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A New  Approach to the Realization of Low- 
Sensitivity  IIR  Digital  Filters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract-A new implementation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof an IIR digital filter transfer 
function is presented that is structurally passive and, hence, has ex- 
tremely low pass-band sensitivity. The structure is based on  a simple 
parallel interconnection of two all-pass sections, with each section im- 
plemented in a structurally lossless manner. The structure shares a 
number of properties in common with wave lattice digital filters. Com- 
puter simulation results verifying the low-sensitivity feature are in- 
cluded, along with results on roundoff noise/dynamic range interac- 
tion. A large number of alternatives is available for the implementation 
of the all-pass sections, giving rise to the well-known wave lattice dig- 
ital filters as a specific instance of the implementation. 

I. INTRODUCTION 

IGITAL filtering has  been  a  major area of research 
activity for the last several years,  beginning with the 

pioneering  work by Kaiser [ l ]  in the  1960’s.  A large num- 
ber of contributions has  appeared  in  the literature [2]-[31] 
concerning  the  design  and  the practical problems associ- 
ated with an actual implementation.  Among  these,  a  num- 
ber of contributions emphasizes the importance of low- 
sensitivity digital filter structures requiring very  few bits 
per multiplier coefficient because  such structures lead to 
efficient implementations.  A  major step in this direction 
was  made in 1971  when Fettweis [2]  introduced  the  con- 
cept of wave  digital filters. These filters are  obtained  from 
classical doubly  terminated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALC networks,  and inherit the 
robustness properties into  the digital domain  [3],  [4].  A 
specific class of  wave filters, called the wave  lattice dig- 
ital filters [8] , are  obtained by translating continuous-time 
LC lattice filters into the digital domain  and are particu- 
larly known  for  extremely  low  pass-band  sensitivity.  The 
resulting digital filters can  be  looked  upon as a parallel 
connection of all-pass filters, each all-pass branch  being 
synthesized by an  ingenious  cascading  of suitably chosen 
wave  adaptors.  Wegener [23] and  Gaszi  [27]  have also 
made  studies in this  same  direction. 

The  use of wave filters in multirate applications is also 
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known  [34]. In addition, Constantinides has noticed the 
use  and applicability of all-pass sections for such  appli- 
cations [28],  [29],  and has proposed efficient filter designs 
based on parallel combinations of all-pass functions of the 
form A(z2)  [and, in general,  A(zN)],  where  the overall low- 
pass design  has  a  cutoff  frequency  of  about n/2. Constan- 
tinides has  also clearly argued  the  reason  for the low-sen- 
sitivity properties of these structures by establishing their 
equivalence to continuous-time  doubly  terminated loss- 
less lattice  networks  [28].  Related results in this direction 
have also been reported by Ansari and  Liu [30]. 

It is clear,  therefore, that all the  above-mentioned  con- 
tributions derive  their excellent robustness properties be- 
cause of their  close relation to the continuous-time  doubly 
terminated  lossless  networks. In a recent contribution 
[20], it has  been  shown that low-sensitivity digital filters 
can  also  be  designed directly in the z domain,  without 
recourse to continuous-time  prototype  networks.  Such  an 
independent  z-domain  approach also gives rise to wave 
digital filters, orthogonal filters, and digital lattice struc- 
tures as special cases  [20]-[22].  Basic to such  a synthesis 
procedure are  the concepts  of structural boundedness and 
the LBR two-pair extraction [20]. Structural boundedness 
is essentially a generalization of the pseudopassivity con- 
cept [3].  The  pseudopassivity of a  wave digital filter is 
the consequence of passivity of internal building blocks, 
whereas structural boundedness  does not necessarily re- 
quire that the internal building blocks  be (passive) equiv- 
alents of  continuous-time passive elements. 

The  purpose  of  this  paper is to develop  a  procedure  for 
synthesizing a digital filter transfer function as a parallel 
connection of two all-pass sections  without  any reference 
to continuous-time LC synthesis. Certain digital filter 
transfer functions (to be clearly spelled out)  can  be  de- 
composed in this  fashion, and are shown to satisfy the 
“structural passivity requirement” so that they have  low 
pass-band  sensitivity.  Moreover,  any digital filter transfer 
function for which we can find a  wave digital lattice filter 
can also be directly handled in the z domain by making 
use of the  proposed  approach. 

In our  proposed  method,  each of the  two all-pass sec- 
tions can be implemented as  a  cascade of first- and  sec- 
ond-order building blocks.  The  second-order section can 
be efficiently implemented  with  only  two multipliers, 
whereas  the first-order section requires only  one multi- 
plier, as described in [19].  The  theory  underlying  the re- 
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alization method is based  on  a  very useful property sat- 
isfied  by certain digital transfer functions that have 
transmission zeros either  on  the unit circle  or in reciprocal 
pairs.  The corresponding  implementations  have  ex- 
tremely  low coefficient sensitivity in the  passband  be- 
cause of the inherent structural  boundedness.  This struc- 
tural boundedness  arises  out of the structural Zosslessness 
of  the  all-pass  networks  proposed in [19]. Although  the 
theory can  be  derived by translating certain well-known 
power-balance  concepts in classical filter theory [8], [35], 
our derivation is entirely in the z domain.  We feel that 
this leads to a self-contained presentation,  emphasizing 
the simplicity of  the  concepts involved. 

