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A New Approach to the Dynamic Maintenance of
Maximal Points in a Plane*

Greg N. Frederickson and Susan Rodger

Department of Computer Sciences, Purdue UniversilY, Wesl Lafayette, IN 47907, USA

Abstract. A point Pi = (Xi' Yi) in the x-y plane is maximal if there is no point
Pi = (Xl> Yi) such that xi> Xi and Yi > Yi. We present a simple data structure, a
dynamic contour search tree, which contains all the points in the plane and maintains
an embedded linked list of maximal points so that m maximal points are accessible
in O(m) time. Our data structure dynamically maintains the set of points so that
insertions take O(log n) time, a speedup of O(log n) over previous results, and
deletions take O({log n )2) time.

1. Introduction

Given a set S of points in the x-y plane, Pi = (Xi, Yi) E S is a maximal point if
there is no Pi = (Xi> Yi) E S such that Pi <Pi (Pi < Pi iff Xi < Xi and Yi <Yi). The set
of maximal points of S form what we call an m-contour. In this paper we present
a dynamic contour search tree, a data structure to represent contour information
for a search tree. This data structure is quite natural, and is simpler than previous
data structures for solving the dynamic version of the m-contour problem. The
dynamic contour search tree stores the points of the set S in the leaves of the
tree and stores various search information in the internal nodes. The m-contour
is maintained as a linked list embedded in this structure, so that it can be accessed
in Oem) time where m is the number of maximal points. Our data structure
dynamically maintains the set of points so that insertions take O(log n) time, a
speedup of O(Iog n) over previous results, and deletions take O((log n)') time.

'" The research of the "first author was partially supported by the Nalional Science Foundation
under Grant No. DCR-8320214 and by the Ollice of Naval Research on Contract No. N 00014-86-K.
0689. The research of the second author was partially supported by the Office of Naval Research on
Contract No. N 00014·86-K-0689.
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In addition, the query of whether a new point lies inside or outside of the
m-contour can be determined in O(log n) time.

For a static set of n points, Kung et al. [1] have shown that the m-contour
can be computed in O(n log n) time. One method for constructing the m­
contour proceeds by examining all the points, one at a time, and building the
m-contour from the points examined thus far. If a point is not on the m-contour
then the point is discarded.

In the dynamic version of this problem, those points in the set S which are
not maximal points must be saved, because deleting a point on the m-contour
can result in a point which was not maximal becoming maximal. Overmars and
van Leeuwen [2] use a balanced binary search tree in which the points from S
are stored in the leaves of the tree and each internal node has a concatenable
queue associated with it. The concatenable queue at the root contains all the
maximal points and the other concatenable queues contain the remaining points.
In the data structure of Overmars and van Leeuwen, the m-contour can be listed
in O(m) time, and the query of whether a new point lies inside or outside of the
m-contour can be determined in O(log n) time. However, Overmars and van
Leeuwen's insertions and deletions consist of tearing apart concatenable queues
and rebuilding them at each internal node along a path, causing insertions and
deletions to take O((log n)2) time. With our data structure, insertions and dele­
tions consist of updating 0(1) search information at each internal node along a
path, causing insertions to take O(log n) time.

Willard and Lueker [4] have shown how to perform range queries in k
dimensions on trees of bounded balance with worst-case times of O((log n)k-')
for update and query operations. Applying their data structure to the maximal
point problem in two dimensions results in efficient worst-case update and query
times of O(log n). However, since their data structure is designed specifically for
range queries, it has no scheme for representing the m-contour. There appears
to be no efficient way to list out the m-contour.

The dynamic contour search tree must be balanced in order to get the O(log n)
search time. We use the balancing scheme of the red-black binary search trees
of Tarjan [3] since they use the minimum number of rotations to keep the tree
balanced. Each rotation in the dynamic contour sear~?_ tree requires O(log n)
time to update the search information at the three nodes possibly affected by
the rotation. Thus it is crucial to use the red-black binary search trees which
have 0(1) rotations per update in order to achieve the O(log n) time for
insertions.

