 > �3;

1
2 , �3 > �2, �1 < �3;
�4 − 2�3 + 2�1 − �2
2 (�4 − �3 − �2 + �1)

, �1 > �3, �4 > �2;
1, �2 ≥ �4,

Cr
]
(�̃� ≤ 	̃�)=

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

1, ��4 ≤ ��1;
2�2 − 2�3 + ��4 − ��1
2 (�2 − ��1 + ��4 − �3)

, ��4 > ��1, �2 > �3;
1
2 , �2 < �3, ��1 > �3;
��4 − �2

2 (��4 − �3 − �2 + ��1)
, �3 < ��1, �2 < ��4;

0, �2 ≥ ��4,

Cr
 (�̃� ≥ 	̃�)=

{{{{{{{{{{{{
{{{{{{{{{{{{
{

1, �3 ≤ �2;
2�2 − 2�4 + �3 − �1
2 (�2 − �1 − �4 + �3)

, �3 > �1, �2 > �4;
1
2 , �4 > �2, �2 < �3;
�4 − �1

2 (�4 − �3 + �2 − �1)
, �2 > �3, �4 > �1;

0, �1 ≥ �4,

Cr
]
(�̃� ≥ 	̃�)=

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

0, ��3 ≤ ��1;
�3 − ��1

2 (�2 − ��1 − ��4 + �3)
, �3 > ��1, �2 > ��4;

1
2 , �2 < ��4, �2 < �3;
2�2 − 2�3 + ��4 − ��1
2 (�2 − ��1 + ��4 − �3)

, �2 > �3, ��1 < ��4;
1, ��1 ≥ ��4.

(14)

Lemma 10. If �̃� = (�1, �2, �3, �4)(��1, �2, �3, ��4) and �̃� =
(�1, �2, �3, �4)(��1, �2, �3, ��4), then

Pos
 (�̃� ≤ �̃�) ≥ /, Pos
]
(�̃� ≤ �̃�) ≤ 6

⇐⇒ �4 − �1
�4 − �3 + �2 − �1

≥ /,

�2 − �3
�2 − ��1 + ��4 − �3

≤ 6.

(15)
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Proof. Let us consider

Pos
 (�̃� ≤ �̃�) ≥ /, Pos
]
(�̃� ≥ �̃�) ≤ 6. (16)

Now from (8)

Pos
 (�̃� ≤ �̃�) ≥ / ⇐⇒ �4 − �1
�4 − �3 + �2 − �1

≥ /,

Pos
]
(�̃� ≤ �̃�) ≤ 6 ⇐⇒ �2 − �3

�2 − ��1 + ��4 − �3
≤ 6.

(17)

Note. Pos
(�̃� ≤ �) ≥ / and Pos
]
(�̃� ≤ �) ≤ 6 ⇔ (� −

�1)/(�2 − �1) ≥ / and (�2 − �)/(�2 − ��1) ≤ 6.

Lemma 11. If �̃� = (�1, �2, �3, �4)(��1, �2, �3, ��4) and �̃� =
(�1, �2, �3, �4)(��1, �2, �3, ��4), then

Nes
 (�̃� ≤ �̃�) ≥ /, Nes
]
(�̃� ≤ �̃�) ≤ 6

⇐⇒ �1 − �3
�4 − �3 − �2 + �1

≥ /,

��4 − �2
��4 − �3 − �2 + ��1

≤ 6.

(18)

Proof. Let us consider

Nes
 (�̃� ≤ �̃�) ≥ /, Nes
]
(�̃� ≤ �̃�) ≤ 6. (19)

Now from (10),

Nes
 (�̃� ≤ �̃�) ≥ / ⇐⇒ �1 − �3
�4 − �3 − �2 + �1

≥ /,

Nes
]
(�̃� ≤ �̃�) ≤ 6 ⇐⇒ ��4 − �2

��4 − �3 − �2 + ��1
≤ 6.

(20)

Note. Nes
(�̃� ≤ �) ≥ / and Nes
]
(�̃� ≤ �) ≤ 6 ⇔ (� −

�3)/(�4 − �3) ≥ / and (��4 − �)/(��4 − �3) ≤ 6.

