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A new approach to stability and stabilization
analysis for continuous-time Takagi-Sugeno fuzzy

systems with time delay
Likui Wang and Hak-Keung Lam Senior Member, IEEE

Abstract—Till now, there are lots of stability and stabilization
results about T-S (Takagi-Sugeno) fuzzy systems with time delay,
but most of them are independent of the analysis of membership
functions. Since the membership functions are an essential
component to make a fuzzy system different from others, the
conditions without its information are conservative. In this brief
paper, a new Lyapunov-Krasovskii functional is designed to
investigate the stability and stabilization of continuous-time T-
S fuzzy systems with time delay. Different from the existing
results in the literature, the integrand of the Lyapunov-Krasovskii
functional in this paper depends not only on the integral variable
but also on the membership functions, and thus, the information
of the time-derivative of membership functions can also be
used to reduce the conservativeness of finding the maximum
delay bounds. Utilizing the information of the time-derivative
of membership, a bunch of controllers are designed according to
their sign, and then a switching idea is applied to stabilize the
fuzzy system. In the end, two examples are given to illustrate the
feasibility and validity of the design and analysis.

Keywords: Takagi–Sugeno’s fuzzy model, Time delay, Par-
allel distributed compensation law, Membership dependent
Lyapunov-Krasovskii function.

I. INTRODUCTION

In the recent decades, the stability and stabilization analysis
for fuzzy systems ([24]-[30]) especially for Takagi-Sugeno
fuzzy model [1] with time delay has been a hot topic (see
[2]-[13], [22], [23] and the references therein) and the focus
is on how to maximize the tolerance of time delay. All
kinds of Lyapunov-Krasovskii functional have been developed
to reduce the conservativeness of finding the maximum de-
lay bounds, for example, an augmented Lyapunov-Krasovskii
functional is proposed in [5] and an improved Jensen’s
inequality which is a more general and tighter bounding
technology is used to deal with the cross product terms. The
results in [5] are improved by [8] where a fuzzy weighting-
dependent Lyapunov-Krasovskii functional is designed for
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uncertain T-S fuzzy systems with time-varying delays. The
results in [8] are less conservative than [5] because of an
input-output approach and the fuzzy weighting-dependent
Lyapunov-Krasovskii functional. A discretized Lyapunov-
Krasovskii functional is proposed in [2] where the number of
free variables increases as the discretization level increases.
These variables help to reduce the conservativeness but in-
crease the computing burden heavily. For the case of constant
time delay, the results in [5], [8] and [2] are further improved
by [11] where new simple and effective stabilization conditions
are proposed by applying the Wirtinger inequality [14] and
fuzzy line-integral Lyapunov functional [15]. The results in
[11] are improved by [17] where a new augmented Lyapunov-
Krasovskii functional is constructed and some new cross terms
are included. For the first time, a distributed fuzzy optimal
control law relied on actual physical meaning by adaptive
dynamic programming algorithm is proposed in [20] which
gives a new thought for the optimization of multi-agent system.
However, all of the results mentioned above are independent
of the analysis of membership functions which will lead
to conservativeness because the membership functions are
an essential component to make a fuzzy system different
from other systems. More recently, a membership function
dependent Lyapunov-Krasovskii functional is designed in [18]
and some less conservative results are obtained by analyzing
the time derivative of the membership function, however the
drawback is that the local stabilization region becomes smaller
as the delay increases.

Based on the above discussions, the contributions of this
paper are as follows: 1), A new membership-function de-
pendent Lyapunov-Krasovskii functional is designed in this
paper which is different from the existing ones such as [11],
[17] where the integrands are independent of the membership
functions. 2), A new method is used to deal with the time
derivative of the Lyapunov-Krasovskii functional. Since the
integrand of the Lyapunov-Krasovskii functional depends not
only on the integral variable but also on the membership
functions, a switching idea is applied to ensure that the time
derivative of the Lyapunov-Krasovskii functional is negative.
Due to the above contributions, the obtained stability and
stabilization criteria improve the existing results. In the end,
two examples are provided for verification. One example is for
stability and the other one is for stabilization. Both examples
show that less conservative results can be obtained in this
paper than the existing ones in the literature.
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II. PRELIMINARIES AND BACKGROUNDS