In Section 11, the role of  structural  boundedness [20] in 
low-sensitivity implementations is reviewed,  and then it 
is shown  that  a parallel connection of all-pass filters leads 
to such  boundedness,  under certain conditions. In Section 
111, we derive  conditions  under  which  a digital filter trans- 
fer function can  be  expressed as  a sum of two stable all- 
pass functions.  Fortunately,  these conditions turn out to 
be  mild,  and  are satisfied under  most situations. Section 
IV includes a  general discussion of implementation  con- 
siderations. In Section V, design  examples  are  presented, 
together with  computer simulations to demonstrate the ex- 
cellent pass-band sensitivity properties of  the  implemen- 
tations. Finally, in Section VI, roundoff noise/dynamic 
range interaction in  the new structures is analyzed, and a 
method is proposed  for obtaining a  cascade of optimal  all- 
pass sections  having  the largest signal-to-roundoff-noise 
ratio  under scaled conditions. 

11. REVIEW OF STRUCTURAL BOUNDEDNESS 

Consider the transfer function of  an  Nth-order  IIR filter: 

where the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi  and dj are  real.  We  wish  to  design 
a  structure,  with multiplier coefficients mo, m l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- * * , such 
that the sensitivity of I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(ej") I with respect to each mi is 
very  small in the  passband.  Let us  now assume that the 
structure is such that, regardless of the actual values of 
the multipliers mi, the quantity I G(eJ") I is bounded  above 
by a fixed constant,  say, unity 

I G(ej")l 5 1 for all w .  (2) 

In  other  words,  assume  that  the structure forces  an  upper 
bound  on I G(ej") 1 ,  regardless of  what  the values of the 
multipliers are,  as long as  the multipliers are within a  cer- 
tain range. Such  implementations are called structurally zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
passive or structurally  bounded  [20].  Now,  assume that a 
transfer function G(z) has  been  implemented in a  struc- 
turally bounded manner.  Assume  further  that 1 G(ej"') 1 is 
unity for certain frequencies wk in the  passband. If now a 
multiplier mi is perturbed,  the quantity I G(ejWk) I can  only 
decrease, regardless of  the sign of the perturbation.  Thus, 
a plot of I G(ejWk) I with respect to mi has  zero  slope at the 
nominal values of mi, and this holds for each multiplier 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Demonstrating the low-pass-band-sensitivity  property. 

Fig. 2. Parallel  connection of all-pass filters. 

and  each wk (see  Fig.  1). In effect, we have zero first- 
order sensitivity at  frequencies w = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfdk:  

In addition, if  we have  a  number of closely spaced points 
in the  passband  where I G(eJ"') 1 = 1, then  we  can  expect 
low sensitivity over  the passband. It is therefore  clear that 
the fundamental  requirement for low  pass-band sensitivity 
is structural boundedness.  Note  that  the  above  argument 
is analogous to  the  well-known Orchard's argument [33] 
in classical filter theory. 

A  stable  transfer function G(z) with real coefficients 
satisfying (2) is called a  bounded real (BR)  function. In 
addition, if (2) holds  with equality for  all w ,  then G(z) is 
called a  lossless  bounded real (LBR)  transfer  function, 
more  commonly  known as a  stable all-pass function. If a 
structure is such  that  the  transfer function remains BR in 
spite of parameter  quantization, then it has  a  low-sensi- 
tivity property. 

Let us  now consider  a  stable all-pass function A,(z)  of 
order rn: 

a, + a,,- lz - 1  + . . .  + z- ,  
+ a,zPm A1(z) = + a l z - l  + . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

where ak are real. Notice  that the  numerator  and  denom- 
inator  are  mirror  images  of  each  other.  There exists a 
number of well-known  structures [ 121, [ 181, [ 191, [29] 
which  implement  such functions in  such  a  manner that, in 
spite of multiplier  quantization,  the  mirror-image  prop- 
erty is preserved.  Consequently,  the  all-pass  property, 
i.e.,  the equality 

(A,(ej")I = 1, (5 )  

holds regardless of  quantization.  Such  implementations 
will be called structurally  lossless. 

Next  consider  an interconnection of two stable all-pass 
filters A ,  and A2 as shown in Fig.  2.  The  overall transfer 
function is 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, (z )  is as in (4) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA2(z) is  given by 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAl(z) and A,(z) are all-pass  functions,  we  can  write 

where nl ,  n2 are nonnegative  integers,  and &(z) denotes 
the  mirror  image  of &(z). Assume  that A I  ( z )  and A2(z) are 
in  minimal form,  i.e., Dk(z) and &(z) do not have uncan- 
celled  common  zeros.  Then (6) implies 

Assume  that (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- olz- ')  is a factor of D,(z),  and  is  at  the 
same  time a factor of the  numerator  in (9). This would 
imply  that (1 - az- ' )  is necessarily a factor of D2(z) 
Bl(zj. But  since A,(z)  is  assumed  to  be  in  minimal  form, 
this  implies  that (1 - orz-') must be a factor of D2(z) 
rather  than 6 , ( z ) .  Thus, if we  assume that D,(z) and D2(z) 
do not have  common  factors,  and  that Ak(z)  are in mini- 
mal form, then  there  is  no  pole-zero  cancellation  in (6), 
and G(z) has  order N = m + n. 

Next, it is  clear  from (6) that on  the unit circle, 

q e j " )  = .g,jeI(w) + , j e2 (4  

where el(w) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&(w) are real-valued functions of w .  
Thus, 

1 (10) 

1 G(ejw)l = ;I 1 + , j Ien(w)-h(w)l l  

which shows  that I G(ej") I cannot be all-pass  unless ez(w) 
= t9,(w) for  all w .  Equivalently, unless A,(z)  = A2(z), G(z) 
is not  all-pass. 

