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ABSTRACT 

In this paper, terminal sliding mode control design is considered. A 
control method, different from many existing terminal sliding model control 
design methods, is proposed based on a new switching law and continuous 
finite-time control ideas. Then terminal sliding mode control laws are con-
structed for some classes of nonlinear systems. 

KeyWords: Terminal sliding mode control, finite-time convergence, non- 
smooth feedback. 

I. INTRODUCTION 

Sliding mode control has been studied for many dec-
ades and is now one of the most active areas of research on 
nonlinear control theory. Many reports on sliding mode 
control and its extensions can be found in the literature, 
including [1-4]. In recent years, an increasing interest has 
focused on terminal sliding mode control, with the goal of 
rendering finite-time convergence to equilibrium of the 
closed-loop system in question [5-7]. However, these con-
trol methods may cause singularity problems and influence 
the terminal sliding surfaces. In fact, [8] proposed a two- 
phase control scheme to avoid the singularity in their 
original control law. 

The main contribution of this paper is as follows. Dif-
ferent from many existing recursive design procedures for 
terminal sliding modes, we propose a design method that 
combines a new switching scheme with some ideas related 
to continuous finite-time control given in [9,10]. The con-
structed terminal sliding mode controller is not in a recur-

sive form and removes singularities outside of sliding sur-
faces. 

The rest of the paper is organized as follows. In sec-
tion 2, the problem formulation is presented, while some 
theoretic analysis is given in section 3. Then, in section 4, 
terminal sliding mode control laws are built for two classes 
of systems. Finally, concluding remarks are given in sec-
tion 5. 

II. PROBLEM FORMULATION 

In this paper, we focus on a single-input control sys-
tem of the form 
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with x = (x1, …, xn)
T ∈R

n, fi(x) smooth, and fi(0) = 0 for i = 

1, …, n. 

Let s: Rn → R be a continuous function with s(0) = 0. 

The sliding surface is defined as S = {x∈R
n

 : s(x) = 0}. The 

sliding mode design procedure can be described roughly as 

consisting of two main steps. First, a sliding surface satis-

fying 0
n

s
x
∂

∂ ≠  is found such that s(x(t)) ≡ 0 implies x(t) → 
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0 as t → ∞; then, a stabilizing feedback law is constructed 

in the form 

( ) if 0
( )

( ) if 0

u x s
u x

u x s

+
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⎪ , <⎩

. 

Most sliding mode control laws make the controlled 
system (1) convergent to the sliding surfaces in finite time; 
then, along the sliding surfaces, the systems converge to 
the equilibrium x = 0 of system (1) as time goes to infinity. 
However, terminal sliding mode control laws can achieve 
more by steering the states to equilibrium in finite time. 

Definition 1. For system (1), u = u(x) is called a finite-time 
convergent controller if the equilibrium x = 0 of the closed- 
loop system (1) under this feedback law is finite-time con-

vergent; that is, for any initial condition x(0) = x0∈R
n, 

there is a settling time T ≥ 0, which satisfies 

0lim ( 0 ) 0
t T

x t x
→

; , = ,  

and 

0( 0 ) 0 ifx t x t T; , = , >  

for every solution x(t; 0, x0) to the closed-loop system (1). 
Moreover, if the controller is also a sliding mode controller, 
then it is called a terminal sliding mode controller. 

In this paper, we assume that s(x) takes the following 
form:  

1 1( ) ( ) (0 0) 0n ns x x h x x h−= − , ..., , , ..., = ,  (2) 

where h(x1, …, xn − 1) is a continuous function satisfying  
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for some positive numbers K0 and L0. 

Many choices of sliding modes satisfy condition (3). 

For example, 1
1( ) n

i iis x a x−
== ∑  is a widely used form, and 

taking K0 = 1 and L0 = max {ai, i = 1, …, n − 1} will make 

(3) hold. 
In the following, two lemmas will be introduced for 

the following analysis. Their proofs are quite obvious and, 
therefore, omitted here. 

Lemma 1. For any 0 < α < 1 and M0 > 0, M1 > 0 exists 
such that | z |α ≤ M0 + M1 | z | holds for all z ∈ R. 