Consider the following nonlinear model

ẋ (t) = f1 (z (t))x (t) + f2 (z (t))x (t− τ)
+f3 (z (t))u (t) , (1)

x (t) = φ (t) , t ∈ [ −τ 0
]

where x(t) ∈ Rn is the state, u (t) ∈ Rm is the input,
z(t) ∈ Rp is known premise variables. f1 (·), f2 (·) and
f3 (·) are nonlinear functions or matrix functions with proper
dimensions, φ (t) is the initial condition and the time delay
τ is assumed to be constant. Applying the sector nonlinearity
method or local approximation method in [16], one has the
following well known time delay T-S fuzzy model:

ẋ (t) =
r∑

i=1

hi (z (t))Aix (t) +
r∑

i=1

hi (z (t))Aτix (t− τ)

+
r∑

i=1

hi (z (t))Biu (t) , (2)

x (t) = φ (t) , t ∈ [ −τ 0
]
,

where Ai ∈ Rn×n, Aτi ∈ Rn×n, Bi ∈ Rn×m are known
matrices and hi (z(t)) are membership functions. To lighten
the notation, we will drop the time t, for instance, we will use
x instead of x (t). For simplicity, single sums are written as

Xh =
r∑

i=1

hiXi. For any matrix X , He(X) = X + XT .

In this paper, the following controller (3) is used to stabilize
the fuzzy system

u = Khx (t) + Kτhx (t− τ) . (3)

The following Lemma 1 is useful in this paper.

Lemma 1: (see [19]) For a function F (t) =
α2(t)∫
α1(t)

f (s, t) ds,

if α1 (t), α2 (t) are differentiable for t and f (s, t) is contin-
uous for s and patrially derivative for t, we have

dF (t)
dt

= α̇2 (t) f (α2 (t) , t)− α̇1 (t) f (α1 (t) , t)

+

α2(t)∫

α1(t)

∂f (s, t)
∂t

ds. (4)

In the following, we will discuss how to ensure Ẋh ≤ 0,
Ẏh ≤ 0 and Żh ≤ 0 where Xi > 0, Yi > 0 and Zi > 0. Note

Ẋh =
r∑

i=1

ḣiXi =
r−1∑

k=1

ḣk (Xk −Xr) , (5)

Ẏh =
r∑

i=1

ḣiYi =
r−1∑

k=1

ḣk (Yk − Yr) , (6)

Żh =
r∑

i=1

ḣiZi =
r−1∑

k=1

ḣk (Zk − Zr) , (7)

where ḣk are the time-derivative of membership functions and
are negative or positive as time goes by. Since Xi, Yi and Zi

are variables to be designed, we can use a switching idea to

ensure Ẋh ≤ 0, Ẏh ≤ 0 and Żh ≤ 0 as follows:
{

if ḣk ≤ 0, then Xk −Xr ≥ 0, Yk − Yr ≥ 0, Zk − Zr ≥ 0,

if ḣk > 0, then Xk −Xr < 0, Yk − Yr < 0, Zk − Zr < 0.
(8)

There are 2r−1 possible cases in (8). Let Hl, l =
1, 2, · · · , 2r−1 be the set that contains the possible permu-
tations of ḣk and Cl be the set that contains the constraints of
Xi, Yi and Zi, (8) can be presented as

if Hl, then Cl. (9)

For example, if r = 3, we have

Ẋh = ḣ1 (X1 −X3) + ḣ2 (X2 −X3) ,

Ẏh = ḣ1 (Y1 − Y3) + ḣ2 (Y2 − Y3) ,

Żh = ḣ1 (Z1 − Z3) + ḣ2 (Z2 − Z3) .

