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TECHNICAL PAPER 

A NEW APPROACH TO STATE ESTIMATION IN DETERMINISTIC 
DIGITAL CONTROL SYSTEMS 

I. INTRODUCTION 

Books on modern digital control systems usually address the problem of controlling a continuous- 
time plant driven by a zero-order-hold with a sampled output, as shown in Figure I .  For example, see 
Reference 1 ,  page 126. A common solution to this problem is to estimate the state of the system at the 
sampling instant using a state observer and then feedback the estimated state [ I ,  p. 1951. However, the state 
observer has two undesirable characteristics. First of all, it is a dynamical system in itself and, hence, adds 
additional states, eigenvalues, and dynamics to the system. This can affect system stability. Secondly, as a 
consequence, the estimated state is normally an approximation to the true state and is usually not a good one 
early in the estimation process. This paper presents a new approach to state estimation which has neither of 
these problems. The new estimator adds no new states, eigenvalues, or dynamics to the system and if the 
plant parameters are known exactly, the estimated state is actually equal to the true state. Useful in the 
development of the new state estimator are some results to date for continuous-time plants driven by a 
zero-order-hold with sampled outputs. These are reviewed in Section 11, prior to the development of the 
new state estimator presented in Section 111. Section IV presents an example which illustrates the procedure 
to follow to completely design the new estimator. Section V contains the conclusions and final comments. 

Figure 1 .  Continuous-time plant driven by a zero-order-hold 
with instantaneous measurements. 

II. PRELIMINARY 

For the plant in Figure 1 , ~ ( t )  is an nxl state vector, B(k) is an rxl control input vector, y,(k) is an mxl 
output or measurement vector, F is an nxn system matrix, G is an nxr control matrix, andCT is an mxn 
output matrix. Since yl(k) = C1 A(k), where k is the usual shorthand notation for time kT, yI(k) represents 
an instantaneous measure of the system at the sampling instant kT. Hence, the plant in Figure 1 will be 
regarded as having instantaneous measurements for outputs. It is well known that this system can be 
modeled at the sampling instants by the discrete state equations [ 1 ,  p. 1261 



- x(k+ 1 )  = A z ( k )  + B g(k) 

- y,(k) = c, XJk) 

where 

and 

T 
B = [J +(A) dX] G . 

0 

$(t) is the nxn state transition matrix. A and B are the nxn system matrix and the nxr control matrix, 
respectively, for the discrete state equations (1) and ( 2 ) .  

A and B can be determined analytically using equations (3) to (5 ) .  An alternative approach, which is 
also quite suitable for numerical computation, is as follows [ 2 ] .  $(t) and s' $(X)dX can be expressed in the 
form of matrix exponential series as 0 

and 

X t Fi ti + 1 J $(X)dh = 2 - 
0 i = o  ( i + l ) !  9 

~ respectively. From equations (6) and (7), 

(7 )  
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T 
where I is an nxn identity matrix. Hence, Jo +(A) dA can be determined using equation (7) with t = T and 
this result substituted into equation (8) to get +(T). With these results, A and B can be found using 
equations (4) and (5). 

Now consider the plant in Figure 2, which is a generalization of the one in Figure 1.  In addition to 
the instantaneous measurement vector yr(kT), the plant in Figure 2 has the measurement vector yb(kT) 
generated as follows. First, the continuous-time output z(t) is sampled every T/N seconds. Every N 
samples are multiplied by the weighting matrices Hj, j = 0,1,. . . ,N- 1,  and then summed to generate the 
output yF(kT), every T seconds. Functionally, this is equivalent to passing the discrete measurements 
generated every T/N seconds through a multi-inputlmulti-output moving average (MA) process with 
coefficient matrices Hj, j = 0,1, . . . ,N- 1 [3]. The output of the MA prefilter is sampled every T seconds to 
generate yF(kT). Then, yF(kT) has subtracted from it E- g[(k-I)T], where E- is a constant matrix, to pro- 
duce the modified MA-Fefiltered measurement vector yk(kT). In Figure 2, CF is a pxn output matrix and 
- z(t) is a pxl vector. The weighting matrices Hj, j = 0,1,. . . ,N-1 are each qxp. Hence, yF(kT) is a qxl in- 
termediate output vector and - yf;(kT) aqxl output vector. Sinceu[(k-I)T] is an rxl delayedynput vector, E- is 
a qxr matrix. 

