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The results that have been derived in paper I of this series are generalized to the case 
of multicomponent systems. The argument is made in an almost parallel way with the one 
in I, though the derivation of the integral equation for the pair distribution function is given 
in a more intuitive way than in I. The present theory is also a generalization of Morita's 
theory in which the multi component systems were treated in the hyper-netted chain approximation. 

§ 1. Introduction 

In the previous paper,I) which will be referred to as I, one-component fluid 
systems have been investigated by starting from the customary density expansion 
for the pair distribution function. An exact integral equation has been found 
for the pair distribution function. The integral equation is of different nature 
from those which are usually known in the theory of classical fluids, in the point 
that it involves an infinite series in itself. The Helmholtz free energy also has 
been expressed in a form of expansion which may be expected to converge con
siderably more rapidly than its customary density expansion. In the present paper 
the results that have been obtained in I will be generalized to the case of multi
component systems. 

In the case of multi component systems as well as one-component systems, a 
theory can be constructed by means of the integral equation method which is 
usually based on the Kirkwood superposition approximation.2

),3),4)* However, the 
inconsistencies which are implied in this approximation reveal themselves more 
drastically for the multi component systems than for the one-component systellls. 
In the case of binary mixtures, for example, four integral equations are derived 
to determine three kinds of the pair distribution functions. It is known4

),5) that 
these integral equations are mutually inconsistent and also that further approxi
mation must be introduced to convert them into consistent equations. It may be 
said that such a difficulty is one of the serious defects of the integral equation 
method. 

* In fact it is in the theory of multi component systems that Kirkwood used the superposition 
approximation for the first time.2) 
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318 K. Hiroike 

The partial sum. method for the multi component systems was adopted for the 
first time by Mayer in his theory of ionic solutions.6

) Mayer was able to obtain 
the Debye-Hiickel limiting law by considering the terms corresponding to ring 

diagrams alone. After that, several authors have adopted this method mainly to 
investigate the ionic solutions.4

),7) Recently Morita8
) has proposed the hyper-netted 

chain approximation to deal with the multi component systems in general. Morita's 
theory contains the previous works as its special case. Just as the hyper-netted 
chain approximation for the one-component systems appeared as the zeroth approxi
mation to the theory presented in I, it will be shown that the above Morita's 
theory is contained in the present theory as a special case. In such a sense the 
present theory may be said to be a generalization of Morita's theory. 

The content of the present paper is as follows. In § 2 the definition of the 
functions to be used in the following sections are given. This section corresponds 
to § 2 of I. In § 3 an exact integral equation for the pair distribution function is 
derived by starting from the density expansions of the functions which are defined in 
§ 2. Though this section corresponds to § 3 of I, the derivation of the integral 
equation is given in a more intuitive way than in § 3 of I. In § 4 the expression 
for the Helmholtz free energy is derived and it is shown that the integral equation 
deri ved in § 3 can also be obtained from this expression for the free energy by 
means of a variational principle. The argument in § 4 is made in quite a parallel 
way with the one in § 4 and § 5 of I. In § 5 a summary of the results that are 
obtained in § 3 and § 4 is given and some remarks are also gIven. 

§ 2. Notation and definition 

We consider a o--component fluid in a volume 52 and at temperature T, com

posed of M particles of species 1, M of species 2, ''', and N" of species 0-. The 
interaction potential of our system is assumed to be the sum of pair interaction 

potentials: 

(2·1) 

where N denotes the total number of the particles and vi (i=l, 2, "',N) denotes 
the species of the particle at r i . The quantity bv .v . (rij) is defined in terms of the 

2 J 

pair interaction potential by 

b (r ··) =e-</>'II·'IIJ.(rij)/kT -1 'IIi'll j 1) I. • (2 ·2) 

The number density of species v is denoted by Pv (= N v/52) . 
The pair distribution function, ga/3 (r12), of two particles of species a and p 

is given by the equation9
) 

() [ 
¢a/3(r12) + ()J ga/3 r12 =exp kT W a/3 r12 , (2·3) 
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A New Approach to the Theory of Classical Fluids. II 319 

where 

(2·4) 

In the first line of (2·4) the volume element of mv particles of species v is denoted 
by d{mv} (v=1,2, .. ·,0-). In the second line Mayer's notation for the multi com
ponent systems is adopted. While no explanation is given here on this notation, 
one will understand it if one compares the second line of (2·4) with the first 
line. As in I, the meaning of l'(W) will be explained by means of the graphical 
representation of the product /lb v .v . (rij) in the following. 