There are 22 constraints Cl, l = 1, 2, 3, 4 to ensure Ẋh ≤ 0,
Ẏh ≤ 0, Żh ≤ 0 and (9) is expressed as following

If H1, then C1; If H2, then C2;
If H3, then C3; If H4, then C4,

where

H1 : ḣ1 ≤ 0, ḣ2 ≤ 0; H2 : ḣ1 ≤ 0, ḣ2 > 0;
H3 : ḣ1 > 0, ḣ2 ≤ 0; H4 : ḣ1 > 0, ḣ2 > 0,

C1 :

{
X1 ≥ X3, X2 ≥ X3, Y1 ≥ Y3,

Y2 ≥ Y3, Z1 ≥ Z3, Z2 ≥ Z3.

}
,

C2 :

{
X1 ≥ X3, X2 < X3, Y1 ≥ Y3,

Y2 < Y3, Z1 ≥ Z3, Z2 < Z3.

}
,

C3 :

{
X1 < X3, X2 ≥ X3, Y1 < Y3,

Y2 ≥ Y3, Z1 < Z3, Z2 ≥ Z3.

}
,

C4 :

{
X1 < X3, X2 < X3, Y1 < Y3,

Y2 < Y3, Z1 < Z3, Z2 < Z3.

}
.

Based on the above discussion, we get the following lemma.
Lemma 2: For some membership function dependent ma-

trices Xh, Yh and Zh where Xi > 0, Yi > 0 and Zi > 0 are
free variables, we have Ẋh ≤ 0, Ẏh ≤ 0 and Żh ≤ 0, if the
switching rules (9) are satisfied where l = 1, 2, · · · , 2r−1.

If Lemma 2 is used to get some stabilization conditions,
for different Cl and Hl, l = 1, · · · , 2r−1, the corresponding
controller is

ul = Kl,hx (t) + Kl,τhx (t− τ) , (10)

Kl,h =
r∑

i=1

hiKl,i,Kl,τh =
r∑

i=1

hiKl,τi.

The final controller (3) becomes a switching controller below

u :





u1 = K1,hx (t) + K1,τhx (t− τ) for H1,

...
ul = Kl,hx (t) + Kl,τhx (t− τ) for Hl.

(11)
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III. MAIN RESULTS

In this section, the stability and stabilization problem for
T-S fuzzy system with time delay is considered by utilizing
new Lyapunov-Krasovskii functional and a switching control
method.

A. Stability

Theorem 1: For a given scalar τ > 0, the closed-loop T-
S fuzzy system (2) is globally asymptotically stable if there

exist matrices

[
P11i P12i

∗ P22i

]
> 0, Qi > 0, Zi > 0, M1i,

M2i, M3i, M4i, such that the following inequalities hold for
i, j = 1, · · · , r,

Q̇h ≤ 0, Żh ≤ 0, Ṗh ≤ 0, (12)

Ph =

[
P11h P12h

∗ P22h

]
,

Θij + Θji ≤ 0, (13)

Θij =




Θ11ij Θ12ij Θ13ij Θ14ij

∗ Θ22ij Θ23ij Θ24ij

∗ ∗ −12τ−2Zi Θ34ij

∗ ∗ ∗ Θ44ij


 ,

Θ11ij = He (P12i + M1iAj) + Qi − 4Zi,

Θ12ij = −P12i − 2Zi + M1iAτj + AT
j MT

3i,

Θ13ij = P22i + 6τ−1Zi + AT
j MT

4i,

Θ14ij = P11i −M1i + AT
j MT

2i,

Θ22ij = −Qi − 4Zi + He (M3iAτj) ,

Θ23ij = −P22i + 6τ−1Zi + AT
τjM

T
4i,

Θ24ij = AT
τjM

T
2i −M3i,

Θ34ij = PT
12i −M4i,Θ44ij = τ2Zi − He (M2i) .

Proof: Choose the Lyapunov-Krasovskii functional as

V (xt) = V1 (xt) + V2 (xt) + V3 (xt) , (14)

V1 (xt) = ρTPhρ, ρT =
[

x (t)T
t∫

t−τ

x (s)T
ds

]
,

V2 (xt) =

t∫

t−τ

x (s)T
Qhx (s) ds,

V3 (xt) = τ

0∫

−τ

t∫

t+θ

ẋ (s)T
Zhẋ (s) dsdθ.

It follows that

V̇1 (xt) = 2ρTPhρ̇ + ρT Ṗhρ.