Equation  (1  1)  reveals  other  important  information: thus, 
if A, (z )  and A2(z) are implemented such that they re- 
main  all-pass  in  spite of parameter  quantization, then 
I G(ej") I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1 for all w ,  in spite of this quantization.  Ac- 
cordingly,  the  structural  losslessness of A&) induces 
structural  boundedness of G(z). It  therefore  follows that 
Fig. 2 leads  to a simple  low-sensitivity  implementation. 
. Thus,  given  an  arbitrary BR digital  filter  transfer  func- 

tion G(zj, if it is  possible to  decompose it as in (6), we 
have a simple  means  of  achieving  low  pass-band  sensitiv- 
ity.  In  the  next  section,  we  investigate  this  possibility. 

(1 1) 

111. IMPLEMENTATION OF A DIGITAL  TRANSFER 
FUNCTION AS A SUM OF Two ALL-PASS  FUNCTIONS 

Let us consider a typical Nth-order BR transfer  function 
G(z) = P(z)/D(z) as in (l), with I G(eJ"j I as in Fig. 3 .  
Assume  that P(z) has  linear  phase.  This  is  typical of  most 
digital filter transfer  functions  (because  the  zeros  are usu- 
ally  located on  the unit  circle)  and is therefore  only a mild 
restriction. To  be specific,  let P(z) be  symmetric, i.e., P k  

= p N  - k .  Now consider  another  transfer  function H(z):  

Fig. 3. A typical  low-pass  response. 

H(z) = 

where H(z) is defined  such  that 

IH(eiw) 1' = 1 - I G(ej") 1'. (13) 

In  other  words, H(z)  is complementary  to G(z). In terms 
of the z variable,  we  therefore  have 

P(z) P(z) + &(z)  Q(z) = D(z) D(z) (14) 

where p(z) = P(z- ' ) ,  and so on.  Let us now make the 
following  nontrivial  assumption: G(z) is  such  that Q(z)  
satisfying  (14) is antisymmetric, i.e., qk = -qN-k. Now, 
by symmetry of P(z) and  antisymmetry of Q(z),  we  have 

P(z) e P(z-')  = zNP(z) (15a) 

Q(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = -zNQ(z). ( 15b) 

Hence, (14) becomes 

+ Q<z>I[P(z> - = z-~D(z-'). (16) 

Moreover, 

P(z-')  + Q(z- ' )  = zN[P(z) - Q o l .  (17) 

Hence,  the zeros  of P(z) + Q(z)  are  the  reciprocals of the 
zeros of P(z) - Q(z) .  As  the  given  transfer  function G(z) 
is  stable,  none of its  poles are  on the unit circle,  hence, 

P(z) + Q(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0,  I z I = 1. (1 8) 

Let zl, z2,  * * - , zr be the  zeros of P(z) + Q(z)  inside  the 
unit circle,  and  let zr + * * , zN be those  outside.  Then, 
from  (16) it is  clear  that 

r N 

D(z) = rI (1 - Z-Izk) II (1 - z-'zLl). (19) 
k =  1 k = r + l  

Thus,  we can  rewrite  (16) as 

[P(z> + Qk>1 [P(z) - Qk>1 
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

N 1 

which  enables us to  identify 

r N 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Realizing  the  doubly  complementary  pair. 

where 01 is a real constant.  This  leads  to  the equations 

Thus, we have  the  following set of equations: 

G(z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ H(z) = CYA, (z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(25a) 

G(z) - H(z) = - A2(z) (25b) 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CY 

where A,(z)  and A2(z) are  stable all-pass functions of or- 
ders N - r and r ,  respectively, 

In view  of the condition ( 1  3), it is easily verified that CY 

= 1 .  As the  sign  of 01 is not of  consequence, we  finally 
arrive at 

H(z) = $[Adz) - A2(z)l. (2 8) 

This  then  leads to the  implementation  of G(z) as  a parallel 
combination  of  stable  all-pass  functions, as desired (Fig. 
2). In addition,  we  can  simultaneously  obtain the comple- 
mentary jmction H(z) ,  with  an extra digital adder  (Fig. 
4). If G(z) is a low-pass  function, then H(z) is a high-pass 
function and  vice  versa. As G(z) and H(z) satisfy (13), 
they are said to form  a power complementary pair. In ad- 
dition, (25) says that G and H are  complementary  with 
respect to an  all-pass  function.  Such  a  pair [G(z), H(z)] is 
said to  be doubly complementary [3 13. The results of this 
section can  be  summarized in the following  manner. 

Lemma 3.1: Let G(z) = P(z)/D(z) be  a BR function of 
order N and let P(z) be  symmetric,  i.e., P k  = P N - k .  In 

addition,  let G(z) be  such that there  exists  an  antisym- 
metric polynomial Q(z) (i.e., qk = -qN-k) such  that (14) 
holds.  Under  these  conditions, G(z) can be implemented 
as in (27)  where Al(z) and A2(z) are  stable all-pass func- 
tions.  Furthermore,  the function H(z) = Q(z)/D(z) is BR, 
and is doubly  complementary  with respect to G(z). 