Lemma 2. Suppose that a, b, and m > 1 are all positive 
numbers. Then, (am + bm)1/m ≤ a + b. 

III. TERMINAL SLIDING MODE 

First, we will present results for finite-time conver-
gence to given sliding surfaces. 

Theorem 1. If the sliding surface S is taken with h(x) sat-
isfying (3), then the system (1) reaches S in finite time by 
the control law 

( )nu f x v= − + ,   (4) 

where 
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  (5) 

and sgn(⋅) is denoted as the sign function. 

Proof. The task, in fact, is to prove that, for any initial 
condition x(0) ≠ 0 with s(x(0)) ≠ 0, the feedback (4) will 
lead to s(x(t)) = 0 in finite time. 

Let 0 0 0 0
1 1(0)    ( , , , )n nx x x x x−= = …  be the initial 

condition. The trajectory with the initial condition is de-
noted by x(t; 0, x(0)), or x(t) for simplicity. 

We will first study the case where s(x(0)) > 0; that is, 
0 0 0

1 1( ,  , )n nx h x x −> … . We will prove that T > 0 exists such 

that s(x(T)) = 0 by contradiction. 
Suppose that T > 0 does not exist such that s(x(T)) = 0. 

Because s(x(0)) > 0 and s(x(t)) is continuous, s(x(t)) > 0 for 
any t > 0; that is, 1 1( ) ( ( ) ( ))n nx t h x t x t−> , ...,  for any t > 0. 

Therefore, 
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Integrating both sides of (6) gives 
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Recall (3), i.e., 1
1 1 0 0 1( ) n

n iih x x K L x−
− =| , ..., |< + | |∑ . If 

we make t1 large enough, say 
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00

1
1

n
n

i
i

K x
t x

K

−

=

+ | |> + | | ,∑  (7) 

then we have 
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that is, s(x(t1)) < 0. This contradiction shows that there ex-
ists a reaching time T1 < t1 such that s(x(T1)) = 0. 

Similarly, if s(x(0)) < 0, that is, 0 0 0
1 1( )n nx h x x −< ,..., , 
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then there is another reaching time T2 > 0 such that s(x(T2)) 

= 0. 

Thus, the assertion follows.  ■ 

An important merit of sliding mode control is that it 
provides robustness to uncertainties. Consider system (1) 
with fi, i = 1, …, n uncertain. Suppose  

( ) ( ) 1i if x x i n| | ≤ φ , = , .., , 

where the functions φi(x), i = 1, …, n, are known and φi(0) 
= 0. Then, using an idea that is similar to the one employed 
in the proof of Theorem 1, we have the following theorem. 

Theorem 2. If h(x1, …, xn−1) satisfies (3), then we can put 
the control law in the form 

1
( ) 1 ( ) sgn( ) 0

n

i
i

u x K x s s
=

⎛ ⎞= − + φ , ≠⎜ ⎟
⎝ ⎠

∑  (8) 

with K > max{K0, L0, 1}, such that the uncertain system (1) 
reaches S in finite time. 

In fact, the goal of terminal sliding mode control is to 
find a suitable sliding surface such that the state outside of 
the selected sliding surface is finite-time convergent to it 
while the system state in the sliding surface tends to equi-
librium in finite time. We will sketch our design idea in the 
following. We first select s(x) = xn – h(x1, …, xn−1) such that 
condition (3) holds and 
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( )

( )

n

n n n

f x x hx

f x x hx

−

− − −

= , ..., ,⎧
⎪⎪
⎨
⎪

= , ..., ,⎪⎩

�

�

�

 (9) 

is finite time convergent to the origin on S = {x ∈R
n : s(x) 

= 0}. Then, we adopt the control laws given in the form of 
(4) or (8) to guarantee finite-time convergence to S and 
force the state to move along S, reaching the equilibrium in 
finite time. 