~ J 

Particles 1 and 2 are represented by a white circle respectively. The set of 
m particles, over which the integration is to be performed, is represented by 
the set of numbered points (or numbered black circles). A factor bv.V.(rij) is 

1. J 

represented by a line (b-bond) which is drawn between two points i and j. 

Then a product flbviv/rij) is represented by a bond diagram. Two particles i 
m+2::?:;>j::?:1 . 

and j are said to be directly connected if hViV/rij) appears in the product. An 
s-point is defined in the same way as in 1. It is a point through which all pos
sible paths going from particle 1 to particle 2 must pass. In other words, it is 
a point by which the bond diagram can be separated into two independent parts 
containing particles 1 and 2 respectively. 

We shall introduce the following four kinds of restrictions which are to be 
imposed on the summation of diagrams: 

( I) Each particle of the set m is independently connected to 
particles 1 and 2. 

( II ) The particles of the set m are connected among them
selves independently of particles 1 and 2. 

(III) Particles 1 and 2 are not directly connected. 
(IV) The diagram has no s-point. 

(2·5) 

Then J;(W) in (2·4) denotes the summation over all diagrams being possible under 
restrictions (I), (II) and (III) (see Fig. 1 in I) .9) 

Following the lines of I, we define the functions XafJ (r12), ZafJ (r12) and VafJ (r12) 
as follows. * 

* The function Zs, afJ (r12), corresponding to Zs (r12 ) in I, may be defined in a similar way, 
though we shall have no need to use it in the following deduction. 
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320 K. Hiroike 

where 1.'(X) denotes the summation over all diagrams being possible under restric·· 
tions (I), (II), (III) and (IV). 

(2· 7) 

where 1.'(Z) denotes the summation over all diagrams being possible under restric
tions (I) and (IV). 

"Oa(3 (r12) = ~ ::'!.f d {m} nfj~:>~r/));i);j (r';j) , (2 ·8) 

where l'(V) denotes the summation over all diagrams being possible under restric

tion (I) alone. 
Some diagrams appearing in 1.' (X) and 1.'(Z) are shown for a one-component 

system in Figs. 2 and 4 of I. 
. The functions defined above are not independent of each other. The next 

section will be devoted to the study of the relations among them. 

In concluding the present section, we introduce the Fourier transforms of 
'Wa(3(r) , X a(3(r) , Za(3(r) and v a(3(r) which will be denoted as W a(3(k), X a(3(k), 

Za(3 (k) and Va(3 (k), respectively. For example, we have the relations 

and 
Za(3(r) = j,f ~ Za(3(k)e

ik9
'} 

Za(3(k) = J drza(3(r)e-u .. ,j'. 

(2·9) 

§ 3. Integral equation for the pair distribution function 

We shall derive several relations among the functions which have been defined 
in the preceding section. Though the derivations may be made in quite a similar 
way as in the case of one-component systems of I, we shall here give more intui
tive derivations. The relations will be seen to give an integral equation for the 
pair distribution function, 

The diagrams appearing in J.,'(V) can be divided into two groups. One group 
consists of the diagrmlls having no s-point, which are just those appearing in 1.'(Z) 

(see below (2·7». The other group consists of the diagrams which have at least 
one s-point. Let us consider a diagram belonging to the latter group. Let particle 
3 of species ).I be at the s-point nearest to particle 1. Then the diagrams which 
are to appear between particles 1 and 3 are restricted by restrictions (I) and 
(IV) of (2·5) where particles 1 and 2 must be replaced by particles 1 and 3. 
The diagrams which are to appear between particles 3 and 2 are restricted by 
restriction (I) where particles 1 and 2 must be replaced by particles 3 and 2. 
Therefore the total of the diagrams appeanng in V a (3 (r12) can be written in a 
symbolical way as 
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A New Approach to the Theory of Classical Fluids. II 321 

o Vall 0 = Zall + ± 0 Za. • ·V.P 0 
1 2 ~ u=1 1 3 2 

This symbolical expression means (see below (3,4£) in I) 

V a,8 (rI2) =Za,8 (rI2) + ~ Pu i drszaJrl3) 'VvfJ (rS2) , 

which is rewritten, with the aid of Fourier transforms, as 
er 

Va,8 (k) =Za,8 (k) + ~ Pv Zav (k) Vv,8 (k). 
u=1 

(3 . If) 