2. Definitions and Searching Operations

The m-contour of a set of points S in the plane is composed of the maximal
points of S. These maximal points form a "staircase" in which all the remaining
points of S lie to the left and below the staircase. An example set of points, and
the staircase for them, are given in Fig. l(a). The inside region of the m-contour
is the region dominated by the m-contour. That is, a point Pi is inside the m-contour

,
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Fig.1. (a) The m-contour. (b) The corresponding dynamic contour search tree without the neXCdown
poinlers shown. The embedded m-contour is emphasized.

if and only if there is a maximal point Pj such that Pi < Pj' The outside region of
the m-contour is the region that is not dominated by the m-contour.

The data structure we propose to maintain the m-contour dynamically is a
balanced binary tree with all the points of the set S sorted by the x-coordinate
and stored in the leaves of the tree. Each leaf node contains three fields: x, y,
and transfer. The internal nodes of the tree are used .to search for points and to
represent the m-contour. Each internal node v contains six fields: right. lejt,
max_x. ma:cy. nexLdown, and nexLin_contour. Right(v) is the right child of
internal node v and similarly leJt(v) is the left child of v. Max_x(v) points to
the leaf containing the point with the largest x-coordinate of all the points in v's
subtree. We use ma:cx(v) in the search for a point via its x-coordinate. Max_y(v)
points to the leaf containing the point with the largest y-coordinate of all the
points in v's subtree. We use max_y(v) when updating certain information after
an insertion or deletion. NexLdown( v) of node v points to the closest descendant
node w that has a max_y(right(w)) ~ max_y(right(v)). If no such w exists, then
nexLdown(v) points to the leaf node w that max_y(right(v)) points to. We use
nexLdown(v) in Sections 3 and 4 to reset transfer pointers in 0(0 time.

NexLin_contour(v) for internal node v contains a pointer to the descendant
leaf in the tree which represents the nearest point that is to the left and above
of max_y(right(v)) in the plane. If max_y(right(v)) points to the leaf for Pi ~
(Xi, Yi) then nexLin_contour(v) will point to some point Pj = (xi> Yj) which has
the largest x-coordinate Xj such that xj < Xi and Yj > Yi' It is possible for several
internal nodes to have the same max_y(right(v» values. Of these nodes, only
the node v closest to the root will have its nexLin_contour(v) pointer set to the
next contour point; the others will set their neXLirl_contour pointers to NULL.
Transjer(w), where w is a leaf containing the point Pi = (X" Yi), is a pointer to
the highest ancestor v that has a y(max_y(right(v))) value equal to Yi' TransJer( w)
together with the next-down pointers of all the nodes v whose max_y(right(v» =
Pi form a circularly linked list in the tree.

A dynamic contour search tree for the set of points in Fig. l(a) is given in
Fig. l(b). Downward arrows are nexLin_contour pointers, upward arrows are
lransjer pointers, and a label beside an interior node v is the max_y(right(v»)
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Fig. 2. A circular linked list for PI fanned by a transfer poinler and three nexcdown pointers.

value. NexLdown pointers are not shown. Figure 2 shows the circularly linked
list of the transfer pointer for the point Pi and the nexLdown pointers of the
nodes v whose max-y(right(v)) ~ Pi'

The m-contour can easily be produced from this data structure by traversing
a linked list consisting of alternating nexLin_contour and transfer pointers. Note
that the rightmost point on the m-contour will always be a point Pi = (Xi, Yi) with
the largest x-coordinate. Starting from Pi, we can trace through the m-contour
that is represented in the tree by alternately following transfer and nexL in_contour
pointers. This list is emboldened in Fig. 1(b).

Theorem 2.1. The points of the m-contour can be listed using the dynamic contour
search tree in Oem) time where m;s the number of maximal points.