- 

Previously, Polites [4] showed that when 

the discrete state equations for the plant in Figure 2 become 

- x ( k + l )  = AxJk) + B g(k) 

where D- is a qxn matrix given by 

N- 1 

D- = C Hj CF +(-j F) T . 
j = O  

An alternative expression for equation (9) is 

E - = H p  
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Figure 2. Continuous-time plant driven by a zero-order-hold with instantaneous and 
modified MA-prefiltered measurements. 

where 

P =  

In equation (14), H is a qx(Np) matrix and in equation ( 1  5 ) ,  p is an (Np)xr matrix. An alternative expres- 
sion for equation ( 1  2) is 

D- = Ha (16) 
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where 

) - I  N T 1 .  
In equation (17), 01 is an (Np)xn matrix. 

E- and D- can be evaluated analytically using equations (3) and (13) to (17). An alternative 
approach, which can be either analytical or numerical, is as follows. Let t = -j(T/N) where j = 0 , l  ,. . . ,N- 
1 and use equation (7) to determine Jo +(h)dh, j = 0, 1 ,. . . ,N- 1. Substitute these results into equation 
(8) to get $[-j(T/N)], j = 0, 1 ,. . . ,N-1 . At this point, E- and D- can be found using equations (1 3) to (17). 

I -j(T/N) 

I 

I 111. THE NEW STATE ESTIMATOR 

A general block diagram of the plant and the new state estimator is shown in Figure 3. Observe that 
this is Figure 2 with 

c , = o  . (18) 

Thus, if E- is given by equation (13), the discrete state equations for the complete system in Figure 3 are 

I x ( k + l )  = A&(k) + B g ( k )  

This follows from equations ( lo) ,  ( l l ) ,  (16), and (18). Recall that 01 is an (Np)xn matrix. If N p a n ,  or 
equivalently N>(n/p), and 01 has maximal rank (i.e., rank n), then ( 0 1 ~ 0 1 )  is positive definite and 
nonsingular. In this case, H can be given by the pseudo inverse of 01 or [5] 

H = (aTa)-' cyT 
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In general, H is a qx(Np) matrix. However, when it is given by equation (21), it is an nx(Np) matrix. This 
implies that q = n in this case. Consequently, yL(kT), which is a qxl vector in general, is an nxl vector in this 
case. From equation (19) to (21), the discrete state equations for the system in Figure 3 become 

- x(k+ I )  = A z(k) + B N(k) 

Hence, the measurement vector yL(k) equals the true state vectorA(k). For H to be given by equation (21) 
and E- by equation ( 13), the matrices F, G ,  and CF must be known. Given H,  the coefficient matrices Hj, 
j = 0,1,. . . ,N- 1 in the MA prefilter are determined by partitioning H into N nxp submatrices. This follows 
from equation (14). 

At last, the new state estimation scheme, and the procedure for selecting the parameters in it, can be 
summarized as follows. A general block diagram of the new state estimator and the plant whose states are to 
be estimated is shown in Figure 3. The MA-prefilter coefficient matrices Hj, j = 0, I , . . . . ,N- 1 and the matrix 
E- are to be calculated so the discrete state equations for the entire system in Figure 3 are given by equations 
(22) and (23). Consequently, the output vector yi(k)does more than estimate the state vectorA(k); it equals 
it! Realize that for Hj, j = 0, I , .  . . ,N-l and E- tobe calculated so this is true requires that F, G,  and CF in the 
plant be known precisely. Recall that CF is a pxn matrix. Choose the length of the MA prefilter, N, so that N 
2 (n/p). Knowing N and F, & c$(h)dh and c$[-j(T/N)], j = 0, 1 ,. . . ,N- 1 ,  can be calculated using either 
of the methods described in Section 11. Having these and knowing G and CF, a and p can be determined 
using equations (17) and ( 1  5), respectively. Test a to be sure that it has maximal rank (i.e., rank n). If so, 
let H be given by equation (21). The matrix E- can now be determined using equation ( I  3). Partitioning H 
into N nxp submatrices as in equation ( 14) reveals the MA prefilter coefficient matrices Hj, j = 0, I , .  . . ,N- 1 . 
The estimator is now completely defined. 

