
This may be the author’s version of a work that was submitted/accepted
for publication in the following source:

Xu, Xiaoyong & Tang, Maolin
(2016)
A new approach to the cloud-based heterogeneous MapReduce place-
ment problem.
IEEE Transactions on Services Computing, 9(6), pp. 862-871.

This file was downloaded from: https://eprints.qut.edu.au/84443/

c© Consult author(s) regarding copyright matters

This work is covered by copyright. Unless the document is being made available under a
Creative Commons Licence, you must assume that re-use is limited to personal use and
that permission from the copyright owner must be obtained for all other uses. If the docu-
ment is available under a Creative Commons License (or other specified license) then refer
to the Licence for details of permitted re-use. It is a condition of access that users recog-
nise and abide by the legal requirements associated with these rights. If you believe that
this work infringes copyright please provide details by email to qut.copyright@qut.edu.au

Notice: Please note that this document may not be the Version of Record
(i.e. published version) of the work. Author manuscript versions (as Sub-
mitted for peer review or as Accepted for publication after peer review) can
be identified by an absence of publisher branding and/or typeset appear-
ance. If there is any doubt, please refer to the published source.

https://doi.org/10.1109/TSC.2015.2433914

https://eprints.qut.edu.au/view/person/Xu,_Xiaoyong.html
https://eprints.qut.edu.au/view/person/Tang,_Maolin.html
https://eprints.qut.edu.au/84443/
https://doi.org/10.1109/TSC.2015.2433914

IEEE TRANSACTIONS ON SERVICES COMPUTING 1

A New Approach to the Cloud-based
Heterogeneous MapReduce Placement

Problem
Xiaoyong Xu and Maolin Tang, Senior Member, IEEE

Abstract—Guaranteeing Quality of Service (QoS) with minimum computation cost is the most important objective of cloud-based
MapReduce computations. Minimizing the total computation cost of cloud-based MapReduce computations is done through
MapReduce placement optimization. MapReduce placement optimization approaches can be classified into two categories:
homogeneous MapReduce placement optimization and heterogeneous MapReduce placement optimization. It is generally
believed that heterogeneous MapReduce placement optimization is more effective than homogeneous MapReduce placement
optimization in reducing the total running cost of cloud-based MapReduce computations. This paper proposes a new approach
to the heterogeneous MapReduce placement optimization problem. In this new approach, the heterogeneous MapReduce
placement optimization problem is transformed into a constrained combinatorial optimization problem and is solved by an
innovative constructive algorithm. Experimental results show that the running cost of the cloud-based MapReduce computation
platform using this new approach is 24.3%−44.0% lower than that using the most popular homogeneous MapReduce placement
approach, and 2.0%−36.2% lower than that using the heterogeneous MapReduce placement approach not considering the spare
resources from the existing MapReduce computations. The experimental results have also demonstrated the good scalability of
this new approach.

Index Terms—MapReduce, cloud-based MapReduce computation, MapReduce placement, combinatorial optimization, con-
structive algorithm

F

1 INTRODUCTION

MapReduce is a parallel programming model for
processing large data sets, and it has been widely ap-
plied in many commercial and scientific applications,
such as data mining [1], bioinformatics [2], machine
learning [3], and web indexing [4]. A MapReduce
computation is typically broken down into a number
of map tasks and reduce tasks, which are respectively
executed by two kinds of basic computing units called
mappers and reducers. Both mappers and reducers are
called workers in this paper.

MapReduce was originally proposed for parallel
computation in a cluster which consists of a set of
connected computers. The objectives of cluster-based
MapReduce computations usually focus on minimiz-
ing execution time [5] [6] [7] [8], maximizing cluster
utilization [9] [10], and so on. However, in cloud-
based MapReduce computation, the most important
objective is to guarantee the Quality of Service (QoS)
of cloud-based MapReduce computations with mini-
mum cost of using virtual machines (VMs). To guaran-
tee the QoS, the required number of workers must be

• X. Xu and M. Tang are with the School of Electrical Engineering and
Computer Science, Queensland University of Technology, Brisbane,
Australia, 4000

E-mail: {x21.xu, m.tang}@qut.edu.au

placed on a selected set of VMs such that the resource
requirements of each worker must be met and the
total cost of using the VMs is minimum. This is so-
called MapReduce Placement Problem (MRPP) in cloud-
based MapReduce computations.

The approaches to the MRPP can be classified into
two categories: homogeneous MapReduce placement op-
timization and heterogeneous MapReduce placement op-
timization. The homogeneous MapReduce placement
optimization approaches usually place the workers
on a set of homogeneous VMs and place the same
number of workers on each of the VMs. Since this
category of approaches are easy to implement, most
of the existing approaches to the MRPP belong to
this category [11] [12] [13] [14] [15] [16] [17] [18].
Very recently, a heterogeneous MapReduce placement
optimization approach was proposed [19]. The pro-
posed approach can utilize heterogeneous VMs and
place different numbers of workers on different VMs.
It showed that the proposed heterogeneous MapRe-
duce placement optimization approach is more cost-
effective than those homogeneous MapReduce place-
ment optimization approaches. However, the pro-
posed approach did not reuse those VMs used by
old MapReduce computations. This paper presents a
new heterogeneous MapReduce placement optimiza-
tion approach that considers not only new VMs of
various types, but also the spare CPU and memory
capacities of existing VMs.

IEEE TRANSACTIONS ON SERVICES COMPUTING 2

Here is a simple example to illustrate how hetero-
geneous MapReduce placement optimization poten-
tially outperforms homogeneous MapReduce place-
ment optimization. In this example, it is assumed
that there are only two types of VMs, small VMs
and large VMs, and that the capacity of a VM is
measured by the number of CPUs (or cores). Each
of the small VM contains three CPUs and its price
is $4/hour; each of the large VM contains six CPUs
and its price is $6/hour. Let’s say there is one new
MapReduce computation which requires four iden-
tical workers, each of which needs two CPUs. If
we adopt homogeneous MapReduce placement, we
would have to use either four small VMs or two
large VMs. The total costs of using the VMS would
be $16/hour and $12/hour, respectively. However,
if we adopt heterogeneous MapReduce placement,
we would need only one small VMs and one large
VMs, and the total cost of using the VMs is only
$10/hour. It can be seen from this simple example
that heterogeneous MapReduce placement has poten-
tial to cut the total cost of cloud-based MapReduce
computations. In this example, we did not reuse the
VMS used by existing MapReduce computations. If
there is an existing MapReduce computation when a
new MapReduce computation comes, and the existing
MapReduce computation is using a VM which has
two spare CPUs, then we only one new large VM to
accommodate the new MapReduce computation, and
the total extra cost would be only $6/hour.