(3 ·1) 

(3 ·1') 

If, in (3 ·1'), ij is fixed and a is varied from 1 to <J', one obtains a set of 
linear equations which determines V 1,8, V 2fJ )···, and V er ,8 in terms of Zav's 
(a,lJ=I,2· .. ,<J'). This set of linear equations can be solved in an elementary 
way by the use of a determinant. The result is as follows. 

where 

I-p1Z11 (k) -PIZI2(k) ........... . -PI Z1o-(k) 

which may be rewritten in a symmetrical form 

I-PIZ11 (k) 

D(k) = -v P2P~Z21(k) 
- V P~--;)~ Z12 (k) 

I-P2 Z22(k) 

-p2 Z2(J"(k) 

- VjO~P~ Zlo- (k) 

-VP2P~Z2o-(k) 

I -VPo-f;~Zo-l(k) -VP-:P2 Zo-2(k) ............ I-Po-Zerer(k) 

(3 ·2) 

(3 ·3) 

(3·3') 

In the right-hand side of (3·2), aa,8=1 for a=J-9 and aa,8=O for a~l The 
differentiation with respect to Za,8 (k) is to be made by taking account of the fact 
that Za,8 (k) =Z,8a (k). 

If, in (3 ·1'), a is fixed and {9 is varied from 1 to <J', one obtains a set of linear 
equations which determines Zab Za2, ... , and Zaer in terms of Vv,e's (lJ, t9= 1, 2, "', <J'). 
This set of equations can also be solved to give the following result. 

where 

D(k) = 

Per VerI (k) 

1'1 Vler(k) 

1'2 V 2".(k) 

(3·4) 

(3·5) 
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322 K. Fliroike 

The argument leading to (3 ·1) or (3 ·1') IS valid also in the case of the 
diagrams appeanng in w a(3 (1'12)' We get, corresponding to (3 ·1'), 

(J" 

Wa(3(k) =Xa(3(k) + ~PvZav(k) VV(3(k). (3·6) 
v=l 

Next we shall consider the diagrams appearing in za(3 (1'12) (see (2·7)). 
These diagrams can be grouped together by the number of parts into which the 
diagrams are divided when particles 1 and 2 are removed. It will be supposed 
first that particles 1 and 2 are not directly connected. Then the diagrams which 
are to appear in each part are restricted by restrictions (I), (II) and (III) of 
(2·5) ; hence the diagrams belong to Wa(3 (r12) . Therefore the contribution, to 

Za(3 (1'12), of diagrams not containing ba(3 (1'12) is expressed symbolically as 

W Wall 

Xall A ~ 
~ + i'W:;2 +1Y,2 + ......... . (3·7f) 

The reason why the first term is not Wa(3 but X a(3 is that the diagrams in Za(3 (r12) 
must not have s-points. In a similar way the contribution, to Za(3 (1"12), of diagrams 
containing ba(3 (1'12) turns out to be expressed symbolically as 

bafl ban 
ball ~ ~ 

0--0 + ~ +~+'''''''''' 
1 . 2 1 Wall 2 1 Wall 2 

(3·7'f) 

The function Za(3 (r12) is the sum of contributions (3· 7f) and (3· 7'f) so that 
Za(3 (r12) is written in the form (see below (3· 4f) in I) : 

Za(3(r12) =xa(3(r12) +~w!(3(r12) +-~w!(3(r12) + ...... 
2! 3! 

+ ha(3 (r12) +-!, ha(3 (r12) Wa(3 (r12) +-!, ba(3 (r12) w!(3 (r12) + ...... 
1. 2. 

(3·7) 

As in I, it will be shown that the sum l'(X) appearing in (2·6) can be re

duced to a more restricted sum 2'(X
1

) if one uses v-bonds in place of b-bonds. 
Let a diagram in 2'(X) have a pair of points (Let the particles on the points be 
particles 3 and 4.) by which the diagram is divided into two parts in the fol

lowing way. The one is the part that includes particles 1 and 2 and cannot be 
. divided any more by that pair of points. The other part consists of the rest. 
Diagrams to be included in the latter part are restricted only by restriction (I) 
of (2·5) where particles 1 and 2 must be replaced by particles 3 and 4. There
fore the latter part can be represented by v,"v (rS4) where p and II are the species 
of particles 3 and 4, respectively. By replacing the latter part by the v,"v (rS4)-
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A New Approach to the Theory of Classical Fluids. II 323 

bond, the original diagram is reduced to a simpler form. 
- be continued until such a pair of points appears no more. 