Proof The rightmost leaf w in the search tree contains the rightmost point
Pi = (X;, Yi) on the m-contour since the leaves are sorted by x-coordinates and Xi

is the largest x-value of any point. Transfer(w) points to its highest ancestor v
that has a y(max_y(right(v))) value of Yi' No point in v's right subtree has a
larger y-value. To find the next maximal point, examine nexLin_contour(v).
It points to the leaf u containing the point Pk = (Xk, Yk) such that Xk = (max Xj

such that xj < Xi and Yi> y;). Thus by starting with the rightmost leaf and
tracing the transfer and nexLin_contour pointers, the m-contour can be listed in
Oem) time. 0

An arbitrary point Pj = (Xj, y) e S can be tested easily to see whether Pi lies
inside or outside of the m-contour. Any point that lies inside the m-contour is
dominated by some maximal point. A simple search of the dynamic contour
search tree would find a maximal point Pi that dominates Pj if Pi lies inside the
m-contour. Otherwise, Pj will be found to lie outside the m-contour. Initialize v
to the root. Let Pi ~ (Xi, Yi) be the point at the leaf pointed to by max_y(right(v)).
Figure 3 shows four quadrants with respect to Pi' The point Pj must lie in one
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Fig. 3. Quadrants with respect to the point Pj.

of these quadrants. If xj > Xi and Yj> Yi then the point Pj lies outside of the
m-contour (quadrant 0, as we shall show. If Xj<x; and Yj<Y; then the point Pj
is dominated by Pi and lies inside the m-contour (quadrant III). If xj < Xi and
Yj > Yi then recursively apply the search to v's left subtree (quadrant IV). If Xj> Xi

and Yi<Y' then recursively apply the search to v's right subtree (quadrant II).
If a leaf is reached, then Pj was not dominated by any point and thus lies outside
the m-contour.

Theorem 2.2. Using the above procedure, an arbitrary point Pj will be found to lie
inside or outside the rn-contour in O(Iog n) time.

Proof Suppose Pj lies outside the m-contour. No point dominates Pj so either
Pj is found to lie clearly outside of the m-contour (quadrant I) or a leafis reached
during the search indicating that no points dominate Pj.

Suppose Pj lies inside the m-contour. Then there is at least one point on the
m-contour which dominates Pj. Let Pk be the maximal point to the right of Pj
that has the largest y-value. There is an internal node w in the dynamic contour
search tree with its max_y(right(w)) equal to Pk such that the leaf position in
the tree that would be reached in searching for Pj is in w's left subtree. Thus,
there is an internal node along the search path from the root to Pj whose
max_y(right(w)) value would determine that Pj is Inside the m-contour. Figure
4(a) shows the point Pi dominated by three maximal points and Fig. 4(b) shows
the node w in the dynamic contour search tree.

Starting at the root of the tree, the search proceeds toward the node w. Let v
be the current internal node in our search and let Pi = (Xi. Y,) be the point at the
leaf pointed to by max_y(right(v)). If p, dominates Pi then our search stops.
Otherwise, if Pi is a contour point, then w is either in v's left subtree if Xk < Xi

or in v's right subtree if Xk > Xi and the search continues accordingly toward w.



370

'-----.Pm

Pn

G. N. Frederickson and S. Rodger

Q_ root

\,

(0)

,
Position of Pj

(b)

Fig. 4. (a) The m-contour. (b) The corresponding dynamic contour search tree.

If Pi is not a contour point, then there are no contour points in v's right subtree.
The node w is not in v's right subtree since if it was then Pi would be a contour
point. Thus w is in v's left subtree and p/s position in the tree is to the left of
Pi' The search continues via the left child of v. It cannot happen that Pi < Pi> so
the point Pj cannot lie in quadrant I with respect to Pi' Thus either the search
halts before reaching w, or it halts at w.