The  conditions of the lemma are easily satisfied in most 
filtering applications.  For  example, let the BR function 
G(z) be  such that 

1) N is odd; 
2) (ak \  G(eiw) [ lawk) = 0 fork = 1, 2, * - - no, no 

= some  odd  integer, i.e., I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(e jw)  I has  odd-order  tan- 
gency at zero  frequency; 

3) I G(ejo) I = 1; and 
4) there  are (N - no)/2  frequencies in the  range 0 < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 

< T where I G(ej") I = 1. 
Under these conditions,  the  requirements  of  the  lemma 

are satisfied. Note that classical  low-pass  Butterworth, 
Chebyshev,  and  elliptic digital filters [32], [35] of  odd 
order  always satisfy these  requirements  and  can be imple- 
mented as. in Fig.  2.  However, optimality of the  transfer 
function in any classical sense is not a prerequisite for 
obtaining the implementation  of Fig.  2.  This  is demon- 
strated in Section V by means  of  a  design  example. 

IV.  IMPLEMENTATION  CONSIDERATIONS 

The  implementation of the specified transfer function 
G(z) based  on  the  structures  of Fig.  2 can be achieved in 
a  number  of  ways. The simplest approach is to realize  the 
two all-pass filters Al(z) and A&) as  cascades  of .second- 
order  and possibly a first-order all-pass  section. If these 
all-pass sections  are realized in structurally lossless form, 
the  overall realization is guaranteed to be structurally 
bounded,  and  hence exhibits low  pass-band sensitivity 
with respect to each multiplier coefficient. A catalog of 
minimum  multiplier first-order and  second-order all-pass 
realizations has been  advanced by Mitra  and  Hirano  [19]. 
(Four possible first-order sections  and  twenty-four  possi- 
ble second-order  sections  are  cataloged in [19].) Each of 
the realizations proposed in [19] remains  all-pass  inde- 
pendent  of  the  actual  value  of the multiplier coefficients. 
Or in other words,  the  proposed all-pass sections  are 
structurally lossless.  For  given Al(z) and A&), in gen- 
eral,  there  are  a  large number  of  equivalent  realizations. 
For  example,  for  a  5th-order G(z) with  two  complex pole 
pairs and. one real pole, there are  altogether  2394 (= 24 
X 24 X 4) equivalent realizations,  all exhibiting very low 
pass-band  sensitivity.  Other practical considerations such 
as product, roundoff error may be  used to select  an  opti- 
mum realization out  of  all  such  equivalent  structures.  We 
defer  a discussion on roundoff error/dynamic  range  anal- 
ysis until Section VI. 

Instead of  implementing the all-pass  sections as cas- 
cades  of  second-order  sections,  one  can  also  implement 
them in the  form of lattice  structures [12]-[14], of which 

'Notice  that  this  structural  losslessness  is  different  from  pseudolossless- 
ness [3], which  is  a  wave  digital  counterpart of the  well-known  lossless 
positive  real  property 1351. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  First-order  all-pass  section,  based on wave  adaptor  terminated in 
a  delay. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y(z1 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  First-order  all-pass  section,  based on Gray-Markel  one-multiplier 
lattice,  terminated in a delay. 

there exist several well-known versions. This  could lead 
up to other possible advantages.  (For  example, the nor- 
malized  cascaded  lattice is automatically scaled in an L2 
sense,  at all the internal nodes.  Although it requires 4 
multipliers per first-order section,  the  4 multipliers can be 
combined into a single  planar rotation element,  which can 
in turn be  implemented by a  cordic-processor  element. 
Moreover, it  is possible to avoid zero-input limit cycles 
with such  lattice  structures.) 

In particular, if we use  the  one-multiplier first-order lat- 
tice  sections of Gray  and  Markel  [12],  then  the resulting 
structures are precisely the  same  as  the  wave  lattice digital 
filter building blocks [8], [36]. This is because  a  simple 
redrawing of the adaptors used in [36] (reproduced  in Fig. 
5) reveals that they are structurally equivalent to the Gray- 
Markel  one-multiplier  lattice sections [ 121, reproduced in 
Fig.  6. Unlike  a  four-multiplier  Gray-Markel  cascaded 
lattice,  the one-multiplier cascade is  not inherently scaled. 
Accordingly, the analysis presented by Wegener [23] 
should  be suitably applied in order to scale down  the input 
signal, so that internal signal overflow is avoided. 

V. DESIGN EXAMPLES 

Given  a BR transfer function G(z) as in (l), that satis- 
fies the  requirements of lemma 3.1,  the design  procedure 
is as  follows:  form  the  antisymmetric  polynomial Q(z) 
satisfying (14), and  then  compute  the zeros of the poly- 
nomial P(z)  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ(z). Let z I ,  z2,  . - * , zr be the zeros inside 
the unit circle,  and let z r f l ,  * * * , zN be those outside. 
The all-pass functions Al(z)  and A2(z) are now formed  ac- 
cording to (26), and the implementation of Fig.  2 is thus 
accomplished. 

As an  example,  consider  the BR transfer function 

where k = 0 13494, so that I G(eJ") I max = 1. Clearly, 
the  polynomial P(z) is given by 

P(z) = 0 * 13494(1 + 1 - 733062-I + 2 . 83075~-' 

+ 2 8 3 0 7 5 ~ ~ ~  + 1 * 7 3 3 0 6 ~ ~ ~  + 2-') 

whereas 

D(z) = 1 - 0 * 7 0 0 4 ~ ~ '  + 1 * 4 2 7 8 7 ~ - ~  - 0 

* 5 7 9 9 . 5 ~ ~ ~  + 0 4 0 8 6 6 ~ ~ ~  - 0 . 0 5 4 6 3 ~ - ~ .  

