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1 Introduction

The cubic holds a double fascination since not only is it interesting in its own right, but
its solution is also the key to solving quartics. This article describes five fundamental
parameters of the cubid( A, h, xy andy), and shows how they lead to a significant
modification of the standard method of solving the cubic, generally knov@astan’'s
solution.
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Figure 1:

It is necessary to start with a definition. L{xy, ) be a point on a polynomial
curve f (x) of degreen such that moving the axes by putting- x — X%y makes the sum
of the roots of the new polynomidl(z) equal to zero. It is easy to show that for the
polynomial equation

aX+bX" 14 +k=0

x = —b/(na). If f(x) is a cubic polynomial thetfi(z) is known as the reduced cubic,
andN is the point of inflexion.

*This revision (November 2004) of the original article incorporates some minor corrections, footnotes,
additional references and an improvement to figure 2.
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Now consider the general cubic
y=ax +bx +cx+d.

Herexy is —b/(3a), andN the point of symmetry of the cubic. Let the parameigrs
A, h, be defined as the distances shown in figure 1. It can be shown, and readers will
easily do this, that andh are simple functions o§ namely

A2=36%> and h=2as°

where
, b?>-3ac
9a?
This result is found easily by locating the turning points. Thus the shape of the cubic
is completely characterised by the paramditerEither the maxima and minima are
distinct (82 > 0), or they coincide atl (52 = 0), or there are no turning point§{ < 0).
Furthermore, the quantigs12/h is constant for any cubic, as follows

asA? 3

h 2

The relationshipl? = 3582 is a particular case of the general observation that

If a polynomial curve passes through the origin, then the product of the
roots X1, xo, -+, Xn—1 (excluding the solutiorx = 0) is related to the
product of thex-coordinates of the turning pointgt, --- tn_1 by

X1X2 + Xn—1 = Nzl -+ thq,

a result whose proof readers can profitably set to their classes, and which parallels
a related but much more difficult result about freoordinates of the turning points
which we have discovered (Nickalls and Dye, 1996).

2 Solution of the cubic

In addition to their value in curve tracing, | have found that the paraméters¢, and
W greatly clarify the standard method for solving the cubic since, unlike the Cardan
approach (Burnside and Panton, 1886), they reveal how the solution is related to the
geometry of the cubic.

For example the standard Cardan solution, using the classical terminology, involves
starting with an equation of the form

ax® + 3b1x% + 3cix+d =0,
and then substituting= x+ (b1 /a) to generate a reduced equation of the form

3H G
23+722+*3 :0,
a a

where
H=ac—b? and G=a’d—3abc;+2b3.
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This obscures the fact that the reduced form of the cubic has theaintthey-axis.
Subsequent development yields a discriminant of the f6fm 4H3 where

G2 4 4H3 = a2(a’d? — 6abycyd + 4ac; + 4b3d — 3b3c?).

The problem is that it is not clear geometrically what the quant@esdH represent.
However, by using the parameters described earlier, not only is the solution just as
simple but the geometry is revealed.

2.1 New approach

Start with the usual form of the cubic equation
f(x) =a+b+cx+d=0,

having rootse, 8, v, and obtain the reduced form by the substitution x, + z (see
figure 1). The equation will now have the form

aZ —3ad%z+y =0, (1)
and have roots — xy, B — Xy, ¥ — Xu; @ form which allows the use of the usual identity
(p+a)°—3pg(p+0) — (p°+°) = 0.
Thusz= p+qis a solution where
pg=482 and p +q=-w/a

Solving these equations as usual by cubing the first, substituting ifothe second,
and solving the resulting quadratic 3 gives

1
3 _ _ 2 _ Na2856
p Za{ W/ W —4a2d }

and sinceh = 2ad3, this becomes

P =g W VR | @

When this solution is viewed in the light of figure 1, it is immediately clear that equa-
tion 2 is particularly useful when there is a single real root, that is when

e > h?.

