
A New Approach to the Use of Edge Extremities
for Model-based Object Tracking∗

Youngrock Yoon, Akio Kosaka, Jae Byung Park and Avinash C. Kak
Robot Vision Lab
Purdue University

West Lafayette, IN 47907 U.S.A.
{yoony,kosaka,jbpark,kak}@ecn.purdue.edu

Abstract— This paper presents a robust model-based visual
tracking algorithm that can give accurate 3D pose of a
rigid object. Our tracking algorithm uses an incremental
pose update scheme in a prediction-verification framework.
Extended Kalman filter is used to update the pose of a target
incrementally to minimize the error between the expected
map of the target model and the corresponding gradient
edge in the image space. The main contributions of this
paper include: 1) A novel approach to how we use the
two extremities of straight-lines as features. By taking into
account the measurement uncertainties associated with the
locations of the extracted extremities of the straight-line,
our approach can compare correctly two straight-lines of
different lengths. 2) Our use of a test of mean criterion for
initiating backtracking and our use of a variable threshold
on the output of this criterion that makes nil-matching
more effective. We have tested our tracking algorithm with
image sequences containing highly cluttered backgrounds.
The system successfully tracks objects even when they are
highly occluded.

Index Terms— object tracking, 3D pose estimation, feature
representation, extended Kalman filter.

I. INTRODUCTION

Recently, robotic control has advanced to the extent of
enabling vision-guided robotic assembly on a moving line
[1]. For this task, a vision system must provide accurate
6-DOF pose – both position and orientation – of an object
in 3D Cartesian space. Furthermore, for a system to work
in a real environment, it has to be able to handle robustly
the various conditions in the working environment such as
occlusions, complicated background, inconsistent lighting
conditions, etc.

In this paper, we present a model-based object tracking
algorithm that provides accurate 3-D pose of a target
object. Of course, ours is not the first model-based object
tracking algorithm. A commonly used approach [2] [3] uses
numerous points on the wire-frame model of the target
as model features. Algorithms in this approach minimize
the squared sum of distances from the projection of these
points to the matching scene features. For each model
feature, a candidate scene feature is located by searching
in a direction that is perpendicular to the projection of
the model feature. For each model feature, the first edge
point on this direction is chosen as the matching scene
feature. For that reason, these algorithms work only when
the model features are close to the true matching scene

∗This work is supported by the Ford Motor Company

features, which is the case when the initial pose is fairly
close to the true pose and the motion of the target is very
smooth. To resolve this problem, voting-based schemes for
estimating the pose parameters have been proposed [4] [5]
[6]. The voting based algorithms are more robust than the
previous algorithms, but they are time-consuming and not
suitable for real-time applications.

Two other approaches we would like to mention use
appearance image databases of a target for tracking [7]
[8]. In these approaches, the appearance images of the
target from a number of viewing aspects are acquired in the
learning phase. During testing, for a given scene the target
pose is first roughly estimated by registering the input scene
to the closest image in the appearance image database.
Then, the target pose is refined further by projecting the
model features into the image plane using the rough pose
and matching the projected model features with the features
extracted from the scene.

An alternative approach is to search and select the
matching scene feature for each model feature individually
with a model that consists of small number of features [9]
[10] [11]. By reducing the number of feature matchings,
it becomes feasible to assess the validity of an individual
match and use backtracking if the current matching leads
to a large error. Straight edges are most widely used as
features in model-based pose estimation systems because
they are invariant to perspective projection. Since straight
line features frequently show up fragmented in a scene
image, such features are often represented in the Hough
space for the purpose of matching. In the Hough space,
each straight line feature is represented by its orientation
(θ) and its perpendicular distance from the origin (ρ).