Remark 1. In many conventional cases, we can construct u 
= ueq on S = {x∈R

n : s(x) ≡ 0} based on knowledge of fi, i = 
1, …, n in order to make S an invariant set or even mani-
fold; that is, s(x(t)) ≡ 0 for any t ≥ 0 with the initial condi-
tion s(x(0)) = 0. However, terminal sliding mode control 
may result in the singularity problem for ueq and prevent 
the existence of the corresponding sliding surface S that is 
kept invariant by ueq in some sense. This has been widely 
noted [5,6,8]. 

IV. TWO CLASSES OF SYSTEMS 

In this section, based on the discussion in section 3, 
we will consider how to construct terminal sliding mode 
controllers for two classes of systems in form of (1). 

4.1 Class 1 

Consider the system 
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As shown in [5,8], existing terminal sliding modes for 
system (10) have usually been constructed in a recursive 
structure as follows: 

1 1
20 1 1 2 2

n nq p
nn n ns x s b ss − −/

−− − −= , ..., = +
�

, 

where (n−i−1)/(n−i) < qi+1/pi+1 < 1 with pi+1, qi+1, i = 0, …, n 
− 2 as positive odd integers and bi > 0, i = 0, …, n − 2. 
Then, the control law is taken as 

1sgn( )eq nu u K s −= − . (11) 

ueq (x) is given to keep s(x(t)) = 0 if s(x(0)) = 0, but this may 
not be satisfactory because a singularity or uncertainty may 
occur in the feedback law (11). In [6], a terminal sliding 
mode controller was given as  

0 1 0( ) sgn( ) 0n n nu f x − ,= − − β φ , β >  (12) 

with properly chosen positive parameters βi, positive defi-
nite functions Ni, n(x1, …, xi), i = 1, …, n − 1, and a (recur-
sive) sliding mode:  

0 1 1 1 1( ) sgn( )n i n i i i n i i nx x N x x, , + , − ,φ = , ..., φ = + β , ..., φ  

for i = 1, …, n −1. 
Our approach is as follows. We take s = xn – h(x1, …, 

xn−1) such that 
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is finite-time convergent to the origin. In fact, system (13) 
admits a continuous finite-time convergent feedback law h = 
vn − 1(x1, …, xn − 1) (e.g., [9,10]). Thus, in our design, we select 
h = vn − 1 in one of the forms provided in [9,10]. In this way, 
we make system (13) finite-time convergent to its origin on 
sliding surface S. Moreover, the condition (3) for this h can 
also be verified using Lemmas 1 and 2 (see the following 
examples for some details). Then, with the control law in the 
form of (4) or (8), the state outside of the sliding surface is 
finite-time convergent to the surface S. Hence, system (10) 
with s(x) = xn – vn − 1 and its corresponding control law are 
finite-time convergent to the origin. 
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For the purpose of illustration, we will give two ex-
amples.  

Example 1. Consider 

1 2

2 2 ( )

xx

f x ux

=⎧⎪
⎨

= +⎪⎩

�

�

.  (14) 

Take a continuous function h(x1) = 3/ 5
1x−  and then s = x2 

3/ 5
1x+ . Thus, for the given h, (3) can be satisfied with K0 = 

3 and L0 = 2, due to Lemma 1. Then, we can take  
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( )

( ) ( ) if  0eq

f x x s s
u x

u x f x x s/

− − + | | , ≠⎧⎪= ⎨ = − + , =⎪⎩
. (15) 

As a result, the system converges to the sliding surface in 
finite time. Once it converges to the sliding surface (s = 0), 

we have 3/ 5
1 1x x= −� , which is finite-time convergent to x1 

= 0, that is, the origin x = 0, because of s = 0. This directly 
leads to finite-time convergence of the closed-loop system. 