Applying Lemma 1, we have

V̇2 (xt) = xT Qhx− x (t− τ)T
Qhx (t− τ)

+

t∫

t−τ

x (s)T
Q̇hx (s) ds, (15)

V̇3 (xt) = τ2ẋT Zhẋ− τ

t∫

t−τ

ẋ (s)T
Zhẋ (s) ds

+τ

0∫

−τ

t∫

t+θ

ẋ (s)T
Żhẋ (s) dsdθ. (16)

Considering the constraints in (12), we have

V̇ (xt) ≤ 2ρTPh

[
ẋ (t)

x (t)− x (t− τ)

]

+x (t)T
Qhx (t)− x (t− τ)T

Qhx (t− τ)

+τ2ẋ (t)T
Zhẋ (t)− τ

r∑

i=1

hi

t∫

t−τ

ẋ (s)T
Ziẋ (s) ds.

Using the zero equation

2M× (Ahx + Aτhx (t− τ)− ẋ) = 0, (17)

M = xT M1h + ẋT M2h +x (t− τ)T
M3h +

t∫

t−τ

x (s)T
dsM4h,

and the results in [14] to deal with the term

−τ
t∫

t−τ

ẋ (s)T
Ziẋ (s) ds, we have V̇ (xt) < ηT Ωη which can

be ensured by (13), where

ηT =
[

x (t)T
x (t− τ)T

t∫
t−τ

x (s)T
ds ẋ (t)T

]
,

Ω =




Ω11 Ω12 Ω13 Ω14

∗ Ω22 Ω23 Ω24

∗ ∗ −12τ−2Zh Ω34

∗ ∗ ∗ Ω44


 ,

Ω11 = He (P12h + M1hAh) + Qh − 4Zh,

Ω12 = −P12h − 2Zh + M1hAτh + AT
h MT

3h,

Ω13 = P22h + 6τ−1Zh + AT
h MT

4h,

Ω14 = P11h −M1h + AT
h MT

2h,

Ω22 = −Qh − 4Zh + He (M3hAτh) ,

Ω23 = −P22h + 6τ−1Zh + AT
τhMT

4h,

Ω24 = AT
τhMT

2h −M3h,

Ω34 = PT
12h −M4h,Ω44 = τ2Zh − He (M2h) .

Remark 1: Note, the Lyapunov-Krasovskii functional used
in Theorem 1 is different from the one used in the liter-
ature such as [11], [17], [18]. In V2 (xt) and V3 (xt) of
this paper, Qh and Zh are independent of the integral vari-
able s but on the time t, so the information of the time-
derivative of the membership function can be used to obtain
new less conservative stability conditions, at the same time,
there comes a problem that how to deal with the integral

part
t∫

t−τ

x (s)T
Q̇hx (s) ds and τ

0∫
−τ

t∫
t+θ

ẋ (s)T
Żhẋ (s) dsdθ. A

simple and direct method is letting Q̇h ≤ 0, Żh ≤ 0 and Ṗh ≤
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0. Since Q̇h =
r−1∑
k=1

ḣk (Qk −Qr), Żh =
r−1∑
k=1

ḣk (Zk − Zr),

Ṗh =
r−1∑
k=1

ḣk (Pk − Pr) , then Q̇h ≤ 0, Żh ≤ 0 and Ṗh ≤ 0

can be ensured by the switching rules (9). Then, based on
Lemma 2, applying (13) with each Cl, we obtain a maximum
delay denoted as τl, and the final delay obtained by Theorem 1
is τ = min

1≤l≤2r−1
(τl). Since Theorem 1 does not depend on the

initial conditions of the fuzzy systems, the switching method is
feasible. In this paper, Ẋh, Ẏh and Żh are presented as (5), (6)

and (7).Since
r∑

i=1

ḣi = 0, there are some other expressions, for

example,
r−l−1∑

i=1

ḣi +
r∑

j=r−l+1

ḣj = −ḣr−l, l = 1, 2, · · · r − 1.

We can also use these expressions to derive the results.