The search clearly takes O(log n) time. 0

3. Insertions

Given the dynamic contour search tree for a set of n points, suppose we want
to add an additional point Pj to the set. The point Pi will be inserted into the
dynamic contour search tree. If Pi is outside the current m-contouT. then Pi will
become a new point on the m~contour, otherwise Pi will become an interior point.
To maintain balance in the dynamic contour search tree after each insertion, we
use the balancing scheme of the red-black binary search trees of Tarjan [3]. Each
rotation performed during balancing will take O(log n) time to update the fields
of the node involved. Thus is it crucial to use the red-black trees since they have
0(1) rotations per insertion.

To insert the point Pi = (Xj, y) into the dynamic contour search tree, we use
the insertion procedure for red-black trees. and update other fields as the insertion
is performed. First search for the leaf position of Pi> a leaf node containing the
point Pi = (x;, Yi)' On the way down to find the insertion position, update max_xCv)
and max_y(v) for each node von the path by comparing it with Pj. Also on the
way down, identify each node v such that max_y(right(v)) will change to point
to Pi. Each of these will have its nexLin_contour pointer set to NULL except
for the one closest to the root.

For this node v, we compute its nexLin_contour pointer as follows. The
nexLin_contour value of v will point to a leaf in v's left subtree. It cannot point
to a leaf in v's right subtree because then it would be pointing to a y~value which
is larger than y(max_y(right(v))). To calculate v's nexLin_contour pointer,
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traverse down a path in v's left subtree. At each internal node w, if
y(max_y(right(w))) is greater than y(max_y(right(v))), then traverse down w's
right subtree, else traverse down w's left subtree. If a leaf containing the point
Pk is reached such that Yk > y(max_y(right(v))), then set v's nexUn_contour
pointer to point to this leaf. Otherwise set v's nexLin_contour pointer to NULL
because there is no point in the subtree that is above and to the left in the plane.

As mentioned above, there may be several nodes v such that the value
max_y(right(v)) will change to point to Pi' If max_y(right(v)) was previously
pointing to Pk> then transfer( w) for the leaf node w containing the point Pk is
pointing to v as v must be the node closest to the root with a max_y(right(v» = Pk'
NexLdown(v) points to the next node u closest to the root with a
max_y(right(u)) ~ Pk, so when max_y(right(v)) changes to point to Pi'
nexLdown(v) is used to update transJer(w) quickly. NexLdown(v) will be
updated as soon as the node it will point to is reached.

For nodes on the path between the root and the new leaf for Pi' their
nexL;n_contour pointer could possibly change to Pi if Pi is in quadrant IV with
respect to them and Pi is closer than the point they are currently pointing to. A
simple comparison at each node on the way down the path should tell whether
the nexLin_contour pointer should be changed to point to Pi'

Upon reaching Pi, replace Pi by an internal node and two leaves, one for Pi
and one for Pi' The transfer pointer of the leaf Pi should be set to point to the
internal node v which is the closest internal node to the root with a
max_y(right(v)) value of Pi'

Once Pi is inserted in a leaf, the insertion path is retraced updating the balance
information. This will halt at some node with 0(1) rotations performed. These
rotations may affect three internal nodes that would need to recalculate their
fields at a cost of O(log n).

In Fig. 5(a) the change to the m-contour is shown when point P9 is inserted
into the set of points from Fig. 1. The corresponding dynamic contour search
tree is shown in Fig. 5(b).
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Fig. s. (a) The m·contour after inserting point 9. (b) The corresponding dynamic contour search
tree with the embedded m-conlour emphasized.
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Theorem 3.1. Insertingapointp into a search tree with n leaves takes O(log n) time.