Computing D(z) D(z) - &) P(z) ,  we obtain its antisym- 
metric spectral factor Q(z)  

Q(z) = 0 * 26989(1 - 2 * 6 3 4 7 9 ~ ~ '  + 4 * 09366Y2 

- 4 . 0 9 3 6 6 ~ - ~  + 2 * 6 3 4 7 9 ~ ~ ~  - z - ~ ) .  

In order to  find Q(z), it is not necessary to find the roots 
of the  polynomial &z)D(z) - P(z) P(z) ,  nor  is  it neces- 
sary to employ general spectral factorization algorithms. 
In the  appendix,  a  computationally  simple  procedure is 

outlined for finding Q(z). 
Next,  the  zeros of P(z) + Q(z) are  determined.  These 

are  given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z1 = 0 155661 

z2 = 0 * 109659 + j0 . 924586 

24 = 0 * 401930 + jl  51943 

Z' = 2:. 

Of these, zI , z2,  and z3 are inside the unit circle,  whereas 
24 and z5 are  outside  the unit circle.  We therefore con- 
struct the  two all-pass functions as 

(-z1 + zY1)(-z2 + z- l ) ( -z3 + z-'1 
(1 - Z,f1)(1 - z2z-1)(1 - z3z-I) . A2(z) = 

Thus, A,(z)  is a  second-order  section,  whereas A&) is a 
cascade of a first-order section A21(z) and  a  second-order 
section A 2 2 ( ~ )  with 

( -22  + z- l ) ( -z3 + z- I )  
(1 - z22-l)(1 - z3z-l) 

A22tZ) = 

The appropriate all-pass functions are,  therefore, 

0 * 40482 - 0 * 325422-1 + z - ~  
= 1 - 0 * 325422-I + 0 * 40482z-' t 30) 

Pt7-1 - 1 + 1 - 7 3 3 0 6 ~ ~ '  + 2 8 3 0 7 5 ~ ~ ~  + 2 8 3 0 7 5 ~ - ~  + 1 * 73306T4 + Z-' 

DtZ) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk 1  - 0 70042-I + 1 - 4 2 7 8 7 ~ - ~  - 0 . 5 7 9 9 5 ~ - ~  + 0 4 0 8 6 6 ~ - ~  - 0 . 0 5 4 6 3 ~ - ~  
G(z) = - - (29) 
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Fig. 7. (a)  The  new  implementation  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 bits  per  multiplier.  (b)  The new 
implementation  with 3 bits  per  multiplier. 

1 - 0 * 374982-' + 0 * 90102~-' - 0 * 1 3 4 9 4 ~ ~ ~  ' 

(3 1) 

In  order to study the sensitivity properties,  the coefficients 
of  the all-pass filters A , ( z )  and A2(z) were  quantized to as 
low as  3 binary bits of  mantissa in canonic sign digit code 
(SD code),  and  the  structure of Fig.  2  simulated.  Note 
that each  multiplier  has,  therefore,  a  complexity equiva- 
lent to two addition operations.  Fig.  7  shows  the relevant 
frequency responses. In all the plots,  the  dashed  curve 
indicates the ideal (infinite-precision) response. The ex- 
cellent sensitivity properties of the structurally passive 
implementation are evident from the response  plots, par- 
ticularly in the  passband. In the present example, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(z) has 
been  chosen to be  a filter transfer function that is not op- 
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Fig. 8. (a) The  direct form with 3 bits  per  multiplier.  (b)  The  direct  form 

with 3 bits  per  multiplier. 

timal in any classical  sense,  as  seen  from  the ideal re- 
sponse plots in Fig.  7.  This has  been  purposely  chosen so 
as to emphasize the point we made  earlier  that, in order 
to obtain  an  implementation as in Fig. 2, G(z) need not 
necessarily be  optimal. 

As a  comparison,  the  transfer  function  of (29) was also 
implemented in direct form, with the same  amount of pa- 
rameter quantization (3 bits of SD code  per mantissa). 
Fig.  8  shows  the relevant frequency  response plots. Not 
surprisingly,  the  performance  is  unacceptable. 

In the  new  structures,  since A ,  ( z )  and A&) are all-pass 
functions, they require  only 2 and  3  multipliers, respec- 
tively.  Thus,  a total of 5 multiplications is involved, per 
computed  output  sample. In  contrast,  the  direct  form re- 
quires 7 multipliers [even  after taking into  account the 
symmetry  of  the  numerator P(z) ]  and, in addition, re- 
quires more precision for each  multiplier. 

As a  further  demonstration, the all-pass functions of 
(30) and (31) were  implemented  with  only 2 bits of SD 
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code  per multiplier mantissa.  (Note  that  each multiplier is 
then equivalent in complexity to one addition operation.) 
The resulting quantized all-pass functions are given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 * 375 - 0 3 1 2 5 ~ ~ '  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz - ~  
= 1 - 0 - 31252-' + 0 375zp2 (32) 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A2(z) = 

-0 1328125 + 0 . 8 7 5 ~ ~ '  - 0 3 7 5 ~ ~ ~  + z - ~  
1 - 0 * 3752-I + 0 * 8 7 5 ~ - ~  - 0 * 1328125~-~ . 

(33) 

Notice that the coefficients involved  in  a direct implemen- 
tation of Al(z) and A2(z) are 

0 . 3125 = (0 * 0101)z 

0 * 375 = (0 * 011)2 

0 * 375 = (0 * 011)z 

0 * 875 = (1 * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA00 - 1)2 

0 * 1328125 = (0 . 0010001)2. 