Lemma 12. If �̃� = (�1, �2, �3, �4)(��1, �2, �3, ��4) and �̃� =
(�1, �2, �3, �4)(��1, �2, �3, ��4), then

Cr
 (�̃� ≤ �̃�) ≥ /, Cr
]
(�̃� ≤ �̃�) ≤ 6

⇐⇒ �4 − �1
2 (�4 − �3 + �2 − �1)

≥ /,

�4 − 2�3 + 2�1 − �2
2 (�4 − �3 − �2 + �1)

≥ /,

2�2 − 2��3 + ��4 − ��1
2 (�2 − ��1 + ��4 − �3)

≤ 6,

��4 − �2
2 (��4 − �3 − �2 + ��1)

≤ 6.

(21)

Proof. Let us consider

Cr
 (�̃� ≤ �̃�) ≥ /, Cr
]
(�̃� ≤ �̃�) ≤ 6. (22)

Now, from (14),

Cr
 (�̃� ≤ �̃�) ≥ / ⇐⇒ �4 − �1
2 (�4 − �3 + �2 − �1)

≥ /,

�4 − 2�3 + 2�1 − �2
2 (�4 − �3 − �2 + �1)

≥ /,

Cr
]
(�̃� ≤ �̃�) ≤ 6 ⇐⇒ 2�2 − 2��3 + ��4 − ��1

2 (�2 − ��1 + ��4 − �3)
≤ 6,

�2 − ��4
2 (�2 − ��1 − ��4 + �3)

≤ 6.

(23)

Note. Cr
(�̃� ≤ �) ≥ /, Cr
]
(�̃� ≤ �) ≥ 6 ⇔ (� − �1)/2(�2 −

�1) ≥ /, (�4 −2�3 +�)/2(�4 −�3) ≥ / and (2�2 −�−��1)/2(�2 −
��1) ≤ 6, (��4 − �)/2(��4 − �3) ≤ 6.

4. Intuitionistic Fuzzy CCM


e chance operator is actually taken as possibility or neces-
sity or credibility measures. We can use chance operator
to transform the intuitionistic fuzzy problem into crisp
problem, which is called as CCM [27]. A general single-
objective mathematical programming problem with intu-
itionistic fuzzy parameter should have the following form:

Max @ (�, A�)

subject to B� (�, A�) ≤ �̃�� , � = 1, 2, . . . , C,
� ≥ 0,

(24)

where � is the decision vector, A� and �̃�� are intuitionistic

fuzzy parameters, @(�, A�) is an imprecise objective function,

and B�(�, A�) are constraints function for � = 1, 2, . . . , C.

e general chance-constraints model for problem (24) is

as follows:

Max @1 + @2
subject to Ch
 {@ (�, A�) ≥ @1} ≥ /

Ch
]
{@ (�, A�) ≥ @2} ≤ 6

Ch
 {B� (�, A�) ≤ �̃�� } ≥ ��
Ch

]
{B� (�, A�) ≤ �̃�� } ≤ D�

� ≥ 0, � = 1, 2, . . . , C.

(25)


e abbreviations Ch
 and Ch
]
represent chance operator

(i.e., Pos or Nec measure) for membership and nonmem-
bership functions. /, 6, ��, and D� are the predetermined
con�dence levels such that 0 ≤ �� + D� ≤ 1 and 0 ≤ / + 6 ≤ 1
for � = 1, 2, . . . , C.
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4.1. Intuitionistic Fuzzy CCM Based on Possibility Measure.

e CCM based on possibility measure is as follows:

Max @1 + @2
Subject to Pos
 {@ (�, A�) ≥ @1} ≥ /

Pos
]
{@ (�, A�) ≥ @2} ≤ 6

Pos
 {B� (�, A�) ≤ �̃�� } ≥ ��
Pos

]
{B� (�, A�) ≤ �̃�� } ≤ D�

� ≥ 0, � = 1, 2, . . . , C,

(26)

where/,6, ��, andD� are the predetermined con�dence levels
such that 0 ≤ �� + D� ≤ 1 and 0 ≤ / + 6 ≤ 1 for � = 1, 2, . . . , C.
De	nition 13. A solution �∗ of the problem (26) satis�es

Pos
(B�(�, A�) ≤ �̃�� ) ≥ �� and Pos
]
(B�(�, A�) ≤ �̃�� ) ≤ D� for

� = 1, 2, . . . , C is called a feasible solution at (��, D�) possibility
levels, � = 1, 2, . . . , C.
De	nition 14. A feasible solution at (��, D�) possibility levels,
�∗, is said to be (/, 6) e�cient solution for problem (26)
if and only if there exists no other feasible solution at

(��, D�) possibility levels, such that Pos
{@(�, A�)} ≥ / and

Pos
]
{@(�, A�)} ≤ 6 with @(�) ≥ @1(�∗) + @2(�∗).