In this paper, we will propose a new heterogeneous
approach to the MRPP in cloud-based MapReduce
computations, which has more potentials to reuse
VMs than existing heterogeneous approaches, and
therefore can further reduce the total running cost
of cloud-based MapReduce computations. We will
formulate the MRPP into a constrained combinato-
rial optimization problem and prove the constrained
combinatorial optimization problem is NP-complete.
We will also propose a new constructive algorithm for
the constrained combinatorial optimization problem,
and evaluate the new constructive algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the related work. Section 3 is the prob-
lem formulation and the proof of the problem being
NP-complete. Section 4 presents the new constructive
algorithm. Section 5 evaluates the new constructive
algorithm and Section 6 concludes the research and
discusses future research work on the MRPP.

2 RELATED WORK

In this section we review the researches on the
MapReduce placement problem in non-cloud-based
MapReduce computations and cloud-based MapRe-
duce computations.

2.1 Non-cloud-based MapReduce Placement

There are a number of researches on the MapReduce
placement problem in non-cloud-based MapReduce
computations. Zaharia et al. [5] developed a scheduler
called LATE for Hadoop MapReduce deployed on
heterogeneous environments to reduce job execution
time. They followed a default Hadoop configuration
for the worker placement on computing nodes [20].
Lin et al. [6] studied the adaptive task and data
scheduling algorithms in MOON, a MapReduce im-
plementation under the volunteer computing envi-
ronment, and improved the MapReduce performance
on execution time under the environment with the
volatility of resources and high rate of node unavail-
ability. Like the above research, they also did not
care about how to assign slots to slave nodes, just
implementing the default Hadoop settings. Wolf et
al. [7] proposed a slot allocation scheduling optimizer
to provide minimum number of slots to MapReduce
workloads. This optimizer aimed at optimizing some
metrics like execution time while ensuring the same
minimum slot guarantees as in HFS, and maximum
slot guarantees as well. In their work, the slot assign-
ment on computing nodes followed a default configu-
ration. Kc and Anyanwu [21] developed a constraint-
based Hadoop scheduler based on a job execution cost
model to meet the deadline constraints specified by
users. Also, they used the default Hadoop configura-
tion, placing two mappers/reducers on every node.
Verma et al. [22] developed an automatic resource
inference and allocation framework for MapReduce
to meet job deadlines. With regard to MapReduce
placement, they just adopted a simple way in which
a fixed number of workers is assigned to each node.

Unlike the above researches which use the default
Hadoop configurations, Herodotou et al. [8] studied
how to find the optimum settings of parameters in
MapReduce programs to optimize job execution time
by means of a self-tuning system named Starfish. The
placement of task slots on computing nodes were au-
tomatically determined by that system. Polo et al. [9]
presented a resource-aware scheduler for MapReduce
multi-job workloads. The slot on each node could
be dynamically adjusted by leveraging the resource
consumptions of different jobs, so as to maximize
the resource utilization of the cluster. Later, Polo et
al. [23] studied the deadline-based management for
MapReduce workloads based on the same assignment
technology of task slots, but the aim was to ensure the
deadline meeting of jobs. Wang et al. [10] proposed
an automatic control mechanism for the dynamical as-
signment of task slots on each computing node. Using
their mechanism, the cluster-wide resource utilization
was improved.

All above researches study the MapReduce place-
ment problems in non-cloud environments. The ob-
jective of these problems are usually to improve the

IEEE TRANSACTIONS ON SERVICES COMPUTING 3

cluster utilization, to reduce the execution time, or to
meet the deadline. In addition, in their problems, the
total number of machines and the types of machines,
which can be used for MapReduce computations, are
given beforehand.

The MRPP studied in this paper is totally differ-
ent from those problems in non-cloud environments.
Different from the objectives of those problems in
non-cloud environments, the objective of the MRPP
is to minimize the monetary cost of using VMs. Also,
unlike those problems in non-cloud environments, in
the MRPP, the total number and types of the VMs,
which will be used for MapReduce computations,
are unknown in advance. Instead, in the MRPP, we
need to select the VM types and the number of the
VMs of each selected type, and to determine the
placement of workers on selected VMs. Therefore, the
aforementioned MapReduce placement approaches
for non-cloud-based MapReduce computations can-
not be used to address the problem studied in this
paper.

2.2 Cloud-based MapReduce Placement

There are also some researches on the MapReduce
placement problems in cloud computing environ-
ment. Tian et al. [11] studied how to minimize finan-
cial charge for a single MapReduce job while meeting
a time deadline. In their proposed approach the same
number of workers are placed on the same type of
slave nodes. Abdelbaky et al. [12] studied proposed
an objective-driven scheduler which minimized the
required number of VMs to meet the deadline con-
straint for MapReduce-CometCloud. In their sched-
uler, each VM could only load one mapper or reducer,
although the VMs were heterogeneous. Hwang and
Kim [13] studied the resource provisioning problem
for MapReduce in the cloud, which aimed at mini-
mizing the monetary cost of VMs while meeting the
deadline constraints. They paid more attention on the
placement of the VMs on physical machines, while for
the problem of mapper/reducer placement on VMs,
they adopted a simple way in which a fixed num-
ber of mappers/reducers were assigned to each VM.
Lama et al. [14] proposed an automated job provi-
sioning system for Hadoop MapReduce. This system
could automatically configure the number of VMs
to achieve QoS goals while minimizing the incurred
cost. But they did not study how to optimize the
mappers/reduecrs on the VMs. Alternatively, they as-
signed mappers/reduers to the VMs following a basic
rule like one mapper and one reducer to a small VM
while two mappers and two reducers to a medium
VM. Chen et al. [15] built up a cost function modeling
the relationship among execution time, input size,
and available cloud resource, and solved a problem
aiming at meet deadline requirements with minimum
monetary cost. Just like previous researches, they

studied the optimum number of VMs rather than
the placement optimization of mappers/reducers on
VMs. With regard to the placement, they placed the
same number of mappers/reducers on one type of
VMs.

Unlike the above researches using the simple rules
of assigning workers to VMs, Herodotou et al. [16]
used a more exact method to address the MapReduce
placement issue. They developed a system named
Elastisizer included in Starfish to answer the clus-
ter sizing problems for the MapReduce operated on
cloud platforms. This system could tell MapReduce
users the best VM type from multiple types provided
by public clouds and the optimum number of the
VMs of that VM type. However, the cluster sizing
problems were different the MRPP, since the con-
straints of the cluster sizing problems were meeting
the desired requirements on execution time or cost
whereas the constraint of the MRPP was satisfying
the resource requirements of all the workers to be
placed. Thus, their approach could not be used to
address the MRPP. Cardosa et al. [17] studied how
to place the VMs for MapReduce computations on
physical machines with minimum energy costs. Their
problem was similar to the MRPP, but the MRPP
was more complicated. The physical machines or
bins were identical in their problem whereas multiple
types of VMs or bins were considered in the MRPP.
Also, the number of the bins in their problem was
definite, while that number in the MRPP was infinite.
Thus, their algorithm could not be used to address the
MRPP immediately. Palanisamy et al. [18] proposed
a cost-effective resource provisioning model called
Cura for cloud-based MapReduce, which could help
MapReduce users to decide the right VM type and
size for every job by leveraging Starfish to analyze
the job profiles.