reduced to 

Such a reduction can 
After all, (2·6) is 

x al1 (r12) = ~- ~m! -1 d {m} Jj~~j!r V~i~j(rij), (3·8) 

where J;(Xf) denotes the summation over all diagrams, composed of v-bonds, which 
are possible under the following restriction as well as (I) ~ (II), (III) and (IV) 
of (2·5) . The additional restriction is that there exists no part which is con
nected to the rest of the diagrams only by means of two points. As will be seen 
in the next section, it may be said that the diagrams appearing in (3·8) are those 
which are constructed by removing one v-bond from the diagrams appearing in 
the expression for the Helmholtz free energy (see below (4·9». Some diagrams 
in J;(Xf) are shown for a one-component system in Fig. 7 of I. 

The set of Eqs. (3· 1'), (3 -2), (3·6) and (3·7) can be arranged as follows: 

v al1 (r) =[bal1 (r) +1]eW
Il:

I1Cr )-1 (3·9) 

_ 1 +Oal1 a 10gD(k) ~ 
PaPfJ V al1 (k) - -~-2 ~- ~az ~---paual1 

al1 
(3 ·10) 

(3 -II) 

It is to be remembered that Zal1 (k) and V al1 (k) are the Fourier transforms of 
Zal1 (r) and V al1 (r) respectively and that D(k) is the determinant which has been 
defined by (3·3) or (3·3'). The function v al1 (r) is related to the pair distri
bution function gal1(r) by 

(3 ·12) 

which is readily confirmed with the aid of (2·2), (2·3) and (3·9). The set of 
Eqs. (3·8)-(3·11) determines in principle the functions v al1 (r) , w al1 (r) , Zal1(r) 
and Xal1 (r), and so the pair distribution function gal1 (r). Therefore we may say 
that this set of equations is an integral equation for the pair distribution function. 
It is to be noted that this integral equation is an exact one as far as the original 
density expansions (2·4), (2·6), (2·7) and (2·8) or their analytical continua
tions, if exist, are valid. 

The above set of equations is reduced to the one which has been derived in 
I, if the system under consideration is a one-component system. As a matter of 
fact, the determinant D(k) is reduced, In such a case, to 1-pZ (k) so that 
Eq. (3 ·10) is reduced to 

1 
pV(k) = 1, 

1-pZ(k) 

which is equivalent to (3·7) in I. 
As in I, the zeroth approximation to solve the above integral equation will 
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324 K. Hiroike 

be gIven by putting X a (3 (r) to be zero. Then the set of equations is reduced to 

Za(3 (r) = f_ba/:l (r) + 11 e1{Ja(3(1") -1-wa(3 (r) I 
W ) - 1 +rJa (3 d 10gD(k) ~ 

Pap(3 a(3(k - -Pap(3Za(3(k) - ---2-- --az--:~-----Pa(Ja(3, 

and (3 ·13) 

which are to be called the equations in the hyper-netted chain approximation,8) 

though they have not been written in an explicit form in reference 8). The next 
approximation will be to approximate X a (3 (r) by the contributions arising from 

the diagrams :~~ (p, J.i = 1, 2, "', 0-) where the bold lines represent the v

bonds (see Fig. 7 in I). 

§ 4. Expression for the Helnlholtz free energy 

It is known10
) that the interaction part of the Helmholtz free energy IS In 

general expressed as 

1 

Al = ~ .\ d~ I dr jj ~IPa,o(3¢a(3(r)Ya(3(r; ~), (4 ·1) 
o 

where ga(3(r;~) is the pair distribution function for the case that all the pair 

interaction potentials are ~¢}tv(r) (p, J.i=I, 2, "',0-). In such a case the functions 
ba(3(r), w a(3(r), and so on, are also dependent on~. In particular, ba(3(r) is of 
the form 

(4·2) 

By taking notice of (2·3) and (4·2), expression (4 ·1) can be rewritten as 

(4 ·1') 

In the following, the ~-dependence of ba(3 (r), W a(3 (r), and so on, will not be ex
plicitly written, for no confusion will arise. 