4.2. Intuitionistic Fuzzy CCM Based on Necessity Measure.

e CCM based on necessity measure is as follows:

Max @1 + @2
Subject to Nes
 {@ (�, A�) ≥ @1} ≥ /

Nes
]
{@ (�, A�) ≥ @2} ≤ 6

Nes
 {B� (�, A�) ≤ �̃�� } ≥ ��
Nes

]
{B� (�, A�) ≤ �̃�� } ≤ D�

� ≥ 0, � = 1, 2, . . . , C,

(27)

where/,6, ��, andD� are the predetermined con�dence levels
such that 0 ≤ �� + D� ≤ 1 and 0 ≤ / + 6 ≤ 1 for � = 1, 2, . . . , C.
De	nition 15. A solution �∗ of the problem (27) satis�es

Nes
(B�(�, A�) ≤ �̃�� ) ≥ �� and Nes
]
(B�(�, A�) ≤ �̃�� ) ≤ D� for

� = 1, 2, . . . , C is called a feasible solution (��, D�) necessity
levels, � = 1, 2, . . . , C.
De	nition 16. A feasible solution at (��, D�) necessity levels,
�∗, is said to be (/, 6) e�cient solution for problem (27)
if and only if there exists no other feasible solution at

(��, D�) necessity levels, such that Nes
{@(�, A�)} ≥ / and

Nes
]
{@(�, A�)} ≤ 6 with @(�) ≥ @1(�∗) + @2(�∗).

4.3. Intuitionistic Fuzzy CCM Based on Credibility Measure.

e CCM based on credibility measure is as follows:

Max @1 + @2

Subject to Cr
 {@ (�, A�) ≥ @1} ≥ /

Cr
]
{@ (�, A�) ≥ @2} ≤ 6

Cr
 {B� (�, A�) ≤ �̃�� } ≥ ��

Cr
]
{B� (�, A�) ≤ �̃�� } ≤ D�

� ≥ 0, � = 1, 2, . . . , C,

(28)

where/,6, ��, andD� are the predetermined con�dence levels
such that 0 ≤ �� + D� ≤ 1 and 0 ≤ / + 6 ≤ 1 for � = 1, 2, . . . , C.
De	nition 17. A solution �∗ of the problem (28) satis�es

Cr
(B�(�, A�) ≤ �̃�� ) ≥ �� and Cr
]
(B�(�, A�) ≤ �̃�� ) ≤ D� for

� = 1, 2, . . . , C is called a feasible solution (��, D�) credibility
levels, � = 1, 2, . . . , C.
De	nition 18. A feasible solution at (��, D�) credibility levels,
�∗, is said to be (/, 6) e�cient solution for problem (28)
if and only if there exists no other feasible solution at

(��, D�) credibility levels, such that Cr
{@(�, A�)} ≥ / and

Cr
]
{@(�, A�)} ≤ 6 with @(�) ≥ @1(�∗) + @2(�∗).

5. Proposed Method to Solve IFLPP
Using Chance Operator

To solve intuitionistic fuzzy CCM based on possibility or
necessity or credibility measures we propose the following
method.

Step 1. Apply chance operator possibility/necessity/credi-
bility in intuitionistic fuzzy programming (24). Problem (24)
can be converted into following problem:

Max @1 + @2
Subject to Pos
 {@ (�,I�) ≥ @1} ≥ /

or Nes
 {@ (�,I�) ≥ @1} ≥ /

or Cr
 {@ (�,I�) ≥ @1} ≥ /

(29)

Pos
]
{@ (�,I�) ≥ @2} ≤ 6

or Nes
]
{@ (�,I�) ≥ @2} ≤ 6

or Cr
]
{@ (�,I�) ≥ @2} ≤ 6

(30)
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Pos
 {B� (�,I�) ≤ �̃�� } ≥ ��
or Nes
 {B� (�,I�) ≤ �̃�� } ≥ ��
or Cr
 {B� (�,I�) ≤ �̃�� } ≥ ��

(31)

Pos
]
{B� (�,I�) ≤ �̃�� } ≤ D�

or Nes
]
{B� (�,I�) ≤ �̃�� } ≤ D�

or Cr
]
{B� (�,I�) ≤ �̃�� } ≤ D�

(32)

� ≥ 0, for � = 1, 2, . . . , C (33)

0 ≤ �� + D� ≤ 1, 0 ≤ / + 6 ≤ 1
for � = 1, 2, . . . , C,

(34)

where (��, D�) and (/, 6) are the prede�ned con�dence levels.
Step 2. Using Lemmas 10, 11, and/or Lemma 12, the above
problem in Step 1 can also be written as

Max @1 + @2
Subject to @1 + @2 ≥ E

(31) – (34) ,
(35)

where E is obtained by applying Lemmas 10, 11, and/or
Lemma 12 in (30) and (29).