The MapReduce placement approaches involved
in the above researches almost can be categorized
into homogeneous MapReduce placement optimiza-
tion, as they usually assigned workers on homoge-
neous VMs or follow homogeneous configurations of
worker numbers on each VM. These approaches are
totally different from the heterogeneous MapReduce
placement optimization approach proposed in this
paper, which allows using heterogeneous VMs and
heterogeneous placement on each used VM.

We have given a preliminary work [19] on
the MapReduce placement problem in cloud-based
MapReduce. However, the MRPP in this paper is
different from that problem in [19]. In our preliminary
work, the existing resources (VMs) have not been
considered, and the algorithm could not make good
use of the existing resources to further reduce the
cost of the cloud-based MapReduce computations.
However, in this paper, the issue about how to utilize
the existing resources has been addressed.

Besides, there are also some researches on other

IEEE TRANSACTIONS ON SERVICES COMPUTING 4

placement problems similar to the MRPP in cloud
computing, like the VM placement problems. Most
of them took the problems as bin-packing ones, and
adopted or modified bin-packing algorithms, like
first-fit-decreasing [24] [25], best-fit-decreasing [26],
set covering [27] [28], or other algorithms [29] [30], to
solve them. But the MRPP is more complicated than
their problems, as the MRPP considers both multiple
types of bins (VMs) and multiple resource constraints
whereas their problems just considered either of them.
Thus, their algorithms also can not be used for the
MRPP immediately.

3 PROBLEM FORMULATION

There could be different types of cloud-based MapRe-
duce implementations. In this research it is assumed
that the cloud-based MapReduce computation plat-
form is built on top of a set of VMs of various
types rented from a public cloud, and the cloud-based
MapReduce computation platform can perform mul-
tiple MapReduce computations concurrently and new
MapReduce computations may arrive and existing
MapReduce computations may finish and go at any
time. In order to minimize the ongoing running cost
of the cloud-based MapReduce computation platform,
we should minimize the running cost of the cloud-
based MapReduce computation platform at any time.

In order to minimize its running cost, the cloud-
based MapReduce may use a number of different
types of VMs which have different capacities and
prices. Thus, a fundamental problem is to find which
types of VMs should be rented, the numbers of in-
stances of each selected VM type and the placement of
the mappers and reducers (workers) on those rented
VMs such that the total cost of renting the VMs is
minimum while guaranteeing the QoS of the cloud-
based MapReduce computation platform at any time.

There are two situations where the MapReduce
placement of the cloud-based MapReduce computa-
tion platform may need to be reorganized. One is
when some existing MapReduce computations are
finishing; another is when some new MapReduce
computations coming. In the former situation, the
MapReduce placement problem can be transformed
into a VM consolidation problem, which has been
intensively investigated for many years and many
efficient approaches have been proposed [31] [32]
[33] [34]. Thus, this paper focuses on the MapReduce
placement problem in the latter situation, which is
formulated in the following.

It is assumed that there are n new MapReduce
computations arriving and n′ existing MapReduce
computations when the MapReduce placement is car-
ried out. In order to guarantee the QoS of the ith

new MapReduce computation (1 ≤ i ≤ n), at least
tMi mappers and tRi reducers need to be provided
for the map/reduce tasks of the new MapReduce

computation, and need to be placed on VMs where
their resource requirements are met. The mappers
and reducers provided for the new MapReduce com-
putations are respectively expressed by two tuples,
< MCPU

i ,MMem
i > and < RCPU

i , RMem
i >, where

MCPU
i and MMem

i are the CPU and memory require-
ments of the map tasks of the ith new MapReduce
computation (1 ≤ i ≤ n), and RCPU

i and RMem
i are the

CPU and memory requirements of the reduce tasks of
of the ith new MapReduce computation.

The mappers and reducers provided for the ex-
isting MapReduce computations are respectively ex-
pressed by two tuples, < M ′CPU

i ,M ′Mem
i > and

< R′CPU
i , R′Mem

i >, where M ′CPU
i and M ′Mem

i are the
CPU and memory requirements of the map tasks of
the ith existing MapReduce computation (1 ≤ i ≤ n′),
and R′CPU

i and R′Mem
i are the CPU and memory

requirements of the reduce tasks of the ith existing
MapReduce computation.

All the mappers/reducers of the MapReduce com-
putations are required to be placed on VMs, and the
VMs that can be used include a set of new VMs,
denoted by V , rented from the public cloud, and a
set of existing VMs, denoted by V ′, which are being
used by existing MapReduce computations and have
some spare resources. The new VMs can be classified
into m types in terms of their resource capacities and
prices and the existing VMs can be classified into m′

types in terms of their spare resource capacities, and
V =

⋃m
j=1 Vj , V ′ =

⋃m′

j=1 V ′
j , where Vj is a multiset of

new VMs of type j and V ′
j is a multiset of existing

VMs of type j.
In addition, let vk be an instance of the VMs to be

used in the MapReduce placement, where vk ∈ V∪V ′,
1 ≤ k ≤ |V| + |V ′|, and vk has a CPU capacity, vCPU

k

and a memory capacity vMem
k . Let

vsk =< xM
k1, x

M
k2, · · · , xM

kn, x
R
k1, x

R
k2, · · · , xR

kn >

be the assignment of the mappers and reducers of
the new MapReduce computations to vk ∈ V ∪ V ′,
where xM

ki and xR
ki are the numbers of the mappers

and reducers of the ith new MapReduce computation
assigned to vk and 1 ≤ i ≤ n; and let

vs
′

k =< cMk1, c
M
k2, · · · , cMkn′ , cRk1, c

R
k2, · · · , cRkn′ >

be the assignment of the mappers and reducers of
the existing MapReduce computations to vk ∈ V ′,
where cMki and cRki are the numbers of the mappers and
reducers of the ith existing MapReduce computation
assigned to vk.