B. Stabilization

Theorem 2: For a given scalar τ > 0 and parameters
λ1, λ2, the closed-loop T-S fuzzy system (2) is asymptoti-
cally stabilized by the controller (3), if there exist matrices[

P̄11j P̄12j

∗ P̄22j

]
> 0, Q̄i > 0, Z̄i > 0, M̄ , such that (12) and

the following LMIs hold for i, j = 1, · · · , r,

Ω̄ij + Ω̄ji ≤ 0, (18)

Ω̄ij =




Ω̄11ij Ω̄12ij Ω̄13ij Ω̄14ij

∗ Ω̄22ij Ω̄23ij Ω̄24ij

∗ ∗ Ω̄33ij P̄T
12i

∗ ∗ ∗ Ω̄44ij


 ,

Ω̄11ij = He
(
P̄12i + Ā)

+ Q̄i − 4Z̄i,

Ω̄12ij = −P̄12i − 2Z̄i + Āτ + λ2ĀT ,

Ω̄13ij = P̄22i + 6τ−1Z̄i,

Ω̄14ij = P̄11i − M̄ + λ1ĀT ,

Ω̄22ij = −Q̄i − 4Z̄i + He
(
λ2Āτ

)
,

Ω̄23ij = −P̄22i + 6τ−1Z̄i, Ω̄24ij = λ1ĀT
τ − λ2M̄,

Ω̄33ij = −12τ−2Z̄i, Ω̄44ij = τ2Z̄i − He
(
λ1M̄

)
,

Ā=AjM̄ + BjK̄i, Āτ = AτjM̄ + BjK̄τi,

and the controller gains are Ki = K̄iM̄
−1, Kτi = K̄τiM̄

−1.
Proof: The extension from stability to stabilization is

straightforward. In order to avoid too many parameters, let
M̄ = M−T

1 , M2h = λ1M1, M3h = λ2M1, M4h = 0, using
the controller (3) and replacing Ah and Aτh with Ah and Aτh

respectively where

A = Ah + BhKh,Aτ = Aτh + BhKτh.

Pre-and post-multiplying both sides of Ω < 0 with diag{M−1
1 ,

M−1
1 , M−1

1 , M−1
1 } and its transpose respectively and defin-

ing KiM̄ = K̄i, KτiM̄ = K̄τi, M̄T P11hM̄ = P̄11h,
M̄T P12hM̄ = P̄12h, M̄T P22hM̄ = P̄22h, M̄T QhM̄ = Q̄h,
M̄T ZhM̄ = Z̄h, we get (18).

Remark 2: Similar to the analysis in Remark 1, applying
(18) with Cl, we obtain a maximum delay denoted as τl,

l = 1, · · · , 2r−1 and the corresponding controller denoted as
(10) The final maximal delay is τ = min

l=1,··· ,2r−1
(τl) and the

final controller is (11). For any initial states φ (0), it can be
driven to the origin by a sequence of controller ul activated
by Hl. Note, there are 2r−1 constraints in Cl and we need
compute 2r − 1 times to get the maximum delay bound. For
each time, the number of LMIs is 3×2r−1+3+r(r+1)/2 and
the computation burden may increase as the number of rules
increase. The number of decision variables of Theorem 1 is
n(3n+2)r+4n2r and Theorem 2 is n(3n+2)r+n2r+2mnr.

Remark 3: Comparing with the existing results in the liter-
ature, the merit of this paper is that the Lyapunov-Krasovskii
functional is dependent on the membership functions and
the time derivatives of the membership functions are also
considered. If we let Qh, Zh and Ph be membership function
independent as Q, Z, P and the slack variables be M3h = 0,
M4h = 0, Theorem 1 and Theorem 2 in this paper will
become the results in [11], so this brief paper contains [11]
as a special case. Another possible choice is letting V2 (xt) =

t∫
t−τ

x (s)T
Qh(s)x (s) ds where Qh(s) =

r∑
i=1

hi (z(s))Qi is de-

pendent on the integral variable s, but it has been shown in [18]
that this choice could not help reduce the conservativeness.