Example 2. Consider 

1 2

2 3

3 3( )

xx

xx

f x ux

= ,⎧
⎪⎪ = ,⎨
⎪

= +⎪⎩

�

�

�

.  (16) 

First, we employ the method in [5], and we have  

7 9 5 7
0 10 1 1 0 2 1s x s s s ss s

/ /= , = + , = + .� �  

Then the control law is given as  

2( ) ( ) sgn( ) 0equ x u x K s K= − , >  (17) 

with 
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which may contain singularities. 
Next, consider our proposed method for terminal slid-

ing mode control. Take a continuous function 

1 2 1
3 1 2 1 2

1

2
( ) 0 1

1
s x x x xα α α= + + , < α < , α =

+ α
. (18) 

with αi = qi / pi and pi > 0, qi > 0 as suitable odd integers for 
i = 1, 2. For example, we take α1 = 1/5 or α1 = 3/7, and 
then α2 = 1/3 or α2 = 3/5. When x S∈  (i.e., s(x) = 0), we 
have  

1 2

1 2

2 1 2

x x

x x xα α

=⎧⎪
⎨

= − −⎪⎩
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, 

which is finite-time convergent [1]. Moreover, for s(x) 
given in (18), (3) can be satisfied with K0 = 3 and L0 = 2, 
due to Lemma 1. Then, by Theorem 1, we can construct a 
feedback law which is of the form in (4) and different from 
that in (17): 
 

1 2

3 2 3

1 1
3 1 2 2 31 2

( ) 3 (1 | | | |) sgn( ) , if 0
( )

( ) , if 0eq

f x x x s s
u x
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  (19) 

Thus, the system converges to the sliding surface in finite 
time, and in the sliding surface, the state reaches equilib-
rium in finite time, which implies finite-time convergence 
of the closed-loop system. To avoid the singularity (refer-
ring to Remark 2), we change (19) to a simple form: 

3 2 3

3

( ) 3 (1 | | | |) sgn( ) , if 0
( )

( ), if 0

f x x x s s
u x

f x s

− − + + ≠⎧⎪= ⎨
− =⎪⎩

. 

  (20) 

Note that u = −f3(x) cannot keep s ≡ 0 when its initial state is 
already in the sliding surface S. Hence, S does not exist in the 

conventional sense. 

4.2 Class 2 

There are many (smooth) stabilizable nonlinear sys-
tems that cannot be stabilized by means of time-invariant 
smooth feedback. Usually, these nonlinear systems are hard 
to control effectively, and their variety makes it even 
harder to obtain a unified method of stabilization. Here, we 
will only consider a well-known system, but the proposed 
design idea may also be applicable to generalized systems 
with similar structures (such as those studied in [12]). 

The following well-known smooth system has been 
widely studied (referring to [12]): 

3
1 1 2

2 2 1 2( )

x xx

f x x ux

⎧ = +⎪
⎨

= , +⎪⎩

�

�

.  (21) 

This system cannot be stabilized by means of smooth feed-
back. In this case, conventional terminal sliding mode 
control design methods may also encounter some difficul-
ties. 

The guideline for selecting the switching surface 

2 1( )s x h x= −  for this system is based on the idea given 

in section 3: the given h makes 3
1 1x hx = +�  finite-time 

convergent. It is easy to see that we can take h(x1) = 
7 9 1 3
1 1( )x x/ /− + , or equivalently, 7 9 1 3

2 1 1( ) ( )s x x x x/ /= + + . 
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Taking K0 = 1 and L0 = 2.5 yields condition (3) by Lemma 

1. Therefore, when s ≠ 0, the control law can be taken as 
3

1 23 (1 ) sgn( )u x x s= − + | + | , according to Theorem 1. On 

the sliding surface, we can derive 

7 27 1 277
1 19

2 1 2 2 9 2 3
1

( ) ( )
3(1 )
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x x
u x f x x

x

/ /

/ /

+
= − , +

+
, (22) 

which forces the state to stay in the sliding surface, since it 

is governed by the dynamics 3 7 9
1 1 1x h xx

/= + = −� , and it 

arrives at the origin in finite time. Therefore, a terminal 

sliding mode controller for system (21) is  

 
3

1 23 (1 ) sgn( ) if 0
( )

( ) in (22), if 0eq

x x s s
u x

u x s

⎧− + | + | , ≠⎪= ⎨
≠⎪⎩

. 

V. CONCLUSION 

In the paper, a new design method for terminal sliding 
mode control has been proposed. Terminal sliding mode 
controllers have been constructed. They are not in a recur-
sive form, and they can remove singularities outside of 
sliding surfaces. Future work will focus on developing a 
complete theory for the construction of these controllers. 
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