Given the entire set of existing VMs that have spare
resources, V ′, and the placement of the mappers and
reducers of the n′ existing MapReduce computations
on the VMs in V ′, the MRPP is to find a set of new
VMs, V , and placements of the mappers and reducers
of the n new MapReduce computations on all the new

IEEE TRANSACTIONS ON SERVICES COMPUTING 5

and existing VMs such that the total cost of those new
VMs is minimal, that is,

min

m∑
j=1

pj · |Vj | (1)

subject to

|V|+|V′|∑
k=1

xM
ki = tMi , 1 ≤ i ≤ n (2)

|V|+|V′|∑
k=1

xR
ki = tRi , 1 ≤ i ≤ n (3)

n∑
i=1

(xM
ki ·MCPU

i + xR
ki ·RCPU

i) ≤ vCPU
k ,∀vk ∈ Vj (4)

n∑
i=1

(xM
ki ·MMem

i + xR
ki ·RMem

i) ≤ vMem
k ,∀vk ∈ Vj (5)

n∑
i=1

(xM
ki ·MCPU

i + xR
ki ·RCPU

i) +

n′∑
i=1

(cMki ·M ′CPU
i

+cRki ·R′CPU
i) ≤ vCPU

k ,∀vk ∈ V ′
j (6)

n∑
i=1

(xM
ki ·MMem

i + xR
ki ·RMem

i) +

n′∑
i=1

(cMkiM
′Mem
i

+cRkiR
′Mem
i) ≤ vMem

k ,∀vk ∈ V ′
j (7)

In the above problem formulation, pj is the price
of the jth type of VM. Constraints (2) and (3) ensure
the required numbers of mappers and reduces of all
the new MapReduce computations are placed on the
VMs; constraints (4) and (5) make sure the total CPU
and memory requirements of the mappers/reducers
on a new VM do not exceed its CPU and mem-
ory capacities; constraints (6) and (7) guarantee the
total CPU and memory requirements of the map-
pers/reducers of the new MapReduce computations
and the existing MapReduce computations on an
existing VM do not exceed its CPU and memory
capacities.

The MRPP is NP-complete, and the proof for this
is presented by the following theorem.

Theorem 3.1. The MRPP is NP-complete.
Proof: The MRPP is a special case of the classical bin

packing problem [35] where the workers are objects and the
VMs are containers, and the volume of an object (worker) is
its CPU requirement and the volume of a container (VM)
is the VM’s CPU capacity. Let the memory requirement of
all the objects be rM which is a constant, and the memory
capacity of a container (VM) be N ∗ rM , where N is the
total number of objects (workers). Then, the packing is only
constrained by the VM’s CPU capacity, but not the VM’s

memory capacity. In addition, let the cost of each VM be the
same, amounting to one dollar. Thus, in this special case,
the MRPP can be transformed into the classical bin packing
problem: given a set of objects (workers), how to pack these
objects into the minimum number of containers (VMs).
Since the classical bin packing problem is NP-complete
[35], the MRPP is also NP-complete.

4 A NEW ALGORITHM FOR THE MRPP
Since the MRPP is NP-complete and the size of the
MRPP is usually large, it is not feasible to adopt an
optimum algorithm to solve it as it would lead to the
explosion in its search space. Therefore, we propose
an approximation algorithm for the MRPP.

The approximation algorithm is basically a con-
structive algorithm, which is broken down into two
consecutive procedures: placement pattern generation
and MRPP solution building. The first procedure is
used to generates a small set of placement patterns;
the second procedure is used to find a combination
of the placement patterns that form a solution to the
MRPP with a minimum total cost for using VMs.

A placement pattern for a type of VM is a combina-
tion of workers of various types that can be placed
on that type of VM satisfying the capacity constraints
of that type of VM. A placement pattern is said to be
feasible if the total CPU and memory requirements
of those workers that are placed on that type of VM
do not exceed the CPU and memory requirements
of that type of VM, respectively. The details about
the placement patterns generation procedure and the
MRPP solution building procedure are discussed in
the following subsections.

4.1 Placement Pattern Generation Procedure

The basic idea behind the placement pattern genera-
tion procedure is to use an FFD-based algorithm to
generate a set of placement patterns for each type of
VM, where the VM is a container and there are many
instances of the container, and the workers are objects
that need to be put into the multiple containers.
Algorithm 1 describes a procedure that generates a set
of placement patterns for a particular type of VM.

The input of Algorithm 1 is the entire multiset
of workers, W , which are needed to be placed on
multiple instances of the jth type of VM. The output
of the algorithm is a set of placement patterns for the
jth type of VM, Sj .

In order to make the algorithm more efficient, first
of all, the algorithm sorts out those workers which
cannot be put into any of the containers because
their ‘size’ is bigger than that of any container, which
is done by checking if their resource requirements
exceed the capacity of the container in steps 2-6 of
the algorithm. Then, the algorithm iterates q times
(steps 7-22) of a variant of the FFD algorithm, namely

IEEE TRANSACTIONS ON SERVICES COMPUTING 6

Algorithm 1 Generating a set of placement patterns
for jth type of VM

1: Wj = ∅, Sj = ∅;
2: for i = 1 to |W| do
3: if the CPU/memory requirement of the worker

wi ∈ W does not exceed the CPU/memory
capacity of a VM of the jth type then

4: Wj =Wj ∪ {wi};
5: end if
6: end for
7: for k = 1 to q do
8: for i = 1 to |Wj | do
9: Si = ∅;

10: end for
11: randomly generate a sequence of the workers

in Wj , L;
12: while L 6= ∅ do
13: get the first worker w from L;
14: put w into the first VM container that can

accommodate it;
15: remove w from L;
16: end while
17: for i = 1 to |Wj | do
18: if Si 6= ∅; then
19: Sj = Sj ∪ Si

20: end if
21: end for
22: end for
23: output Sj ;

random FFD algorithm (steps 8-16) in which the or-
der of the objects (workers) is randomly generated,
rather than in descending order by their ‘size’. The
reason behind that is that we wanted the procedure
to generate different placement patterns in each of the
iterations. The total number of containers used in the
random FFD algorithm is |Wj |, which is enough to
accommodate all the objects (workers). Thus, after the
packing process of the random FFD algorithm there
could be some containers which are empty. Thus, we
need to get rid of those empty containers (steps 17-
21). Each of the non-empty containers, Si, gives a
placement pattern for the jth type of VM, and all the
placement patterns generated in the q iterations are
stored in Sj .

Algorithm 2 Placement pattern generation

1: S = ∅;
2: for j = 1 to m+m′ do
3: use Algorithm 1 to generate a set of placement

patterns for the jth type of VM, Sj ;
4: S = S ∪ Sj ;
5: end for
6: output S;

The placement pattern generation procedure is de-

scribed in Algorithm 2. The input is the entire multiset
of the workers needed to be placed,W , and the output
is a set of placement patterns for all m types of VMs,
S.

Algorithm 2 iterates m+m′ times (steps 2-5), where
m is the total number of types of VMs and m′ is
the total number of types of existing VMs. It should
be noted that we categorize the existing VMs with
the same spare CPU and memory capacities into the
same type. In each iteration, Algorithm 2 invokes
Algorithm 1 to generate a set of placement patterns
for one type of VM, Sj (step 3), and then merges those
placement patterns stored in Sj into S (step 4). Finally,
it outputs S .