Remark 4: The differences between this paper and [18] are
as follows: 1), The chosen Lyapunov-Krasovskii functional is
different. In this paper, the integrand of V2 (xt) and V3 (xt)
depends not only on the integral variable s but also on the
membership functions, while in [18], V2 (xt) and V3 (xt) are
independent of the membership function. 2), The method to
deal with the time derivatives of the membership function is
completely different. In this paper, a novel switching idea
is applied to ensure the time-derivative of the Lyapunov-
Krasovskii functional is negative, while in [18], the upper
bounds on the time-derivative of the membership functions
defined a priori by using the mod function and floor function
b·c. 3), The applicable scope is different. In this paper, Theo-
rem 1 is global stability and Theorem 2 is global stabilization,
while in [18], the results are only local and the obtained local
stabilization region becomes smaller as the delay increases.

IV. NUMERICAL EXAMPLES

In this section, two examples are presented to demonstrate
the effectiveness of the proposed method. Example 1 is for
stability and Example 2 is for stabilization.

Example 1: Consider the following two-rule fuzzy system
that has been studied in [2], [5], [8], [11], [17],

A1 =

[
−2 0
0 −0.9

]
, A2 =

[
−1 0.5
0 −1

]
,

Aτ1 =

[
−1 0
−1 −1

]
, Aτ2 =

[
−1 0
0.1 −1

]
.

This open loop fuzzy system has been studied extensively in
the literatures and the goal is to compute the maximum delay
τ under which the fuzzy system is still stable. Table 1 shows
the maximum delay τ obtained by different methods. From
this table, we can see the best result is obtained by applying
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the method proposed in this paper. In this paper, λ1 and λ2 are
searched by using the most common brute-force algorithm and
the searching scope is [−1 3] with step 0.01. For example,
the largest delay τ = 2.5932 is obtained by using the latest
method in [17], while applying Theorem 1 with constraints
C1 : {Q1 ≥ Q2, Z1 ≥ Z2,P1 ≥ P2}, we get τ1 = 3.6610 and
with constraint C2 : {Q1 < Q2, Z1 < Z2,P1 < P2}, we get
τ2 = 3.4859, so the final maximal delay is τ = min

1≤l≤2
(τl) =

3.4859 . Obviously, the method in this paper is much less
conservative than the existing ones.

In order to show what leads to the less conservative results,
we consider several cases: (I) means M1h = M1, M2h = M2,
M3h = M3, M4h = M4; (II) means M1h = M1, M2h = M2,
M3h = 0, M4h = 0; (III) means M1h = M1, M2h = M2,
M3h = 0, M4h = 0, Ph = P, Qh = Q and Zh = Z.

For (I), applying Theorem 1 with constraint C1 and C2, we
get τ1 = 3.6384 and τ2 = 3.4859 respectively, so the final
maximal delay is τ = min

1≤l≤2
(τl) = 3.4859 which shows that

whether the variables M1h, M2h, M3h, M4h are dependent on
the membership function has no effect on the results; for (II),
we get τ = 2.9709 which shows M3h, M4h can help reduce
the conservativeness; for (III), we only get τ = 2.0183 which
is more conservative than the existing results and shows that
Ph, Qh, Zh are very important in getting the less conservative
results.

TABLE I
THE MAXIMUM DELAY τ OBTAINED BY DIFFERENT METHODS

Method Max τ Method Max τ
[8] 2.1563 Theorem 1 3.4859
[2] 2.2943 Theorem 1 with (I) 3.4859

[11] 2.2944 Theorem 1 with (II) 2.9709
[17] 2.5932 Theorem 1 with (III) 2.0183

Example 2: Consider the two-rule fuzzy system that has
been studied in [2], [10], [11], [17], [18] where the system
and input matrices are as follows:

A1 =

[
0 0.6
0 1

]
, A2 =

[
1 0
1 0

]
, B1 = B2 =

[
1
1

]
,

Aτ1 =

[
0.5 0.9
0 2

]
, Aτ2 =

[
0.9 0
1 1.6

]
.