Step 3. 
e above problem is equivalent to

Max E
Subject to (31) – (34) .

(36)

Step 4. Crisp programming problem obtained in Step 2 can
be solved using any well-known method to get the optimal
solution.

6. Numerical Example

Let us consider the following intuitionistic fuzzy mathemati-
cal programming problem as:

Maximize A�1�1 ⊕ A�2�2
subject to A�3�1 ⊕ A�4�2 ⪯ A�5

A�6�1 ⊕ A�7�2 ⪯ A�8
�1, �2 ≥ 0,

(37)

where A�1 = (5, 6, 7, 8)(4, 6, 7, 9), A�2 = (4, 5, 6, 7)(3, 5, 6, 8),
A�3 = (1, 2, 3, 4)(0.5, 2, 3, 6), A�4 = (2, 3, 4, 5)(1, 3, 4, 6), A�5 =
(6, 7, 8, 9)(5, 7, 8, 10), A�6 = (3, 4, 5, 6)(2, 4, 5, 7), A�7 = (1, 2, 3,
4)(0, 2, 3, 4), and A�8 = (10, 11, 12, 14)(9, 11, 12, 16).

6.1. Intuitionistic Fuzzy CCM Based on Possibility Measure.
Nowby using Step 2 of themethod explained in Section 4 and

Start
Apply

chance operator
Convert
into crisp

Write
equivalent Solve

Figure 7: Flow chart of the proposed algorithm.

Lemma 10, if we apply the possibilitymeasure in intuitionistic
fuzzy mathematical programming (37), problem (37) is con-
verted into the following crisp programming problem:

Maximize (15 − / + 26) �1 + (13 − / + 26) �2
subject to (1 + �1) �1 + (2 + �1) �2 ≤ 9 − �1

(2 − 1.5D1) �1 + (3 − 2D1) �2 ≤ 8 + 2D1
(3 + �2) �1 + (1 + �2) �2 ≤ 14 − 2�2
(4 − 2D2) �1 + (2 − 2D2) �2 ≤ 12 + 4D2
�1, �2 ≥ 0, 0 ≤ / + 6 ≤ 1,
0 ≤ �� + D� ≤ 1, for � = 1, 2.

(38)

Solving the above crisp problem for e�cient levels (/ =
0.6, 6 = 0.4) and di�erent possibility levels, we get di�erent
optimal solutions. Optimal solution of (38) at di�erent
possibility levels (in Figure 7) are presented in Table 1. From
Table 1, we can observe that maximum value (= 73.09) can be
obtained at (�1 = 0.40, D1 = 0.35) and (�2 = 0.30, D2 = 0.40)
possibility levels.

6.2. Intuitionistic Fuzzy CCM Based on Necessity Measure.
Nowby using Step 2 of themethod explained in Section 4 and
Lemma 11, if we apply the necessity measure in (37), problem
(37) is converted into following crisp programming problem:

Maximize (10 − / + 26) �1 + (8 − / + 26) �2
subject to (3 + 2�1) �1 + (4 + 2�1) �2 ≤ 6 + �1

(5 − 2D1) �1 + (6 − 2D1) �2 ≤ 7 − 2D1
(5 + �2) �1 + (3 + �2) �2 ≤ 6 + �2
(7 − 2D2) �1 + (4 − D2) �2 ≤ 11 − 2D2
�1, �2 ≥ 0, 0 ≤ / + 6 ≤ 1,
0 ≤ �� + D� ≤ 1, for � = 1, 2.

(39)

Solving the above crisp linear programming problem for
e�cient levels (/ = 0.6, 6 = 0.4) and di�erent necessity
levels, we get di�erent optimal solutions. Optimal solutions
of (39) at di�erent necessity levels (in Figures 8 and 9) are
presented in Table 2. From Table 2, we can observed that at
(�1 = 0.35, D1 = 0.45) and (�2 = 0.35, D2 = 0.45) the decision
maker will get the maximum value = 12.98.
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Table 1: Optimal solution of (38) at di�erent possibility levels.