4.2 MRPP Solution Building Procedure
After using the above placement pattern generation
procedure to find a set of feasible placement patterns
for all types of VMs, the MRPP solution building
procedure is used to find the best combination of
the placement patterns in S to form a solution to the
MRPP.

From the computational point of view, the MRPP
solution building problem is a constrained combina-
torial optimization problem. Considering that the total
number of feasible placement patterns are not huge,
however, we transform the MRPP solution building
problem into a Mixed Integer Programming (MIP) [36]
problem as follows:

A placement pattern can be expressed by an N -
tuple:

skj =< x1
jk, x

2
jk, · · · , xi

jk, · · · , xN
jk >

where skj is the kth placement pattern of the jth

type of VM, xi
jk is the number of workers of the

ith type used in the placement pattern, and N is the
total number of different types of workers. It should
be noted that the workers with the same CPU and
memory requirements are categorized into the same
type. The objective of the MIP problem is

minZ =

m∑
j=1

|Sj |∑
k=1

pj · ykj (8)

subject to

m+m′∑
j=1

|Sj |∑
k=1

xi
jk · ykj ≥ |Wi|, 1 ≤ i ≤ N (9)

|Sj |∑
k=1

ykj ≤ Nj ,m < j ≤ m+m′ (10)

ykj ≥ 0, 1 ≤ k ≤ |Sj |, 1 ≤ j ≤ m+m′ (11)

In Eq. (8), Z is the total cost of all the VMs needed in
the MapReduce placement, ykj is the decision variable

IEEE TRANSACTIONS ON SERVICES COMPUTING 7

representing the number of the placement pattern, skj ,
used in the MapReduce placement, pj is the price
of the VM of the jth type, |Sj | denotes the total
number of the placement patterns for the jth VM type,
which is generated in the placement pattern genera-
tion procedure. The constraint (9) ensures the required
number of the workers of every type involved in
the MapReduce computations are assigned to one of
the VMs. The constraint (10) makes sure the number
of each type of existing VMs used in the solution
do not exceed its available number, where Nj is the
maximum available number of one type of existing
VMs. The constraint (11) ensures all variables must
be non-negative integers.

It should be noted that the total number of workers
in the MIP solution could be more than the total
number of workers required to be placed in the MRPP
because of the relaxed constraint (9). Therefore, we
need to remove those redundant workers from the
MIP solution before the MIP solution can be used for
the MRPP.

5 EVALUATION
The evaluation of our new approach is done through
two experiments. The first experiment is to test
the performance of our new constructive algorithm
(NCA). In the experiment, we compare NCA with
three baseline algorithms in terms of the cost of the
MapReduce placements generated by the algorithms
for a set of test instances of various characteristics.

One of the baseline algorithms is the most popular
algorithm for HOMOgeneous MapReduce placement
(HOMO) presented in [18]. HOMO selects a suitable
type of VM among multiple types of VM and then
assigns the same number of workers to multiple in-
stances of the selected type of VM. A second baseline
algorithm is an FFD-based MapReduce placement al-
gorithm (FFD-based). The FFD-based algorithm picks
workers in a decreasing order by their resource re-
quirements and places them in a first-fit fashion.
Details about this algorithm can be found in [37]. A
third baseline algorithm is the original constructive
algorithm (OCA) presented in [19]. Both the FFD-
based algorithm and NCA reuse those spare resources
on existing VMs whereas HOMO and OCA do not.
All the algorithms except for MONO are designed for
heterogenous MapReduce placement.

The second experiment is to test the scalability of
NCA, which is done by observing how the computa-
tion time of NCA increases when the size of the test
problems increases.

Both of the experiments were conducted on a laptop
with an Intel Core i7-3520M CPU (2.90 GHz) and 8
GBs of RAM. All the VMs used in the experiments
were generated by VMware Workstation 10.0.0 [38],
and were deployed on 12 HP workstations (32 Intel
Xeon 2.40 GHz CPUs and 320 GB memory) intercon-
nected via a Gigabit Ethernet network. Hadoop 0.20.2

[39] was used to run the MapReduce benchmarks
and Ganglia [40] was used to monitor the resource
consumption during runtime. All of the algorithms
used in the experiments were implemented in C#.
The solver for the MIP in the MRPP solution building
procedure is CPLEX (12.5.1.0) [41].

5.1 Construction of test instances
In the evaluation, we selected two benchmarks for
MapReduce computations from a popular MapRe-
duce benchmark suit, namely HiBench [42], and used
the benchmarks to construct a number of test in-
stances of different sizes, each of which was used as
a test problem in the experiments. One benchmark
was TeraSort, a standard MapReduce sort benchmark;
another was WordCount, an application that counts the
number of occurrences of each word in a text file.

Each test instance had three inputs: the number
of MapReduce computations, the number of workers
in each of the MapReduce computations, and the
information about existing VMs. The types of VMS
used in the experiments are shown in TABLE 1.

TABLE 1
The VM types used in the experiments

VM Type CPUs (#Cores) Mem (GB) Cost ($)

m1 small 1 1.7 0.06
m1 medium 2 3.75 0.12

m1 large 4 7.5 0.24
m1 xlarge 8 14.7 0.48
m2 xlarge 6.5 17.1 0.41
m2 2xlarge 13 34.2 0.82
c1 medium 5 1.7 0.145

c1 xlarge 20 7 0.58

When constructing test instances, we needed to
know the resource requirements of workers (mappers
and reducers), which was done by experiments. TA-
BLE 2 shows the resource requirements of the workers
for the two benchmarks with different input sizes.
The resource requirements shown in the table is the
average results of 10 runs.

Using the information shown in TABLE 2, we used
the following methods to construct more and large-
size test instances. It was assumed that the CPU and
memory requirements of mappers were uniformly
distributed in the interval [a, b], where a was the
observed minimum amount of resource requirement
and b was the observed maximum amount of resource
requirement. Thus, the CPU requirement for a test
instance with a fixed input size was randomly picked
up between a and b.