While such a comparison between a model edge and a
scene edge can provide us with a great deal of robustness
with regard to line breakage, it can suffer from a serious
flaw, as we recently discovered in our work on model-
based object tracking. The flaw has to do with the fact
that a (ρ, θ) based comparison is highly dependent on the
actual locations of the two edges that are being compared.
For example as depicted in Fig. 1, in our own perception,
the degree to which the line segment p1 is matchable with
the line segment p2 is the same as the degree to which q1

is matchable with q2. However, if we use the Euclidean
distance in the Hough space to assess, on one hand, the
matchability of p1 with p2, and then, on the other, the

Proceedings of the 2005 IEEE
International Conference on Robotics and Automation
Barcelona, Spain, April 2005

0-7803-8914-X/05/$20.00 ©2005 IEEE. 1883

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

θ = θ θ = θ

p
1

q
1

p
2

q
2

q
2q

1 2
pp

1

ρq
2

p
2

q
1

ρ

ρ = ρp
1

Fig. 1. Example picture that shows the drawback of comparing two
straight line features with the Hough parameters. The (ρ, θ) space distance
between p1 and p2 is different from that between q1 and q2

matchability of q1 with q2, we get entirely different results.
There has been work done previously (see, for example,

[9]) in which the straight line edge features were repre-
sented by their extremities. But these previous contributions
do not provide clean solutions to the problem of edge
breakage and truncation caused by noise and occlusion. In
our system, feature measurement uncertainties are assigned
to the locations of the two extremities of a straight line
edge. These uncertainties are a function of the difference
between the lengths of the model edge and the corre-
sponding scene edge. The uncertainties get plugged into an
extended Kalman filter that is used for updating the pose
parameters associated with the scene object. How exactly
this is done is explained in Section II-C.

Our tracking system works by applying the model-based
pose estimation algorithm to each consecutive frame in
the input image sequence. We present the pose estimation
algorithm in the next section. The algorithm that is used
to search for a candidate scene edge for a given model
edge is presented in Section III. Section V presents exper-
imental results that show the accuracy and robustness of
our tracking system with regard to complex background,
occlusions and non-smooth motion with large change of
viewing aspect. We will summarize this paper and address
things yet to be done in Section VI.

II. POSE ESTIMATION ALGORITHM

As is typical in model-based vision systems, our pose
estimation system first projects the model edges of a target
object into the scene image and finds the best matching
scene edge for a given model edge. Then, it updates
the pose to minimize the error between the matching
edges. This process continues until all the model edges are
matched. Fig. 2 depicts an overview of the pose estimation
algorithm.

While the flow of execution depicted in Fig. 2 is generic
and common to many model based vision systems (see,
for example, [9]–[11]), what is novel about the approach
presented here is the manner in which we associate un-
certainties between a specific model-to-scene match. The
exact manner of how these uncertainties are ascertained

Yes

No

p

z

pi

i

pN

Update Pose Parameter

z

m pi−1

m p

Set of

Final Pose

p

j

Project the next

Model Feature

Scene Features

Initial Pose

Scene Feature
Find Matching

More Model

Feature left?

p
0

i−1

i

ji i

: vector of the pose parameters

: model feature

: scene feature

p

m

z

i−1

Fig. 2. Overview of our pose estimation algorithm

is presented in Section II-C. For now, we first want to
delineate the overall estimation-theoretic framework in
which these uncertainties are used.

Our pose estimation algorithm uses a maximum likeli-
hood framework – that means it estimates the pose of the
target by maximizing the probability of matching model
edges to scene edges, the probabilities being conditioned
on the pose parameters. Let mi be a model edge and zji

be
a scene edge that is matched with mi and p be a random
vector that represents the current pose of the target. We
denote the conditional probability that mi is matched with
the zji

given p as follows:

prob[mi → zji
|p] (1)

where the symbol mi → zji
denotes the event of mi

being matched with zji
. Our objective is to find the list of

model and scene edge pairs that maximizes the following
probability:

Pmatch = prob[m1 → zj1 , · · · ,mN → zjN
|p] (2)

where N is the total number of model edges. This joint
probability can be decomposed in the following manner:

Pmatch = prob[m1 → zj1 , · · · ,mN → zjN
|p] =

prob[m1 → zj1 |p] × prob[m2 → zj2 |m1 → zj1 ,p] × · · ·
× prob[mN → zjN

|m1 → zj1 , · · · ,mN−1 → zjN−1 ,p]
(3)

Let us focus on the second term in the product shown
on the right:

prob[m2 → zj2 |m1 → zj1 ,p] (4)

To write such individual terms more compactly, we will use
the notion that the conditioning event m1 → zj1 will cause
the pose vector p to get updated to presumably a more
accurate pose vector that we denote p1 whose statistics

1884

are denoted (p̄1,Σp1). The subscript in p1 signifies the
revised statistics of p. Therefore, the conditioning event
m1 → zj1 ,p in Eq. (4) can be replaced by the updated
vector p1 which is given by the previous feature matching
event m1 → zj1 .