Proof To add the new point Pi involves a search from the root to a leaf which
takes O(log n) time. At each internal node on the way down the path, updating
max_x and ma:cy takes 0(1) time. There is one nexLin_contour pointer which
must be calculated at a cost of O(log n) time. The remaining next-in_contour
pointers that change are set to NULL or are set to point to the leaf Pj and thus
can be calculated in 0(1) time. Transfer and nexCdown pointers are updated in
0(1) time by adding or deleting a node from a linked list.

Balance information at each internal node can be calculated in 0(1) time.
Each rotation affects at most three internal nodes. Their fields can be recalculated
in O(log n) time. Since there are 0(1) rotations per insertion, the total time for
balancing is O(log n) time. Thus the time to insert the point Pj into the search
tree takes O(log n) time. 0

Corollary 3.1. The search tree for a set of n points can be built in O(n log n) time.

Proof Apply the insertion procedure above for each point.

4. Deletions

o

Given the dynamic contour search tree for a set of n points, suppose we want
to delete a point pj from the set. If Pi was a point on the m-contour then the new
m-contour will be updated when pj is deleted by updating the dynamic contour
search tree. Even if Pj was not on the m-contour, some work may be needed to
update the dynamic contour search tree.

To delete the point Pj = (Xj, Yi) from the dynamic contour search tree, we use
the deletion procedure for the red-black trees. First find the leaf w containing
the point Pi' Leaf w will be the child of some internal node v. Let u be the other
child of v and let p(v) be the parent of v. Remove wand v and let u become a
child of p(v). Now proceed back up the path, updating values at the internal
nodes. Updating max_xCv) and max_y(v) at each internal node v along the path
takes 0(1) time per node. Updating transfer and next-down pointers also takes
0(1) time per node along the path.

Some nexLin_contour pointers may need to be recalculated. If any internal
node v had y(max_y(right(v))) = Yj then this node would receive a new
max-y(righ/(v)) value. Nodes with y(max_y(right(v))) = Yj must lie along the
search path from the root to Pj. If the y(max_y(right(v))) value of a node v
changes, then the next-in_contour pointer of the node could possibly change, so
its nexLin_contour pointer must be recalculated. In addition, ifany next-in_con­
tour pointer was pointing at Pj, then these neXLin_contour pointers need to be
recalculated because Pi will be deleted. Only nodes along the path from the root
to Pi can have next_in_contour pointers pointing to Pi since next-in_contour
pointers must point to a descendant lear. Next_in_contour pointers should be
recalculated on the way back up to the root.
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Fig. 6. (a) The m-contour before the deletion of point 9. (b) The corresponding contour search tree
before deleting point 9.

Also on the way back up the path, update the balance information using the
balancing scheme of the red-black binary search trees. There may be 0(1)
rotations needed to balance the tree. At most three internal nodes will be affected
by a rotation and need their fields recalculated. After performing a rotation,
continue on up the path updating the remaining nodes on the path.

Figure 6(a) and (b) gives a set of points and an associated dynamic contour
search tree. Figure 7(a) and (b) gives the set of points and the associated dynamic
contour search tree after point P9 is deleted.

Theorem 4.1. Deleting a point from a search tree with n leaves takes O«log n)2)
time.

Proof To delete the leaf Pi from the dynamic contour search tree involves a
search from the root to the leaf Pi which takes O(log n) time. After removing
the point Pi. the same path must be traversed back up to the root, updating the
fields at" each internal node along the way. At most O(log n) nodes will need to
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Fig. 7. (a) The m-contour after the deletion of point 9. (b) The corresponding contour search tree
after deleting poinl 9.
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recalculate nexLin_contour pointers. It takes O(log n) time to recalculate one
nexLin_contour pointer so the total time in recalculating the nexLin_contour
pointers is O«(log n)2) time. Updating max_x, max_y, transfer, nexLdown, and
the balance information takes 0(1) time at each node. There will be 0(1) rotations
and it will take O(log n) time to recalculate the fields of the nodes affected by
the rotation. Thus the total time to delete point Pi from the search structure is
O((Iog n )') time. 0
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