The CPU and memory requirements of reducers
were generated in different way, which will be elabo-
rated below. It was observed that the requirements for
CPU and memory were in proportional to the input
size of the MapReduce computation. Thus, to generate
the CPU and memory requirements for reducers, we

IEEE TRANSACTIONS ON SERVICES COMPUTING 8

TABLE 2
The resource requirements of the workers with different input sizes

Input Mapper Reducer
Size (GB) CPUs (#Cores) Mem (GB) CPUs (#Cores) Mem (GB)

TeraSort 2 [1.5,1.8] [0.1,0.2] 1.12 0.9
4 [1.5,1.8] [0.1,0.2] 1.32 1.3
6 [1.5,1.8] [0.1,0.2] 1.4 1.65
8 [1.5,1.8] [0.1,0.2] 1.52 1.8

10 [1.5,1.8] [0.1,0.2] 1.68 2
WordCount 4 [1.7,1.9] [0.3,0.4] 0.68 0.15

8 [1.7,1.9] [0.3,0.4] 0.85 0.4
12 [1.7,1.9] [0.3,0.4] 1.08 0.59
16 [1.7,1.9] [0.3,0.4] 1.2 0.7
20 [1.7,1.9] [0.3,0.4] 1.29 0.85

firstly applied the following four linear regressions to
find the relationship between the CPU and memory
requirements and the MapReduce computation input
size:

ytsc = 0.066x+ 1.012 (12)
ytsm = 0.135x+ 0.72 (13)

ywc
c = 0.0393x+ 0.549 (14)
ywc
m = 0.0425x+ 0.028 (15)

where x is the input size, ytsc (ytsm) represents the
requirement for CPU (memory) of the reducers for
TeraSort, ywc

c (ywc
m) denotes the requirement for CPU

(memory) of the reducers for WordCount.
Given any input size x, which was uniformly dis-

tributed in the interval [10 − 120], we calculated the
resource requirements for reducers using the above
equations.

5.2 Experiments and Results
In the experiments, we used HOMO, the FFD-based
algorithm, OCA and NCA to solve each of the test
instances. Because of the stochastic nature of OCA and
NCA, we repeatedly used them to solve each of the
test instances for 20 times and used the averages of
the 20 runs to compare with the other two algorithms.
The maximum time for solving the MIP problem in
the MRPP solution building phase of OCA and NCA
was set to 30 seconds, following the suggestion in [28].
The parameter q used in Algorithm 2 was fixed to 10
after a number of trials.

Fig. 1 (a) and (b) show how the costs of using VMs
varied when the four algorithms were used to solve
the test instances of TeraSort and WordCount, respec-
tively. In the experiments, the number of existing VMs
varied from 0 to 18, the number of worker types was
fixed at 24, and the number of workers of each type
was fixed at 20. It was assumed in the experiments
that the remaining resource on each existing VM was
50% of the total resource.

It can be seen from Fig. 1 that when the number of
existing VMs was zero, or there was no existing VMs,

0 2 4 6 8 10 12 14 16
40

60

80

100

120

140

160

Number of Existing VMs

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD−based
OCA
NCA

(a) TeraSort

0 2 4 6 8 10 12 14 16
40

60

80

100

120

140

160

Number of Existing VMs

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD−based
OCA
NCA

(b) WordCount

Fig. 1. The comparison of the four algorithms on the
cost of using VMs when the number of existing VMs
varied

the cost of the MapReduce placement generated by
NCA was 35.1% less than that of HOMO, 25.8% less
than that of the FFD-based algorithm and 2.0% less
than that of OCA for those test instances of TeraSort,
and 33.7% less than that of HOMO, 25.6% less than
that of the FFD-based algorithm and 7.1% less than
that of OCA for those test instances of WordCount.
It can be also seen from Fig. 1 that when there were
existing VMs, the cost of the MapReduce placement
generated by NCA was 35.5%−35.7% less than that of

IEEE TRANSACTIONS ON SERVICES COMPUTING 9

HOMO, 12.9%−23.6% less than that of the FFD-based
algorithm and 4.7%−17.0% less than that of OCA for
those test instances of TeraSort, and 34.0%−35.1% less
than that of HOMO, 15.1% − 24.2% less than that of
the FFD-based algorithm and 17.1%−24.6% less than
that of OCA for those test instances of WordCount.

9 10 11 12 13 14 15 16
40

60

80

100

120

140

160

Number of MapReduce Computations

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD−based
OCA
NCA

(a) TeraSort

9 10 11 12 13 14 15 16
40

60

80

100

120

140

160

180

Number of MapReduce Computations

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD−based
OCA
NCA

(b) WordCount

Fig. 2. The comparison of the four algorithms on the
cost of using VMs when the number of MapReduce
computations varied

Fig 2 (a) and (b) compare the costs of the MapRe-
duce placement solutions generated by the four al-
gorithms for TeraSort and WordCount, respectively,
when the number of MapReduce computations varied
from 9 to 16. In the experiments, the number of work-
ers in each of the MapReduce computations was fixed
at 40, the number of the existing VMs of each type
was fixed at 10, and the remaining resource on each
existing VM was 50% of the total resource. For the
test instances of TeraSort, the cost of the MapReduce
placement generated by NCA was 32.8%− 39.1% less
than that of HOMO, 17.5% − 27.0% less than that of
the FFD-based algorithm, and 13.2%−21.4% less than
that of OCA. For the test instances of WordCount,
the cost of the MapReduce placement generated by
NCA was 24.3% − 44.0% less than that of HOMO,
12.8% − 31.9% less than that of the FFD-based algo-
rithm, and 6.2%− 36.2% less than that of OCA.

28 32 36 40 44 48 52 56
40

60

80

100

120

140

160

180

200

Number of Workers in Each of MapReduce Computations

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD−based
OCA
NCA

(a) TeraSort

28 32 36 40 44 48 52 56
40

60

80

100

120

140

160

180

Number of Workers in Each of MapReduce Computations

A
ve

ra
ge

 C
os

t (
$)

HOMO
FFD−based
OCA
NCA

(b) WordCount

Fig. 3. The comparison of the four algorithms on the
cost of using VMs when the number of workers in each
of the MapReduce computations varied

Fig 3 (a) and (b) is the comparison of the cost of
the MapReduce placement solutions generated by the
four algorithms for TeraSort and WordCount, respec-
tively, when the number of workers in each of the
MapReduce computations varied from 28 to 56. In
the experiments, the number of MapReduce compu-
tations was fixed at 12, the number of the existing
VMs of each type was fixed at 10, and the remaining
resource on each existing VM was 50% of the total
resource. For the test instances of TeraSort, the cost
of the MapReduce placement generated by NCA was
37.6%−43.1% less than that of HOMO, 12.7%−18.4%
less than that of the FFD-based algorithm, and 10.8%−
28.9% less than that of OCA. For the test instances
of WordCount, the cost of the MapReduce placement
generated by NCA was 30.8% − 36.8% less than that
of HOMO, 17.7% − 21.2% less than that of the FFD-
based algorithm, and 12.6%− 16.8% less than that of
OCA.

Fig. 4 displays the experiments on the scalability of
NCA. In the experiments, the number of the existing
VMs of each type was fixed at 10 and the remaining
resource on each existing VM was 50% of the total
resource.