Fig. 9 shows  the resulting frequency  responses  obtained 
with the implementation of Fig. 2. Notice that the pass- 
band  behavior continues to be  excellent.  In  fact,  the  quan- 
tized response  has less error in the  passband  and  stopband 
than  the  ideal response! This  can  be  explained by the  fact 
that  the  quantized  response  has  a  wider transition band. 
Moreover,  the ideal response  being not optimal in any 
way,  the  above improved  behavior is not surprising. As 
each  multiplier is equivalent to  one addition operation in 
complexity,  the total complexity  of  the  quantized circuit 
of Fig. 2 is now only 16 addition operations (equivalent 
to a  single 17-bit multiplier coefficient!). With  this  low 
complexity,  the  structure still achieves  about 30 dB stop- 
band  attenuation,  and 0 * 1 dB  peak  pass-band  ripple. 
This  example,  therefore,  demonstrates  the  excellent  po- 

tentiality of the circuit of Fig. 2 from  a sensitivity view- 
point.  (For  completion we note that,  with  a quantization 
level of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 bits of SD code  per multiplier mantissa,  the 
direct form  structure  became unstable in this example.) 

Comment on Stop-Band Sensitivity 

The pass-band sensitivity of  the  complementary filter 
H(z) is expected to be  excellent  (for  the  same  reason  that 
the pass-band sensitivity of G(z) is excellent).  Now,  in 
spite of parameter quantization, (27) and (28) hold,  hence, 
(13) holds  for  each  frequency. Thus,  the stop-band  sen- 
sitivity of G(z) is expected to be  good.  However, in terms 
of decibels,  a small pass-band  error  in H(z) corresponds 
to a  large  stop-band  error in G(z), particularly in the re- 
gion of low  pass-band  and  stop-band error.  Fig. 10 shows 
a plot of a versus where 

a = -20 log,, a,  p = -20 log,, b, 

a2 + b2 = 1. (34) 
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Notice  that  the quantity cy decreases  very sharply for small 
changes in /3, in the region  of  large cy. This figure dem- 
onstrates that, if G(z) has large stop-band attenuation, then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
low  puss-band sensitivity of H(z) does not necessarily im- 
ply low slop-band sensitivity of G(z). 

VI. ROUNDOFF  NOISE AND DYNAMIC  RANGE 

Referring to  the configuration of Fig. 2,  each all-pass 
filter can actually be  implemented as  a  cascade  of  second- 
order  sections  and possibly a first-order section leading to 
the  structure  of  Fig.  11. In fact, such  an  implementation 
is, in general,  better  than  a direct form  implementation  of 
Al(z) and A2(z).  For first- or second-order all-pass func- 
tions,  a number  of  minimum-multiplier  implementations 
has  been  derived  in [ 191. All of these  implementations are 
"structurally lossless" in the  sense  described  earlier.  For 
each  of  these  structures,  a  complete fixed-point roundoff 
noise analysis  is  performed in [ 191. Based  on these tabu- 
lated results, it is  a  simple  matter to calculate the roundoff 
noise gain  for  the  structure  of  Fig. 2,  under  a fixed-point 
implementation. 

In  an  actual fixed-point implementation, it is necessary 
to avoid  overflow  of  certain internal signals in the stuc- 
ture. When  the  implementation is based  on 2's comple- 
ment  arithmetic, it is sufficient [32], [37] to ensure that 
the inputs to  internal multipliers are within the permissi- 
ble  dynamic  range  of the implementation,  which we as- 
sume to be the range [ - 1, 1).  Let us furthermore  assume 
each internal signal to  be represented by b bits (plus a sign 
bit). 

Let us now consider  a  cascade  of  all-pass sections as 
shown in Fig.  12. Each  section satisfies IAlk(ejw)l = 1 for 
all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw .  Let mkl represent the Zth multiplier in the  imple- 
mentation  of the kth all-pass function Alk(z).  Let us  now 
define the  following  transfer functions: 

Tkl = transfer function from the input  of the kth 

all-pass section A,&) to the input of mkl 

&(z) = transfer function from the output of mkl 

to the output of the section Alk(z) 

Pkl(z) = transfer function from the input of the 

overall system to the input of mkl 

Qkl(z) = transfer function from the output of 

mkl to the filter output. 

Clearly then, 

PkM = All(2) * Al,k-l(Z)Tkl(Z) 

Q&) = S ~ Z )  . . * A I , ~ + ~ ( z )  . * AI,&)- 

As  a  result, 

IPkl(ej">l = I Tkl@J")I 

I QdeJ") I = I &(e'") I . 

Fig.  11.  Implementation of the  circuit  of  Fig.  2  in  terms  of  low-order  all- 
pass  sections. 

x+J-+-+ ... +J-- 
Fig.  12.  Pertaining  to the scaling  of  internal  signals. 

Fig.  13.  Insertion  of  scaling  factors. 

