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A New Approach to the Ricci Flow on S2

J. BARTZ - M. STRUWE - R. YE(*)

1. - Introduction

In this paper we study the Ricci flow of R. Hamilton on the 2-dimensional
sphere ,52,

where g denotes the evolving metric, R the scalar curvature and r the average
of R. The following result has been obtained by Hamilton [Hl] and B. Chow
[Ch].

THEOREM 1.1. For any smooth initial metric, the solution of (1) exists

for all times and converges exponentially to a metric of constant curvature as
t - oo.

(Hamilton assumed the additional condition R &#x3E; 0, which was eventually
removed by Chow.)

The situation of the Ricci flow on S2 is surprisingly delicate and differs
very much from the 3-dimensional case in [H2] and the 4-dimensional case in
[H3]. The proof of Theorem 1.1 given in [Hl] is very intricate, it involves
the Harnack inequality for the scalar curvature, monotonicity of a delicate new
geometric quantity called "entropy" and analysis of soliton solutions of the
Ricci flow. Our purpose here is to provide an elementary proof of Theorem 1.1,
first under the assumption that the initial metric is conformal to the standard
metric on ,52. By virtue of the uniformization theorem this proof then extends
to all cases. (Of course, it should be noted that the proof of Hamilton-Chow
does not use the uniformization theorem. Instead, the uniformization theorem
is recovered.) We remark that the Ricci flow on SZ is not only significant for its
own sake, it also sheds lights on neck pinching along the Ricci deformation of
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3-manifolds. From this point of view, an elementary proof of Theorem 1.1 is

particularly desirable.
Let gs2 denote the standard metric on ,S2 of volume 47r and write g = eugS2

for a smooth function u. Then the equation (1) is equivalent to the following

where As2 denotes the standard Laplacian on S2. The average scalar curvature
r can be written as 

-

It remains a constant in time because the volume is preserved along the Ricci
flow. On the other hand, we note that the metric eUgs2 has scalar curvature r
if and only if u satisfies

We have:

THEOREM 1.2. For any smooth initial function uo, the solution u of (2)
exists for all times and converges exponentially as t --+ oo to a solution of (3)
with r = Moreover the following estimate holds

with C depending only on uo.

Indeed, the key to long time existence and convergence is the gradient
estimate (4). The proof of this estimate is along the lines of the argument in
[Y] for the Harnack inequality for solutions of the Yamabe flow. A delicate
difference between the Ricci flow on ,S2 and the Yamabe flow is that the latter
is a (negative) gradient flow whereas the former is not. In [Y], L. Simon’s result
in [S] is applied to derive uniqueness of the asymptotic limit. The gradient flow
property of the Yamabe flow is essential for this application. In the present paper
we obtain uniqueness of the asymptotic limit (indeed exponential convergence)
by a more elementary argument.

2. - Proof of Theorem 1.2

We consider S2 as the standard unit sphere in R3 and let F : ,S2 -~ II~2 be
the stereographic projection, whose inverse is given by
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We introduce the following coordinates around the north pole po = (o, o,1 ):

For a given smooth function f on _S2, we set (F-1 )* ( f gs2 ) = where gR2
denotes the euclidean metric. Then f is given by

A simple computation leads to:

LEMMA 2.1. Define ao = f (po) = (f o G)(0), a - ando f f oG )(0 )a 1 
axi (0)

G) 
Then we ha e th ollowin ex ansions near oo:aij = (0). Then we have the following expansions near oo:

axi axj

Now let uo be a smooth function on ,S2 and u the unique smooth solution
of (2) with initial value uo on a maximal time interval [0, T*). We set f = eu,
define w, 7 in terms of

and set

Note that

and that w satisfies the following flow equation

where r is the average scalar curvature of the metric By Lemma 2.1, the
expansion (6) holds for I( . , t) with ao = = and = We

notice that the expansion is uniform for all t E [0, T], where T is any given
number in [0, T*).
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Our purpose is to estimate Vu. We introduce the center y(t) of w( - , t) as
yet) = (Y1 (t), Y2(t)), where 

, ,

PROPOSITION 2.2. There is a constant C &#x3E; 0 depending only on IIUOIIC4
such that

for all t E [0, T*).

PROOF. Consider a given T E (0, T*). Performing a rotation of coordinates
and the transformation x2 H -x2 if necessary, we may assume y2(T) -

By the expansion (6) and the arguments for Lemma 4.2 in

[Gi-Ni-Nir] we derive that for some Ao &#x3E; 1_ depending only on ||uo||c4 the

following holds: For each A &#x3E; Ao, &#x3E; whenever X2  ~, where
XA = (xl, 2a - x2) for x = (xi, X2). (Thus x~‘ is the reflection of x about the plane
x2 = A.) Consequently

whenever x2  A, A &#x3E; Ao.

By the same argument and the fact that the expansion (6) t) is
uniform for all t E [0, T], there is some Ao such that for each A &#x3E; Ai I

(10) w(x, t) &#x3E; W(X , t) whenever t E [0, T] and X2  A.