IEEE TRANSACTIONS ON SERVICES COMPUTING 10

9 10 11 12 13 14 15 16
0

10

20

30

40

50

60

70

80

90

100

Number of MapReduce Computations

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

TeraSort
WordCount

(a)

28 32 36 40 44 48 52 56
0

10

20

30

40

50

60

70

80

90

100

Number of Workers in Each of MapReduce Computations

C
om

pu
ta

tio
n

T
im

e
(s

ec
)

TeraSort
WordCount

(b)

Fig. 4. The scalability of NCA

Fig. 4 (a) shows how the computation times of
NCA changed with the number of MapReduce com-
putations when NCA was used to solve TeraSort and
WordCount problems and Fig. 4 (b) displays how the
computation times of NCA changed with the number
of workers in each of the MapReduce computations
when NCA was used to solve TeraSort and Word-
Count problems. It can be seen from Fig. 4 that the
computation time of NCA increased linearly when the
number of MapReduce computations increased, and
that the computation time of NCA did not change
significantly when the number of workers in each of
the MapReduce computations varied.

In summary, NCA always had better performance
than all the three baseline algorithms for all the tested
problems. In addition, it was demonstrated the good
scalability of NCA.

6 CONCLUSION AND FUTURE WORK

This paper has proposed a new approach to the cloud-
based heterogeneous MapReduce placement problem,
and has evaluated the new approach by experiments.
The experimental results have shown that the run-
ning cost of the cloud-based MapReduce computation
platform using this new approach is 24.3% − 44.0%

lower than that using the most popular homoge-
neous MapReduce placement approach, 12.7%−31.9%
lower than that using the FFD-based algorithm, and
2.0%−36.2% lower than that using the heterogeneous
MapReduce placement approach not considering the
spare resources from the existing MapReduce com-
putations. The experimental results have also demon-
strated the good scalability of this new approach.

In this research it was assumed that all the workers
of new cloud-based MapReduce computations must
be placed on VMs and start processing map/reduce
tasks immediately in order to make sure that the
cloud-based MapReduce computations can be done
before their deadlines. Thus, we did not consider the
scheduling of the workers, or consecutive placement
of the workers. It is conjectured that by considering
consecutive placement, the utilization of VMs can be
further improved and therefore the total running cost
of the cloud-based MapReduce computation platform
can be further reduced. In addition, it is suggested
that problem semantics might be used to further im-
prove the performance of the constructive algorithm
[43]. Thus, in the future we will investigate how to
use problem semantics in the constructive algorithm
to further improve its performance.

ACKNOWLEDGMENTS

This research was funded by the State Scholarship
Fund of China Scholarships Council (CSC) and the
CSC Top-Up Scholarship of Queensland University of
Technology.

The authors would like to thank the associate ed-
itor and reviewers for their valuable comments and
suggestions.

REFERENCES

[1] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering
based on mapreduce,” in Cloud Computing, ser. Lecture Notes
in Computer Science, M. Jaatun, G. Zhao, and C. Rong, Eds.
Springer Berlin Heidelberg, 2009, vol. 5931, pp. 674–679.

[2] A. Matsunaga, M. Tsugawa, and J. Fortes, “Cloudblast: Com-
bining mapreduce and virtualization on distributed resources
for bioinformatics applications,” in Proc. IEEE 4th Int. Conf.
eScience, 2008, pp. 222–229.

[3] Q. He, T. Shang, F. Zhuang, and Z. Shi, “Parallel extreme
learning machine for regression based on mapreduce,” Neu-
rocomputing, vol. 102, pp. 52 – 58, 2013.

[4] M. Husain, L. Khan, M. Kantarcioglu, and B. Thuraisingham,
“Data intensive query processing for large rdf graphs using
cloud computing tools,” in Proc. IEEE 3rd Int. Conf. Cloud
Computing, July 2010, pp. 1–10.

[5] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica, “Improving mapreduce performance in heteroge-
neous environments.” in OSDI, vol. 8, no. 4, 2008, p. 7.

[6] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, and
Z. Zhang, “Moon: Mapreduce on opportunistic environ-
ments,” in Proc. ACM 19th Int. Symposium on High Performance
Distributed Computing, 2010, pp. 95–106.

[7] J. Wolf, D. Rajan, K. Hildrum, R. Khandekar, V. Kumar,
S. Parekh, K.-L. Wu, and A. Balmin, “FLEX: A slot allocation
scheduling optimizer for MapReduce workloads,” in Middle-
ware 2010, ser. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2010, vol. 6452, pp. 1–20.

IEEE TRANSACTIONS ON SERVICES COMPUTING 11

[8] H. Herodotou and S. Babu, “Profiling, what-if analysis, and
cost-based optimization of mapreduce programs,” Proc. Int.
Conf. VLDB Endowment, vol. 4, no. 11, pp. 1111–1122, 2011.

[9] C. Polo, Jord?and Castillo, D. Carrera, Y. Becerra, I. Whal-
ley, M. Steinder, J. Torres, and A. Eduard, “Resource-aware
adaptive scheduling for MapReduce clusters,” in Middleware
2011, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2011, vol. 7049, pp. 187–207.

[10] K. Wang, B. Tan, J. Shi, and B. Yang, “Automatic task slots
assignment in hadoop MapReduce,” in Proc. 1st Workshop
Architectures and Systems for Big Data, ser. ASBD ’11, New York,
NY, USA, 2011, pp. 24–29.

[11] F. Tian and K. Chen, “Towards optimal resource provisioning
for running MapReduce programs in public clouds,” in Proc.
IEEE 4th Int. Conf. Cloud Computing, 2011, pp. 155–162.

[12] M. AbdelBaky, H. Kim, I. Rodero, and M. Parashar, “Acceler-
ating MapReduce analytics using CometCloud,” in Proc. IEEE
5th Int. Conf. Cloud Computing (CLOUD), 2012, pp. 447–454.

[13] E. Hwang and K. H. Kim, “Minimizing cost of virtual ma-
chines for deadline-constrained MapReduce applications in
the cloud,” in Proc. ACM/IEEE 13th Int’l Conf. Grid Computing
(GRID), 2012, pp. 130–138.

[14] P. Lama and X. Zhou, “Aroma: Automated resource allocation
and configuration of MapReduce environment in the cloud,”
in Proc. ACM 9th Int. Conf. Autonomic computing, 2012, pp. 63–
72.

[15] K. Chen, J. Powers, S. Guo, and F. Tian, “Cresp: Towards
optimal resource provisioning for mapreduce computing in
public clouds,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 6, pp. 1403–1412, June 2014.

[16] H. Herodotou, F. Dong, and S. Babu, “No one (cluster) size
fits all: automatic cluster sizing for data-intensive analytics,”
in Proc. ACM 2nd Symposium on Cloud Computing, 2011, p. 18.