This two-rule fuzzy system has been studied extensively
in the literature in the past several years and the goal is to
compute the maximum delay τ under which the fuzzy system
can be stabilized by the designed controller. Using different
methods to compute the maximum delay τ we get Table 2
which shows that better results can be obtained by using the
method proposed in this paper than the ones in the literatures.
For example, the delay τ = 1.4257 (ε = 1.26) is obtained
by using the method in [11], while applying Theorem 2 with
constraints C1, and searching λ1 = 2.8, λ2 = 1.1 we get τ1 =
1.6499 and with constraint C2, λ1 = 2.8, λ2 = 1.1, we also get
τ2 = 1.6499, so the final maximum delay is τ = min

1≤l≤2
(τl) =

1.6499 which is much less conservative than the existing ones.
The result in [18] (τ = 1.6421) is comparable to the result

obtained in this paper, but it is only a local stabilization and
the stabilization region is very small as τ = 1.6421.

TABLE II
THE MAXIMUM DELAY τ OBTAINED BY DIFFERENT METHODS

Method Max τ Method Max τ
[18] 1.6421 Theorem 2 1.6499
[17] 1.4214 Theorem 2 with(I) 1.5854
[11] 1.4257 Theorem 2 with(II) 1.2431

Similar to Example 1, we consider two cases: (I) means
λ2 = 0; (II) means λ2 = 0, Ph = P, Qh = Q and Zh = Z.

For (I), applying Theorem 2 with constraint C1, λ1 = 1.2,
we get τ1 = 1.5854 and applying Theorem 2 with C2, λ1 =
1.98, we get τ2 = 1.6386, so τ = min

1≤l≤2
(τl) = 1.5854 which

shows λ2 can improve the result but the improvement is not
obvious. Similarly, for (II), applying Theorem 2 with λ1 =
1.28 we get τ1 = 1.2431 which shows that Ph, Qh and Zh

are very important for Theorem 2.

Suppose the membership functions are h1 =
1

1 + e−2x1
and

h2 =
e−2x1

1 + e−2x1
. Applying Theorem 2 with C1 and C2, we

get the maximum delay τ = 1.6499 and two controllers u1

and u2 which correspond to H1 : ḣ1 ≤ 0 and H2 : ḣ1 > 0
respectively

u :

{
u1 = K1,hx (t) + K1,τhx (t− τ) for H1,

u2 = K2,hx (t) + K2,τhx (t− τ) for H2,

where

K1,1 =
[

14.4427 −44.1025
]
,

K1,2 =
[

4.0527 −15.4395
]
,

K1,τ1 =
[ −0.1537 −1.5824

]
,

K1,τ2 =
[ −1.3308 −1.4258

]
,

K2,1 =
[

5.2612 −16.3162
]
,

K2,2 =
[

4.3167 −16.5431
]
,

K2,τ1 =
[ −0.3104 −1.1512

]
,

K2,τ2 =
[ −1.2354 −1.5659

]
.
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Fig. 1. The evolution of
dh1

dt
and control input u.
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Given φ (0) =
[

1 1
]T

and choosing u = u1, we get
ḣ1 (0) = −5.7434 which satisfies H1. Figure 1 shows the

evolution of
dh1

dt
and control input u. The time of point A is

t = 1.6499 which is the maximal delay obtained by Theorem 2
and ḣ1 (1.6499) = −0.0021613, so at this point, the controller
is still u = u1. The time of point B is t = 1.82 and ḣ1 (1.82) =
1.1647e− 005 > 0, so at this point the controller is switched
to u2. The time of point C is t = 4.66 and at this point
the controller is switched to u1 again. Figure 2 shows the
trajectories of the system states which are stabilized by the
switching controller.

V. CONCLUSIONS

In this paper, we have studied the stability and stabilization
for continuous-time T-S fuzzy systems with time-delay. A new
membership dependent Lyapunov-Krasovskii functional has
been designed to deal with the time delay and a switching
control strategy is applied to stabilize the fuzzy systems.
Comparing with the recent work, less conservative results
can be obtained by using the new method proposed in this
paper. In the end, the effectiveness of the proposed results
are demonstrated by two examples. The method is simple but
effective and can be used to deal with different problems such
as filtering design, observer design and descriptor systems[21].
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