-$TIN) 

Figure 3.  General block diagram of the plant and the new state estimator 
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IV. AN EXAMPLE 

Consider the double integrator plant driven by a zero-order-hold as shown in Figure 4.  The con- 
tinuous-time output is sampled every T/N seconds and input into the new state estimator along with the 
control input u(kT). The parameters in the estimator are to be chosen so the discrete state equations for the 
complete system are given by equations (22) and (23). 

Manipulating the plant in Figure 4 into the format of Figure 3 yields 

and 

C,] = [ l  

0 l l  

1 

0 

Using equations (24) and (25) and the formulas presented in Section 11, 
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and 

B =  [!I 
Since CF is a pxn matrix, it follows from equation (26) that p = 1 and n = 2. Hence, the requirement to 
select N so that N b (n/p) can be satisfied by letting 

N = 4 .  (31) 

Using equations (15), (17), (25) to (28), and (31), a and p are found to be 

and 

P =  

8 



respectively. In equation (32), it is apparent that the rank of a is maximal (i.e., rank = 2). Consequently, H 
can be given by equation (21). Substituting equation (32) into (21) yields 

(-$) 
(-$) 

(34) 

where the columns of H are the coefficient matrices for the MA prefilter by virtue of equation ( 14). Next, E- 
can be calculated using equations (13), (33), and (34) and is found to be 

The estimator is now completely defined. Using equations (32) and (34), one can verify that 

Hence, the discrete state equations for the entire system in Figure 4, with the estimator parameters defined 
by equations (31), (34), and ( 3 3 ,  are given by equations (22) and (23) where A and B are defined by 
equations (29) and (30), respectively. 

V. CONCLUSIONS 

A new state estimator for deterministic digital control systems has been developed which offers two 
distinct advantages over the widely-used state observer. First of all, it contributes no additional states, 
eigenvalues, or dynamics to the system and, consequently, will not alter the stability of the system. 
Secondly, if the plant parameters are known exactly, the estimated state equals the true state and is not just 
an approximation to it. A disadvantage of this scheme is that the plant output must be sampled at a rate 
faster than the state observer’s. Fortunately, this is not the problem it would have been 20 years ago, con- 
sidering the speed of today’s digital computers. Still, if the sample rate on the output is so fast the computer 
solving the feedback control algorithms has a problem solving the estimation algorithms also, the following 
implementation can be used. A microprocessor can be dedicated to sampling the plant output and solving 
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the estimation algorithms to the point where the intermediate output yF(kT) is generated. This can be sent, 
every T seconds, to the control computer solving the feedback controlalgorithms. There, the state estimate 
- y&kT) can be calculated by subtracting E- ~ [ ( k - l ) T ]  from yF(kT). This result can then be input into the 
feedback control algorithms to generate the control input g(kT). This process is repeated every T seconds. 

If the work in this paper is extended, the recommendation is to investigate the robustness of the new 
state estimator and see how it compares with the state observer’s. Specifically, the following questions 
should be addressed. What effect do modeling errors in the plant have on the new estimator and how does 
this compare with the state observer? What effect do plant process and measurement noise have on the new 
estimator and how does this compare with the state observer, or even the Kalman filter? How can the 
robustness of the new estimator be improved? Increasing the length of the MA prefilter, N,  may be one 
possibility. Catenating the new estimator with a state observer or a Kalman filter could be another. This 
could produce a composite estimator which is better than either individual estimator by itself. 
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