[17] M. Cardosa, A. Singh, H. Pucha, and A. Chandra, “Exploiting
spatio-temporal tradeoffs for energy-aware mapreduce in the
cloud,” IEEE Transactions on Computers, vol. 61, no. 12, pp.
1737–1751, Dec 2012.

[18] B. Palanisamy, A. Singh, and L. Liu, “Cost-effective resource
provisioning for mapreduce in a cloud,” IEEE Transactions on
Parallel and Distributed Systems, vol. PP, no. 99, pp. 1–1, 2014.

[19] X. Xu and M. Tang, “A more efficient and effective heuristic
algorithm for the MapReduce placement problem in cloud
computing,” in Proc. IEEE 7th Int. Conf. Cloud Computing, 2014,
to be published.

[20] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc.,
2009.

[21] K. Kc and K. Anyanwu, “Scheduling hadoop jobs to meet
deadlines,” in Proc. IEEE 2nd Int. Conf. Cloud Computing Tech-
nology and Science (CloudCom), Nov 2010, pp. 388–392.

[22] A. Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Auto-
matic resource inference and allocation for MapReduce envi-
ronments,” in Proc. ACM 8th Int’l Conf. Autonomic Computing,
2011, pp. 235–244.

[23] J. Polo, Y. Becerra, D. Carrera, M. Steinder, I. Whalley, J. Torres,
and E. Ayguade, “Deadline-based MapReduce workload man-
agement,” IEEE Trans. Network and Service Management, vol. 10,
no. 2, pp. 231–244, June 2013.

[24] A. Verma, P. Ahuja, and A. Neogi, “pmapper: power and
migration cost aware application placement in virtualized
systems,” in Middleware 2008. Springer, 2008, pp. 243–264.

[25] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian,
K. Talwar, L. Uyeda, and U. Wieder, “Validating heuristics for
virtual machines consolidation,” Microsoft Research, MSR-TR-
2011-9, 2011.

[26] “Energy-aware resource allocation heuristics for efficient man-
agement of data centers for cloud computing,” Future Genera-
tion Computer Systems, vol. 28, no. 5, pp. 755 – 768, 2012, special
Section: Energy efficiency in large-scale distributed systems.

[27] M. Monaci and P. Toth, “A set-covering-based heuristic ap-
proach for bin-packing problems,” INFORMS Journal on Com-
puting, vol. 18, no. 1, pp. 71–85, 2006.

[28] M. Haouari and M. Serairi, “Heuristics for the variable
sized bin-packing problem,” Computers and Operations Research,
vol. 36, no. 10, pp. 2877–2884, 2009.

[29] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consol-
idation for cloud computing,” in Proc. 2008 Conf. Power aware
computing and systems, vol. 10. San Diego, California, 2008.

[30] B. Palanisamy, A. Singh, L. Liu, and B. Jain, “Purlieus:
Locality-aware resource allocation for mapreduce in a
cloud,” in Proc. 2011 Int. Conf. High Performance Computing,
Networking, Storage and Analysis, ser. SC ’11. New York,
NY, USA: ACM, 2011, pp. 58:1–58:11. [Online]. Available:
http://doi.acm.org/10.1145/2063384.2063462

[31] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability
of data center networks with traffic-aware virtual machine
placement,” in Proc. IEEE 2010 INFOCOM, 2010, pp. 1–9.

[32] J. Xu and J. A. Fortes, “Multi-objective virtual machine place-
ment in virtualized data center environments,” in Green Com-
puting and Communications (GreenCom), Proc. 2010 IEEE/ACM
Int. Conf. Cyber, Physical and Social Computing (CPSCom). IEEE,
2010, pp. 179–188.

[33] G. Wu, M. Tang, Y.-C. Tian, and W. Li, “Energy-efficient virtual
machine placement in data centers by genetic algorithm,” in
Neural Information Processing. Springer, 2012, pp. 315–323.

[34] M. Tang and S. Pan, “A hybrid genetic algorithm for the
energy-efficient virtual machine placement problem in data
centers,” Neural Processing Letters, pp. 1–11, 2014.

[35] H. Dyckhoff, “A typology of cutting and packing problems,”
European Journal of Operational Research, vol. 44, no. 2, pp. 145
– 159, 1990.

[36] L. A. Wolsey, Mixed Integer Programming. Wiley Encyclopedia
of Computer Science and Engineering, 2008.

[37] J. Kang and S. Park, “Algorithms for the variable sized bin
packing problem,” European Journal of Operational Research, vol.
147, no. 2, pp. 365–372, 2003.

[38] VMware, “VMware homepage.” [Online]. Available:
http://www.vmware.com

[39] Hadoop, “Hadoop releases.” [Online]. Available:
http://hadoop.apache.org/releases.html

[40] Ganglia, “Ganglia monitoring system.” [Online]. Available:
http://ganglia.sourceforge.net/

[41] CPLEX, “IBM CPLEX Optimizer.” [Online]. Available:
http://ibm.com/software/commerce/optimization/cplex-
optimizer/

[42] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The hibench
benchmark suite: Characterization of the MapReduce-based
data analysis,” in Data Engineering Workshops (ICDEW), 2010
IEEE 26th International Conference on. IEEE, 2010, pp. 41–51.

[43] C. Bellettini, M. Camilli, L. Capra, and M. Monga, “Dis-
tributed ctl model checking in the cloud,” arXiv preprint
arXiv:1310.6670, 2013.

Xiaoyong Xu received a Master degree in
Management Science and Engineering from
Nanjing Tech. University in 2012. He is cur-
rently a PhD student at the School of Elec-
trical Engineering and Computer Science,
Queensland University of Technology, Bris-
bane, Australia. His current research inter-
ests include cloud computing and big data.

IEEE TRANSACTIONS ON SERVICES COMPUTING 12

Maolin Tang (M’04—SM’10) received a B.E.
degree from the Huazhong University of
Science and Technology, Wuhan, China,
a M.E. degree from Chongqing University,
Chongqing, China, both in computer science,
and a Ph.D. degree in computer systems
engineering from Edith Cowan University,
Perth, Australia.

He is a Senior Lecturer with the School
of Electrical Engineering and Computer Sci-
ence, Queensland University of Technology,

Brisbane, QLD, Australia. His current research interests include evo-
lutionary computation and cloud computing, in particular applications
of evolutionary computation in cloud computing. He has published
over 80 refereed papers in prestigious journals and international
conference proceedings, including IEEE Transactions on System,
Man and Cybernetics – Part B, IEEE Transactions on Cybernetics,
IEEE Transactions on Intelligent Transportation Systems, and Future
Generation Computer Systems.

Dr. Tang has been a Program Committee Member of a number
of international conferences, and has co-chaired an international
workshop and two special sessions in international conferences.