Applying the same argument to all terms in Eq. (3), it
can be rewritten as follows:

Pmatch = prob[m1 → zj1 , · · · ,mN → zjN
|p] =

prob[m1 → zj1 |p0] × prob[m2 → zj1 |p1]×
· · · × prob[mN → zjN

|pN−1]
(5)

where p0 = p is the initial pose given at the beginning of
the pose estimation procedure. The maximization of this
probability is now interpreted as a sequential search of
zji

for all mi that maximizes the probability. The detailed
presentation of this search process will be given in Section
III. In the following subsections, we will focus on an
extended Kalman filter based algorithm that updates pi

when mi is matched with zji
.

A. Incremental Pose Update Equations

In this section, we present equations that transform the
pose vector pi−1 into pi with new statistics when a scene
edge zji

is matched with a model edge mi. This update
amounts to estimating pi given the matching event mi →
zji

with pi−1 as its initial state. Assuming that pi has
Gaussian distribution, the best estimate of the vector pi is
given by its conditional mean p̄i = E[pi|mi → zji

,pi]
along with its covariance Σpi

= Cov[pi|mi → zji
,pi].

The Kalman filter is known to be the optimal tool that
estimates a Gaussian state variable that is conditioned by
an observable measurement which, in this case, is the
matching event mi → zji

.
Let us now consider what the matching event mi → zji

practically means. Recall that our goal is to estimate p̄i that
minimizes the error between zji

and mi when the target is
at the pose pi. Ideally, this means that zji

is equal to the
projection of mi with the target at the pose pi, which we
will denote by the following equation for a moment:

f(pi,mi, zji
) = 0 (6)

The detailed derivation of this equation is presented in
Section II-B. In reality, however, this equation does not
hold because of various feature measurement errors.1 Let
the vector ẑji

represent the measured parameter of zji
. We

assume that the feature measurement error is additive white
Gaussian, as incorporated in the following equation:

ẑji
= zji

+ ξji
(7)

where ξji
is the feature measurement error with the fol-

lowing error statistics:

E[ξji
] = 0 (8)

1There are mainly three sources of measurement error. The first is the
error induced by image quantization and camera distortion. The second is
the fragmentation of straight edges that is caused by partial occlusion or
poor edge detection. We will present details of these measurement errors
and the way to handle these errors in Section II-C. The third is the error
from feature mismatch. We will describe how we handle this error in
Section III.

E[ξji
ξT
ji

] = Vji
(9)

E[ξji
ξT
jk

] = 0 for ji �= jk (10)

By linearizing Eq. (6) in the vicinity of p̄i−1 and ẑji

using Taylor’s series expansion, we can get the following
equation:

f(p̄i−1,mi, ẑji
) +

∂f

∂z
(zji

− ẑji
) +

∂f

∂p
(pi − p̄i−1) = 0

(11)
This equation may now be rewritten in the following fash-
ion that is standard to extended Kalman filter development:

yi = Mipi + uji
(12)

where
yi = −f(p̄i−1,mi, ẑji

) +
∂f

∂p
p̄i−1 (13)

Mi =
∂f

∂p
(14)

uji
=

∂f

∂z
(zji

− ẑji
) (15)

The statistics of the vector ui are easily obtained from Eq.
(8) through Eq. (10) and are given by:

E[uji
] = 0 (16)

Uji
= E[uji

, uT
ji

] =
∂f

∂z
Vji

∂f

∂z

T

(17)