Differentiating (3·9) with respect to ~, we get 

--~~1/ ~t e'Wa(3(1') = -?'!l_W-/T) ---?'~af (r) -~ V a (3 (r) -~~*~!) 

which IS transformed, by the use of (3 ·11), into 

dba(3(r) ''''af.>(r)_d[ () () (.). ()+1 2() -----a~--e tJ --ar Va/:l r -Wa(3 r -Wa(3 r Va/:l r TVa/:l r 

(4·3) 
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A New Approach to the Theory of Classical Fluids. II 325 

When this expression is introduced into (4 ·1') and use is made of the property 
of Fourier transforms, the interaction part of the free energy is written in the 
form 

1 

!~~= --1-1 dr ~ t,PaPfI.\ d~ :r[Vafl(r) -Wafl(r) -Wa/3(r)Vafl(r) 
o 

1 

+--~--v!fI(r) -"Va/3(r) Za/3(r) J---~--~- ~ .\ d~ ~ 1J1PaP/3 Va/3(k) 
o 

aZa/3(k) A/ X---------- + ---------
a~ !2kT ' 

(4·4) 

where 

(4·5) 

The integration with respect to ~ is readily performed in the first term on 
the right-hand side of (4·4). By the use of the fact that Va/3, Wa/3 and Za/3 vanish 
at ~ = 0, it turns out that the first term is written as 

-J:-__ r dr ~ iJ PaP/3[Va/3 (r) -Wa/3 (r) - 'l.Va/3 (r) Va/3 (r) 
2 J <%=1 /3=1 _ 

where the values of Va/3, Wa/3 and Za/3 are those at ~ = 1. The integration over ~ 
IS carried out also in the second term as follows: 

(4·7) 

In the last expression of (4·7), the values of D(k) and Zaa(k) are those at ~=1. 
In transforming the first expression of (4·7) into the second one, use has been 
made of (3 ·10). In transforming the second expression into the third one, the 
following relation has been used: 
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326 K. Hiroike 

YJ?&"P(&= '£ 2; l+aa~ 0 logD(k) oZa~(k) (4.8) 
o~ ~=i ~~i 2 oZa~ 0; 

which can be readily proved with the aid of the fact that the determinant D(k) 
is dependent on ~ through Za~(k)'s alone (see (3·3». We can prove that the 
last term of (4·4), which is defined by (4·5), is expressed in a form 

___ AL_= _ ",>,e: -.l __ 1 d {m} 2' .(Af) II v1I.1I.(r . .) 
!2kT ~ m! !2 J ~?>.i>j?l" J 'J' 

(4 ·9) 

where l'(AI) denotes the summation over the diagrams which are obtained by in
troducing the Va~ (r12) -bond into the diagrams appearing in l'(X

f
). If one takes 

notice of the restrictions which are imposed on the diagrams in l'(Xf) (see below 
(3·8», it can be verified that l'(Af) may be said to be the summation over all 

diagrams which are more than doubly connected, though the proof will be omit
ted here. 

The proof of (4·9) is as follows. Let us consider the integral 

i d {m+2} ~Va~~C~2)_ ~~:~j~{v1li1lj(rij)' 

This integral can be transformed, with the aid of the definition of l'(Af), into the 

form 

_____1.=1- a ~~__ ___ ;--_ ._~~_ r d {m. + 2} ~(Af) II'v1Ii 11 j (rij) . 
(ma + 1) (m~ + 1 + Ua~) ut; J Ill+2;;:::,i>j?~1 

The factor (1+aa~)/(ma+1) (m~+l+aa~) enters because the total of diagrams 
appearing in J;(XI) is symmetrical in m particles while the total of diagrams ap
pearing in l'(AI) is symmetrical in (m.+2) particles which are m particles plus 
particles 1 (a-species) and 2 (t9-species). By the use of the above transformation, 
(4·5) is transformed in the following way (see (3·8». 

1 

= -~ r d~ ± ± PaP~-~--- ~p-:- r d {m+2} _aVa~~r12) ~(.XI) 1.1 V1Ii1lj(riJ) 
2 J ~=1 ~=1 !2 III m! J o~ 1ll+2;:;;i>j~1 

o 
1 

1 _ r d~";;1 ~, P () _1_ "'>' ~ _________ l_+aa~ __ .. __ 
2 J ".:-=i ~1 aj ~ !2 ~ m! (ma+1) (m~+l+aa~) 

o 

x :~ I d{m+2} Jj~:~~V1Ii1lj(rij) 

~ ~ ~lPa P~ ~2 ~~ _;:1ll! --(;;:+i)~(::~~i-+Ja~)-
X r d{m+2} 2~.(Af) II V1Ii1Ij(rij) J J:ll+2;;;;i>j~1 
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The last expression is the one to be proved, and, consequently, the proof of (4·9) 
has been completed. 