Assuming as usual that the input x(n) is scaled in  the L2 
sense,2  i.e., IIX(e'w)112 = 1, we can  avoid  overflow at the 
input of  any  multiplier in the kth all-pass section  of  Fig. 
12  (i.e., make  sure it is in the  range ([- 1, 1) for  all  time 
n )  simply by inserting into  the  cascade the multipliers 
2-"k and 2"k as  shown  in  Fig.  13 where 

2"k 1 cyk = sup IITJ2. (43) 
A 

1 

Now,  the internally generated  quantizer  error  has  variance 
A2/12  where A = 2-b  and,  hence,  the roundoff noise vari- 
ance  contaminating Yk(z), due  to  quantization inside the 
kth all-pass section, is 

where 

(44) 

Thus,  the  obvious effect of avoiding internal overflow is 
an increased roundoff noise,  which is the result of the 
known roundoff noise/dynamic  range interaction [37]. 
Basically, the introduction of scale  factors as' in  Fig.  13 
ensures that  the  overall signal gain  of  the  all-pass  cascade 
is the  same  as that of the unscaled  structure.  However, 
scaling does result in a  decreased signal-to-noise ratio be- 
cause of increased  noise.  The  overall noise variance at the 
output  of  the  cascade  of  Fig.  12  is 

Thus,  the  structure of Fig. 1 1 has total roundoff noise vari- 
ance  (under  scaled conditions) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa; + a;, where a: is as in 
(46) and ai is the  corresponding contribution from  the  all- 
pass  chain A21  A2Z * - * A2k. It is clear  that  each all-pass 
section should be independently  chosen so as to have the 
smallest value of the  product cy:& or, in practice, the 

'The symbol I / .  1 1 2  stands  for  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAusual L2 norm [37]. 
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Fig. 14. Multiplier-extraction in second-order  sections 

smallest value of 

(47) 

Moreover, 

F zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 l/(ot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA02”) 

represents a true figure of  merit,  under  scaled  conditions. 
Notice that the  ordering of the sections in the all-pass  cas- 
cade  does not affect the roundoff noise/dynamic  range 
performance. 

Based on a digital  multiplier-extraction  approach,  four 
distinct first-order all-pass  sections  and  twenty-four dis- 
tinct  second-order  all-pass  sections are cataloged in [ 191. 
Each of these  sections has the property that the input- 
output  relation is an all-pass  function, in  spite of param- 
eter quantization.  Accordingly, the entire  cascade of Fig. 
12 remains all-pass  in  spite of multiplier  quantization,  en- 
suring  that  the  overall  transfer  function  in Fig. 11 is struc- 
turally bounded,  leading  to  low pass-band sensitivity. 
Next,  for each  all-pass  section  reported  in  [19], a roundoff 
noise analysis is also included,  and  the  values  of pi are 
tabulated [19, Tables I and 111. It therefore  only remains 
to  compute  the  scaling  parameters ai of (43). This  com- 
putation can be  done with little  additional effort, simply 
by making judicious  use of the entries in Tables  I and I1 
of 1191. 

In order  to  explain how this can  be done, consider a 
digital filter structure with two-multipliers b2 and -b3, 
drawn in the form of a three-pair as shown in Fig.  14. Let 
the  3-input  3-output multiplierless system in Fig.  14  be 
described by the transfer matrix [TJ , i.e., let 

YI (2) Tli(z) T13(z)] [xlli)) 

y2(z)] = [T2l(i) T22(z)  T23(z) x2(z) . (48) 

It is easily verified that 

multiplier b2. Inspection of (49) reveals that if each Tq(z) 
is replaced with qi(z), then  it  leads  to (50). In other words, 
the scaling  transfer  functions are precisely equal to  the 
corresponding  noise  transfer  functions of the transposed 
structures. The noise gains zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0: are tabulated in [ 191 for 
each  structure  and  its  transpose.  Accordingly, the scaling 
norms ai can be found by inspection of Table I1 in [19]. 
Similar  discussions hold for first-order all-pass  sections. 

To  take a specific example,  consider type-2A all-pass 
sections. Then, from the entries of Table I1 in [ 191, 

= (1 + b;)RI (5 1) 

whereas 

ai = max(R5,  R6).  (52) 

Similarly, for a type-3At section, 

P i  = P R 4  + R5 (53) 

whereas 

(Yk  = max(R1, RJ = Ri. (54) 

(Notice that each entry in Table I1  of [19] is a sum of two 
terms; one  corresponding  to  each  one of the  two  multi- 
pliers .) 

In  Table I of this paper,  we  have tabulated for  conve- 
nience the  quantities /3i and ai for all the relevant second- 
order all-pass  sections.  From this table, it is easy to find 
the all-pass section with smallest pk. If the designer has 
the  additional restriction that the number of delays should 
be  minimal, then the choice of second-order all-pass sec- 
tions is restricted to types zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2A, 2 4 ,  3A, and 3 4 .  

Comments on First-Order  All-Pass  Sections 

It is readily verified that the four first-order sections re- 
ported in [ 191 have  the  values of a2k and j3i as shown in Table 
11. The product a k P k  is the same for types 1A and 1A,. 
Accordingly,  types 1A and lA, are equivalent (and so are 
types 1B  and lB,) as far  as,noise/dynamic range properties 
are concerned.  Types zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA are better than types B by a factor 
of 2, which corresponds only to 3 dB  (i.e., one-half a 
binary bit). Accordingly,  type B should always be pre- 
ferred in view of canonicity in  delays. 