Contrast this with the standard Cardan approach which gives
= {—Gi VG2 4 4H3 }
2a3

which completely obscures this fact. The valueSpH, andG? + 4H3 are therefore
found to be

G=a%, H=-a’> and G?>+4H3=a*(y¥—h?).
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However, since the sign ¢f depends on that af, lettingh = hy = —h; allows equa-
tion 1 to be rewritten as

1
3 e p— —
p* = o { o VO R () -
If the y-coordinate of a turning point ig then let
WHhi=y; and Ww+ha=y,.

Our solution (equation 2) can therefore be written as

1
p3:£{—yNi\/yleT2}-

Using the symbol\; for the geometric discriminant (Nickalls and Dye, 1996j the
cubic, we have

Az =yryp, = W — 2.

Returning to the geometrical viewpoint, figure 1 shows that the rest of the solution
depends on the sign of the discriminaas follows:

y2 > h? 1 real root
¥ =1 3 real roots (two or three equal roots)
o <h?  3distinct real roots.

These are now dealt with in order.

—a] ¥ >h? ey, >0, or Cardan’s G>+4H3 > 0

Clearly, there can only be 1 real root under these circumstances (see figure 1). As the
discriminant is positive the value of the real r@ots easily obtained as

1 1
oc:xN+\3/2a <—w+\/yN2—h2)+f/z,d(—m—\/y&—hz)

—Ib] ¥ =h? ie.yy, =0, or Cardan’s G+ 4H3=0

Providing h # 0 this condition yields two equal roots, the roots being 6, 6 and
—25. The true roots are thexn= xy + 8, %y + 6 andx, —28. Since there are two
double root conditions the sign éfis critical, and depends on the signyqf and so in
these circumstanceéshas to be determined from

W
_ 3/ N
6_\/2a

If yw =h=0thend =0, in which case there are three equal roots-atxy.

INote that the produgt;, yr, of the y-coordinates of the turning points is known asghemetriadiscrim-
inant of the cubic (see Nickalls and Dye, 1996). The classical ‘algebraic’ discrimiG&rt 4H3) has the
same sign as the geometric discriminant si6éer 4H3 = a*(y3 — h?) = a’yy ys,.

2Since the sign reflects the relative magnitudggoindh?.
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¥ < h? l.e.yr Y, <0, or Cardan’s G2+4H3 <0

From figure 1 it is clear that there are three distinct real roots in this case. However,
our solution requires that we find the cube root of a complex number, so it is easier
to use trigonometry to solve the reduced form using the substitatior2d cosd in
equation 1. This gives

2a5° (4cos6 —3cosh) +w =0,
and since 53 = h, this becomes
cosP = % 3)
The three roots, B andy are therefore given by
o =Xy + 28 cosb,

B =x+26cos(2w/3+0),
Y =X+ 26 cos(4r/3+ 0).

These are shown in figure 2 in relation to a circle, radidis&ntered above N. Note
that the maximum between rog8sandy corresponds to the angler23.

Figure 2:

Itis clear from equation 3 that trigonometry can only be used to solve the reduced
cubic when W

—-1<=<+1
= h_+
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a point which is completely obscured by the corresponding Cardan equation
-G
2(—H)?

cosP =

3 Example

Solve the equation
XC—Tx%+14x—8=0
The parameters are
X =7/3, W= f(x)=-07407 &2>=7/9 and h=1.3718

Sincey? < h?, it follows (see figure 1) that there are three distinct real roots, which are
given by

X = Xy + 206 cosO
where 0-7407
_ W _ Y -0
cosdP = h _1~3718_05399

So06 = 191066, and the three roots are

a—14 2@ c0s191066 — 4,
+2,/§c0s1391066 =1,
y=1+ 2\/2 052591066 — 2.

For another example see Nickalls (1996).

WIN wIN

4 Conclusion

In summary, |1 would like to suggest that the usual Cardan-type terminology for cubics
and quartics, though it has been used for hundreds of years, be abandoned in favour of
the parameter8§, h, xy, Yy Which reveal to such advantage how the algebraic solution

is related to the geometry of the cubic.
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