As a result of (4·6) and (4·7), the interaction part of the free energy is written 
in the form 

+--}V!,s (r) -Va,s (r) Za,s (r) J 
+~-~- - ">: 10gD(k) + ">: f) Z (k) +-~~!-1 1 [ rr -1 A' 

2 !2 T _ ~If-a aa _ !2kT ' 
(4 ·10) 

where A//!2kT is given by (4·9). Expression (4·10) is rewritten, by the use 

of (3·9), as follows: 

AI_~= ___ l ___ r dr ± ±Paf',sr {ba,s(r) +l}e?V~,s(r)-l-wa,s(r) 
!2kT 2 J ~=I ,s=1 L 

-Wa,s (r)va,s (r) + ~v!,s(r) -va,s(r)Za,s(r) J 
1 1 [ rr -J A' +~2- Q i~ 10gD(k) + ;I1f'a Zaa(k) +J2k~-' (4·11) 

which will be more conveniently used than (4 ·10) in the following. 
It can be easily seen that the above expression (4 ·11) is reduced to (4 ·11) 

in I if one considers a one-component system. It can also be seen that (4 ·10) is 
reduced to the expression in the hyper-netted chain approximation if one omits 
A//!2kT from (4·10), though in reference 8) D(k) (which is identical to L in 
reference 8» is not expressed explicitly in the form of determinant. 

The expression for the free energy in a one-component system has been shown 
to have a stationary character. I

) It will be shown here that expression (4 ·11) 
also has the same character. The following relation is necessary to show it: 

-aVa:(rY-- (-Q~~-) = ---i';~~-Xa,s(r), (4 ·12) 

where the left-hand side denotes the func!ional derivative of A/ / !2kT with respect 
to Va,s (r) . * The proof of (4· 12) can be done by reversing the reasoning which 

* The functional derivative is in general defined as follows. Let P be a functional of aCr). 
When aCr) is varied by oaCr), the corresponding first order variation of P is denoted by oP. Then 
the functional derivative oP/oaCr) is defined byl),lll 

(JP= ~ dr-a!~r)oacr). 
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328 K. l-Ii roike 

was used in the derivation of (4·9) from (4·5), though the proof is omitted 
here. The first order variation of the free energy when in (4· 11) the functions 

Wa(3, Va(3 and Za(3 are varied independently of each other, is shown to be, with 
the aid of (4·12) and (3·3), 

(~ (3~) = ----! Cdr :8 i~ pap(3 r. {ba(3 (r) + I} e'/vlX(3(r) -1- Va/3 (r) -]OWa(3 (r) 
£2kT 2 J IX=! ,8=1 ,. 

---~-- i dr ~1 ~/) a P (3 [ Va/3 (r) - Wa(3 (r) - Za(3 (r) + X a(3 (r) ] OVa(3 (r) 

+._~._J:_ ~ ~ fl.1 [_~±~<X~~ _11 10gD(k] +PaP(3 Va(3(k) +PaOa(3J(~Za/3(k). 
2 £2 Ii' ;-';1 ,8=1 __ 2 11 Za (3 

(4 ·13) 

The coefficients of (~Wa(3(r), oVa(3(r) and (~Za(3(k) in the above expression are seen 

to vanish if there exist relations (3·9), (3 ·11) and (3 ·10) among Wa(3, Va(3 and 

Za(3. In other words, it has been proved that the free energy (4 ·11) is stationary 

with respect to the functions satisfying (3·9), (3 ·10) and (3·11). Conversely, it 

may be said that the set of Eqs. (3·9), (3 ·10) and (3 ·11) can be derived by 
means of such a variational principle that the free energy (4 ·11) is to be stationary 

with respect to the variations of Wa(3, Va(3 and Za(3. 
The stationary character of (4· 11) is useful in deriving the expressions for 

the pressure and the internal energy by means of thermodynamical relations, be:: 

cause in such cases the dependence of W a(3, Va(3 and Za(3 on density and temperature 

can be neglected. It may be useful also in determining the approximate forms of 
Wa(3, Va(3 and Za(3, hence of the pair distribution function. 