We are going to show y2(T)  Ao. For this purpose we consider the function
wÀ(x, t) - w(xÀ, t) on the region x2  A, 0  t  T and define

Note that w~‘ solves (8) and coincides with w along the plane X2 = A. By (10),
I is nonempty. I is also open. Indeed, can never happen for A &#x3E; Ao
because of (9). Hence for a given A E I, the maximum principle implies

and the standard proof of the parabolic version of the Hopf boundary point
lemma implies

along the plane x2 = A.
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Consequently,

and

along the plane x2 = À, where f ~(x, t) - f (x~‘, t) is defined on x2  À. For each
fixed t E [0,T], we shift the origin to to obtain the new expansion for
f ( ~ , t) in the new coordinates

with different coefficients The plane x2 = A becomes the plane x2 = a - y2 (t)
in the new coordinates. Because A E I, we have A - y2(t) &#x3E; 0. Hence we can

argue as in [Gi-Ni-Nir] to show that there is an e(t) &#x3E; 0 with the following
property:

then

Since A &#x3E; maxotT y2 (t) and the expansion (15) is uniform for all t E [0, T],
we can choose e(t) uniformly for all t E [0, T]. Since f ~  7 is equivalent to
w~‘  w, it follows that (A - e, A + e) C I for some c &#x3E; 0. Thus the openness of
I has been shown.

Next we prove that I is closed in (Ao, oo). Let A &#x3E; Ao be in the closure of
I. By continuity, we have w~‘  w and A &#x3E; y2(t). If A = maxotT y2(t),
then A = y2(to) for some to E [0, T]. Now we choose yo(to) as the new origin
and consider the stereographic projection F : }R2. Define z and z’ in the
following way _ _

Then, z, z~‘ are defined on ,S+ x [0, T] ] for a hemisphere S1.. The functions z
and z A satisfy the equation (2). We also know that z~‘  z and z)l coincides
with z along Moreover, Lemma 2.1 and the expansion (15) (for t = to)
imply that

where v denotes the inward unit normal of OS,2. Hence
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By the Hopf boundary point lemma we then deduce that z -= z~. This

implies that w =- w~, which is impossible because of (9). We conclude that
A &#x3E; maxotT y2(t), whence A E I. This shows that I is closed. We infer that
I = (Ao, oo). This proves y2(T)  Ao. Hence ~y(T)~  C. Since T is arbitrary,
the proposition is proven. D

PROOF OF THEOREM 1.2. Proposition 2.2 readily implies  C
for t E [0, T*) and a positive constant C depending only · By a
rotation we can bring any point of S2 to the north pole po, whence the gradient
estimate (4) follows.

Integrating the estimate (4) from a minimal point to a maximal point of u
along a great circle yields the following Harnack inequality for the conformal
factor f = eu :

for a positive constant c. Next we compute the rate of change of volume along
(2), or equivalently (1) with g = eUgs2,

Hence the volume remains a constant. But

Thus the Harnack inequality (16) implies that lul is uniformly bounded. The
linear theory and bootstrapping then yield uniform smooth estimates for u on
S2 x [0, T*). It follows that T* = oo, since otherwise we would be able to extend
u beyond T*. Moreover, u subconverges smoothly as t -~ oo.

To analyze the limits, we multiply the equation

(this is a direct consequence of 1 by then integrate with respect todvS2 . Then we obtain q ( )) Y 
at
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But

where constancy of the volume has been used. We set

Since u is uniformly bounded, there exists a constant Co such that E(u(t)) &#x3E; Co
for all t.

Integrating (17) along with (18) then yields

On the other hand, from [Hl], p. 239, we have the following simple equation
for the scalar curvature R,

where A = Ag. This equation and the estimates for u imply uniform smooth

estimates for 9R which along with (19) then imply that the limit metrics all(9t , g C ) p y
have the same constant scalar curvature r. Consequently, the scalar curvature R
of g converges smoothly to r as t - oo. Since r &#x3E; 0, we deduce that for large
time R is bounded from below by a positive constant.

Our final goal is to prove unique convergence of g. Following [Hl], p.
241, we consider the potential 0 which is defined to be the solution of the

equation

with mean value (in the metric g) zero. Let Mij denote the trace-free part of
the second covariant derivative of 0, i.e.

Then we have the following evolution equation ([Hl], p. 253)
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Since the scalar curvature R is bounded from below by a positive constant for
large time, it follows from the maximum principle that

for some positive constants C and c. The estimates for u imply uniform smooth
estimates for By a simple interpolation we then deduce from (20) that all
the derivatives of Mij converge to zero exponentially as t -; oo.

Next we consider the following modified Ricci flow as in [HI]

with the same initial data euogS2 as before. This equation differs from the
Ricci flow only by transport along a one-parameter family of diffeomorphisms
generated by the gradient vector field of the potential 0. The exponential decay
of Mij and its derivatives implies that the solution g converges exponentially to
a unique limit But g(t) has the same scalar curvature as g(t), consequently

has constant scalar curvature r. It follows that the scalar curvature of g, and
hence g, converges exponentially. By the equation (1), the metric g and hence
the function u converge exponentially. D
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