�1 D1 �2 D2 Optimal solution Optimal value (@∗)
0.30 0.30 0.35 0.35 �1 = 3.41, �2 = 1.37 70.09

0.30 0.35 0.35 0.40 �1 = 3.29, �2 = 1.66 72.14

0.40 0.35 0.30 0.40 �1 = 3.43, �2 = 1.57 73.09

0.35 0.40 0.40 0.30 �1 = 3.10, �2 = 1.9 72.2

0.40 0.45 0.40 0.45 �1 = 3.16, �2 = 1.73 71.05

0.50 0.45 0.45 0.5 �1 = 3.16, �2 = 1.50 67.93

0.45 0.50 0.50 0.40 �1 = 2.97, �2 = 1.73 68.02

0.60 0.45 0.45 0.6 �1 = 3.29, �2 = 1.20 65.93

0.50 0.50 0.50 0.50 �1 = 3.03, �2 = 1.57 67.00

0.55 0.40 0.55 0.40 �1 = 2.97, �2 = 1.50 65.10

Table 2: Optimal solution of (39) at di�erent necessity levels.

�1 D1 �2 D2 Optimal solution Optimal value (@∗)
0.35 0.30 0.30 0.35 �1 = 0.91, �2 = 0.43 12.93

0.45 0.30 0.40 0.35 �1 = 0.90, �2 = 0.45 12.89

0.50 0.35 0.50 0.35 �1 = 0.87, �2 = 0.47 12.86

0.60 0.40 0.60 0.40 �1 = 0.85, �2 = 0.50 12.84

0.70 0.20 0.70 0.20 �1 = 0.87, �2 = 0.45 12.71

0.60 0.30 0.60 0.20 �1 = 0.87, �2 = 0.47 12.79

0.65 0.35 0.75 0.20 �1 = 0.84, �2 = 0.50 12.75

0.70 0.10 0.70 0.10 �1 = 0.89, �2 = 0.43 12.67

0.50 0.50 0.50 0.50 �1 = 0.85, �2 = 0.51 12.94

0.35 0.45 0.35 0.45 �1 = 0.88, �2 = 0.48 12.98

Table 3: Input data for IFTP.

L̃1
� L̃2

� L̃3
�

Availability (�̃��)
Ñ1
�

(2, 4, 6, 7) (1, 4, 6, 9) (4, 6, 7, 8) (3, 6, 7, 9) (3, 7, 9, 12) (2, 7, 9, 13) (4, 6, 8, 9) (2, 6, 8, 10)

Ñ2
�

(1, 3, 4, 6) (0.5, 3, 4, 7) (3, 5, 6, 7) (2, 5, 6, 9) (2, 6, 7, 11) (1, 6, 7, 12) (0, 0.5, 1, 2) (0, 0.5, 1, 5)

Ñ3
�

(3, 4, 5, 8) (2, 4, 5, 10) (1, 2, 3, 4) (0.5, 2, 3, 5) (2, 4, 5, 10) (1, 4, 5, 11) (8, 9.5, 10, 11) (6.5, 9.5, 10, 11)

Demand (�̃�
�
) (6, 7, 8, 10) (5, 7, 8, 12) (4, 5, 6, 9) (3, 5, 6, 11) (2, 4, 5, 7) (0.5, 4, 5, 8)

64
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(0.30, 0.30)

(0
.3

5,
 0

.3
5)

(0
.3

5,
 0

.4
0)

(0
.3

0,
 0

.4
0) (0.55, 0.40)

(0.50, 0.50)

(0.60, 0.45)

(0.45, 0.50)

(0.50, 0.45)
(0

.4
0,

 0
.3

0)

(0
.4

0,
 0

.4
5)

(0
.4

5,
 0

.5
0)

(0
.5

0,
 0

.4
0)

(0
.4

5,
 0

.6
0)

(0
.4

5,
 0

.4
5)

(0
.3

0,
 0

.3
0)

(0.40, 0.45)

(0.35, 0.40)

(0.40, 0.35)

(0.30, 0.35)
(�1, �1

)
(�2 , �

2 )

f
∗

Figure 8: Optimal solution at di�erent possibility levels.
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Figure 9: Optimal solution at di�erent necessity levels.

7. Intuitionistic Fuzzy Transportation
Problem Based on Possibility Measure

Let us consider the following intuitionistic fuzzy transporta-
tion problem (IFTP) (in Table 3).