It is known that the pair distribution function is related to the free energy 
byll),8) 

PaP(3ga(3(r) - 1~20a(3 -a¢~:(~)' (4·14) 

I t can be readily verified, by the use of (4· 11), that this relation IS valid in our' 

case as it should be. 

§ 5. Summary and concluding remarks 

The results which have been obtained can be summarized as follows. The 
interaction part of the Helmholtz free energy in a G-component fluid system (the 

volume £2, the temperature T and the number densities PI, /12, "', Pry) is written 

in the form 

Al - _ 1 i d ..;.., ~ r {b () + I} 1VtX(3(r) -1- () .... ----------- -~ r L..i ..LJ Pap(3 a(3 r e W a(3 r 
£2kT 2 IX=I,8=! L 

- W a(3 (r) v a(3 (r) +-~ v!(3 (r) - 'V a(3 (r) Za(3 (r) J 
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+} --~-- ~ [log D(k) + -5~ () Z (k)-I 
2 i2 "".,.::_ ~i I a aa J 

- 2Jlt:~_~_- \ d {m} ~1 II vlI.lI.(r··) 
III m! 12 J mS>j~I' J 1.), 

(5 ·1) 

All pro'lllcls which fir" 
lllore than doubly c()I,lIeet.ed. 

where ba(J (1') IS defined In terms of the pair interaction potential ¢a(J (r) by 

ba(J(r) =e-<f:>a(J(l')/!c'l'_l (5·2) 

and D(k) IS a determinant 

1 - PI Z11 (k) - (II Z12 (k) 

(5·3) 

...... ...... 1-- 0 Z (k) 
J (J' (Fa-

Mayer's notation is adopted in the last term on the right-hand side of (5 ·1). 
The functions wa(J(r) , va(J(r) and za(J(r) which are symmetric in a and (3 
(Va(J(k) and Za(J(k) denote the Fourier transforms of va(J(r) and Za(3(r) , respect
ively.) are to be determined in such a way that (5 ·1) is stationary with respect 
to the variations of these functions. Namely they must satisfy the set of equa

tions: 

Va(J (I') = [ba(3 (r) + 1:1 e',oa(J(r) -1, 

() 0", V ",(k) =- l+o~L ._~ogD(kL_o 0 '" 
I a I '" a", 2 a Z a(J I a a"" 

and 

w a(3 (r) =Xa(3 (1') +Va(J (1') -Za(3 (1'). 

The function Xa(J (1') is defined by 

III I' 

Xa(3(rI2) = ~-~-T J d {m} ~~~jL{ vlIillj(rij) , 

(5·4) 

(5·5) 

(5·6) 

(5·7) 

where J.,'(XI) denotes the summation over all the different diagrams which are to 

be constructed if one removes one bond va(3 (1'12) from the diagrams appearing in 
the last term on the right-hand side of (5·1). The pair distribution function 
ga(J (1') is related to Va(J (1') by 

(5·8) 

In some cases the above results may be exact ones as far as the expressions 
themselves are well determined, irrespective as to whether the original density 
expansions (2·4), (2·6), (2·7) and (2·8) from which the above results have 
been obtained are valid or not. For instance, in an ionic solution or a classical 

plasma, the interaction potentials are of long-range character so that the original 
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density expansions diverge term by term. There IS good reason to expect that 
the above expressions have definite meanings even in such a case (see references 
6) , 7) ,8) and 12». An application of the present theory to such a system will 
be undertaken in a forthcoming paper. 

If we restrict ourselves to a system without long-range interactions, the origi
nal density expansions converge at low enough densities so that the series ap
pearing in the above expressions converge, perhaps more rapidly than the original 
expansions, * at such densities. The present author hopes that the series appearing 
in the above expressions may converge even at the densities which are larger 
than the maximum density for which the original expansions converge. It is also 
hoped that the maximum density for which the determinant D(k) does not vanish 
for any k may be larger than the maximum density for which the original ex
pansions converge. 

At the present stage a physical meaning is not clear of the case where D(k) 

vanishes for some k or where the series appearing in the above expressions diverge. 

The situation is the same as in 1. Such a problem will be investigated in the 
near future. 

The author is much indebted to Dr. T. Morita for his helpful discussions. 
A part of the present work was supported by the Scientific Expenditure of the 
Ministry of Education. 
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