Numerical  Example 

For  the  example  of  Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV ,  the  overall  transfer  func- 
tion G(z) (6) requires a second-order  section A ,  ( z ) ,  and a 

2 

2 2 ’  

whereas 

Equation (49) represents  the noise transfer  function  from third-order  section A2(z), where A2(z) = A ~ , ( z )  * A 2 2 ( ~ ) .  
the output of b2 to the  output of the all-pass section, The first-order section A2,(z) is best implemented with 
whereas (50) represents the scaling transfer function for type 1B  (or le,) which is canonic in delays. For this sec- 

~ ~~ 
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TABLE I 

THE QUANTITIES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARk, p ,  bz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHAVE SlCNIFlCANCE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAS DEFINED IN  [19] 
CATALOG OF SECOND-ORDER ALL-PASS SECTIONS 

TABLE 111 
EXHAUSTIVE SEARCH FOR BEST SECOND-ORDER SECTION IN  NUMERICAL 

EXAMPLE 

Serial 

Number 

1 

2 

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Note: Types 2A,   2A, ,   3A,   3A,  are canonic in delays. 

TABLE I1 
CATALOG OF FIRST-ORDER ALL-PASS SECTIONS 

Type 1 4  1Af 1B 1A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
# of delays 1 2 1 2 

tion, we have 
= 2 369 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

ai = 1 731 

p;a; = 4 * 10. (55) 

Sections A,(z) and &(z) have  several  choices as tabulated 
in Table 111. For both A,(z) and A2,(z), the product o(k2pi 
turns out to be smallest for  type-3Dr  sections.  With these 

- - 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I 

A- 
37.15 

34.38 

32.66 

31 .51 

15.02 

9 . 1 2  

7 .20  

4 . 08 

I .07 

2 .  13 

2 .16  

2 ,oo 

4 .08  

7 .20  

9.12 

15.03 __ 

585 

329 

a47 

135 

574 

333 

251 

137 

32 2 

3 8 . 9  

31 1 

1 6 . 3  

9 . 2 6  

1 6 . 7  

20 ' 5 

1 7 . 3  __ 

1"k 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL 
~ 

8 

8 

8 

8 

4 

4 

4 

2 

1 

2 

2 

2 

2 

4 

4 

4 __ 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2L 
3 .72  

3 . 4 4  

2.15 

1 .40 

11 . o  

9 .25  

6 .  26 

6 . 2 8  

6 .72  

6 . 2 3  

3 . 8 9  

2 ' 53 

3.19 

4 .21  

3 ' 38 

1 .89 - 

t 

I 

__ 
2 Q) __ 

4 

4 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

2 ___ 

choices for  all-pass  sections,  the total (scaled) roundoff 
noise gain is 

4 - 10 + 9 * 26 + 4 02 = 17 38 (56) 

corresponding to 12 dB, i.e., about 2 bits of signal dete- 
rioration. 

Next, if  we prefer to use  second-order  sections that are 
canonic in delays,  then  the best possible choice is type 
3A, for  both A,(z)  and A&). The resulting total scaled 
output roundoff noise gain is  now 

4 - 10 + 17 3 + 6  35 = 27 75 (57) 

which  corresponds to 14 4 dB,  i.e., between  2-3 bits of 
signal deterioration. 

In Table 111, we  have  also indicated the appropriate 
2"k-approximation  for  each ark.  These quantities give  the 
important  information  necessary in Fig.  13 to avoid in- 
ternal signal overflow. Notice that the use of 2"k instead 
of ck!k leads to a  change in the actual scaled noise gain.  For 
example, (57) above  becomes 

2 - 3 6 9 x 4 + 1 * 1 5 x 1 6 + 1 * 8 9 x 4 = 3 5 * 4 3 6  

which is equivalent to 15 5 dB noise gain (i.e., about 3 
bits). 

Type-1B  and type-3At sections,  which  are  most  appro- 
priate for  this  numerical  example, are shown in Fig. 15. 

VII. CONCLUDING REMARKS 

The main  emphasis in this paper  has  been  an  indepen- 
dent  z-domain  approach for  the synthesis of low-pass- 
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I I 

(b) 

Fig.  15.  The  first-  and  second-order  all-pass  building  blocks  for  the  nu- 
merical  example.  (a)  Type-1B  section. (b) Type-3A,  section. 

band-sensitivity digital filter structures.  The resulting 
structures are in the form of a parallel connection of two 
all-pass  sections,  and  each section can be implemented in 
a variety of ways. One of these is the simple  cascade of 
first- and  second-order  sections,  each section being  cho- 
sen  from  a  catalog of structurally lossless circuits, in or- 
der to optimize  the  roundoff-noise/dynamic  range perfor- 
mance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs an  alternative,  the all-pass functions can also 
be synthesized  using  the  Gray  and  Markel  approach zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 121- 
[ 141, or in the  form of a  wave digital cascade [SI. The 
latter  approach  leads to the wave digital lattice filters, 
which  have  been extensively studied zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 2 3 ] ,  [27] and  are 
well known  for  their  excellent properties under  quantized 
environment. 

APPENDIX 

The computation of the spectral factor Q(z) is made par- 
ticularly simple  because of the  antisymmetric nature of 
Q(z) . From (1 6) it is clear that 

Q2(2) = P2(z) - z-~D(z- ’ )D(z ) .  (A. 1) 

The polynomial  on  the right-hand side of (A. 1) is known 
since P(z) and D(z) are known.  Indicate this polynomial 

by 
2N 

Then Q2(z)  = R(z)  and,  hence,  the coefficients qn are re- 
lated to r, as 

n 

n -  I 

rn - q k q n - k  
4 n  = 

k =  1 

290 
, 2 I n I N.  (A.5) 

In fact,  because of the antisymmetry of qn, it is necessary 
only to compute  one-half  the  number of coefficients in 

(A.5). 
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