Above transportation problem is a balanced transporta-

tion problem as ⨁3�=1�̃�� = ⨁3�=1�̃�� . 
e above IFTP can be
written as

Minimize (2, 4, 6, 7) (1, 4, 6, 9) �11
⊕ (4, 6, 7, 8) (3, 6, 7, 9) �12
⊕ (3, 7, 9, 12) (2, 7, 9, 13) �13
⊕ (1, 3, 4, 6) (0.5, 3, 4, 7) �21
⊕ (3, 5, 6, 7) (2, 5, 6, 9) �22
⊕ (2, 6, 7, 11) (1, 6, 7, 12) �23
⊕ (3, 4, 5, 8) (2, 4, 5, 10) �31
⊕ (1, 2, 3, 4) (0.5, 2, 3, 5) �32
⊕ (2, 4, 5, 10) (1, 4, 5, 11) �33

subject to �11 + �12 + �13
≤ (4, 6, 8, 9) (2, 6, 8, 10)

�21 + �22 + �23
≤ (0, 0.5, 1, 2) (0, 0.5, 1, 5)

�31 + �32 + �33
≤ (8, 9.5, 10, 11) (6.5, 9.5, 10, 11)

�11 + �21 + �31
≥ (6, 7, 8, 10) (5, 7, 8, 12)

�12 + �22 + �32
≥ (4, 5, 6, 9) (3, 5, 6, 11)

�13 + �23 + �33
≥ (2, 4, 5, 7) (0.5, 4, 5, 8)

��� ≥ 0, ∀�, Q.
(40)

Nowby using Step 2 of themethod explained in Section 4 and
Lemma 10, if we apply the possibilitymeasure in intuitionistic
fuzzy mathematical programming (40), problem (40) is
converted into following crisp programming problem:

Minimize (6 + 2/ − 36) �11 + (10 + 2/ − 26) �12
+ (10 + 4/ − 56) �13 + (4 + 2/ − 2.56) �21
+ (8 + 2/ − 36) �22 + (8 + 4/ − 56) �23
+ (7 + / − 56) �31 + (3 + / − 1.56) �32
+ (6 + 2/ − 36) �33

subject to �11 + �12 + �13 ≤ (17 − �1 + 2D1)
�21 + �22 + �23 ≤ (3 − �2 + 4D2)
�31 + �32 + �33 ≤ (21 − �3 + D3)
�11 + �21 + �31 ≥ (13 + �4 − 2D4)
�12 + �22 + �32 ≥ (9 + �5 − 2D5)
�13 + �23 + �33 ≥ (6 + 2�6 − 3.5D6)
��� ≥ 0, for �, Q = 1, 2, 3, 0 ≤ / + 6 ≤ 1,
0 ≤ �� + D� ≤ 1, for � = 1, 2, . . . , 6.

(41)

Solving the above crisp problem for e�cient levels (/ =
0.6, 6 = 0.4) and possibility levels (�� = 0.5, D� = 0.5) for
� = 1, 2, . . . , 6, using Lingo-11.0, we get �11 = 0.75, �12 = 0,
�13 = 0, �21 = 4.5, �22 = 0, �23 = 0, �31 = 7.25, �32 = 8.5, and
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�33 = 5.25. Now the minimum intuitionstic fuzzy optimal
cost is

R̃� = (72.25, 109, 136, 203.5) (45.62, 109, 136, 246.25) . (42)

8. Discussion

Intuitionistic fuzzy sets being a generalization of fuzzy sets
give us an additional possibility to represent imperfect knowl-
edge, making it possible to describe many real problems in
a more adequate way. So in this paper, we have developed
the possibility and necessity measures on intuitionistic fuzzy
set. Here we have presented �rst time the mathematical
representation of di�erent types of measures in intuitionistic
fuzzy environments and some graphical representations of
themare depicted.Wehave also developed the theoretical cal-
culation on possibility, necessity, and credibility measures for
defuzzify intuitionistic fuzzy linear programming problem
using chance operators. To validate the proposed method,
we have discussed three di�erent approaches to defuzzify
the intuitionistic fuzzy relations using possibility, necessity,
and credibility measures. Using chance operator we can
convert a problem under imprecise models to corresponding
crisp models. At di�erent levels of possibility, necessity, and
credibility, we have achieved di�erent optimal solution. A
numerical example is presented and solved using LINGO-11.0
to illustrate the proposed approaches. 
e proposed method
can be applied for multiobjective, multiitem transportation
problem. 
is method can be also extended to be applied
into di�erent types of optimization problem, namely, optimal
control and solid transportation problems.
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