In all the above equations, the partial derivatives ∂f
∂z and

∂f
∂p are calculated at the point (mi, ẑji

, p̄i−1).
Using the extended Kalman filter theory, the statistics of

the state vector pi are updated by the following equations:

p̄i = p̄i−1+Ki(yi−Mip̄i−1) = p̄i−1−Kif(p̄i−1,mi, ẑji
)

(18)
Ki = Σpi−1

MT
i (Uji

+ MiΣpi−1
MT

i)−1 (19)

Σpi
= (I − KiMi)Σpi−1

(20)

B. Constraint Equation

Eq. (6) represents the projection of mi to the input scene
when the target is at the pose pi. Since this projection is
closely related to the pose of the target, the model edge
and the camera projection model, we will first present the
detailed definitions of these terms as used in this paper.

The pose of the target object in our system is defined
as the homogeneous transformation of the target object
coordinate frame T with respect to the input camera
coordinate frame C. We denote the target pose pi as six-
dimensional vector (txi , tyi , tzi , φ

x
i , φy

i , φz
i)

T , where tx, ty, tz

are the translation and φx, φy, φz are the Euler III angles
of the rotation along the three axes x, y, z of the camera
coordinate frame respectively. We denote the homogeneous
transformation matrix that is associated with this vector as
CH(pi)T.

The target object coordinate frame is a reference frame
that is placed in the center of the target object model. All
the model edges are defined with respect to it. Model edges
are represented with the Cartesian coordinates of their two

1885

extremities. We denote a model edge mi as two of three
dimensional vectors mk

i = (xk
i , yk

i , zk
i)T , k = 1, 2 which

are the 3D Cartesian coordinates of the two extremities with
respect to the target object coordinate frame. Consequently,
the matching scene edge zji

is denoted in a similar manner
as two of two-dimensional vectors (uk

ji
, vk

ji
), k = 1, 2

which are the 2D image coordinates of the projection of
the corresponding model edge mi.

The camera that is used for the input image sequences is
calibrated using pin-hole camera model [12], [13]. Using
the perspective projection model, the projection of mi with
respect to pi is denoted by the following equation:

uk

mi
W

vk
mi

W
W

 =

αu 0 u0 0

0 αv v0 0
0 0 1 0

 CH(pi)T

xk
i

yk
i

zk
i

1

(21)

where k = 1, 2 and αu, αv, u0, v0 are the intrinsic param-
eters that are given by the camera calibration. For conve-
nience of notation, we will name the rows of homogeneous
transformation matrix CH(pi)T as follows:

CH(pi)T =

�h1

�h2

�h3

�h4

 (22)

Then, the normalized image coordinates of the projection
of mi can be written as follows:

ũk
mi

=
uk

mi
− u0

αu
=

�h1m
k
i

�h3mk
i

, k = 1, 2 (23)

ṽk
mi

=
vk

mi
− v0

αv
=

�h2m
k
i

�h3mk
i

, k = 1, 2 (24)

Using equations (23) and (24), Eq. (6) is represented in
the following manner:

f(pi,mi, zji
) =

�h1m1
i

�h3m1
i

− u1
ji
−u0

αu

�h2m1
i

�h3m1
i

− v1
ji
−v0

αv

�h1m2
i

�h3m2
i

− u2
ji
−u0

αu

�h2m2
i

�h3m2
i

− v2
ji
−v0

αv

= 0 (25)

C. Scene Feature Measurement Uncertainty

Detected edges in the input scene are often fragmented
because of either image noise or occlusion. Since we
use the coordinates of the edge extremities to define the
matching error between a projected model edge and a scene
edge, it becomes ambiguous as to how to update the target
pose when the match is with a fragmented portion of an
actual scene edge. In our system, this problem is handled
conveniently by assigning measurement uncertainties to the
extremities of the extracted scene edges in the following
manner.

Recall that in Eq. (7) we used the notation ẑji
to denote

the scene edge fragment that corresponds to the real scene

mi

v

θ
u

*

jẑ
i

l1

l2

l2

l1

Fig. 3. Feature measurement uncertainty.

edge zji
and that gets matched with the model edge mi.

If zji
was fragmented yet correctly matched with mi, we

can assume that the locations of the extremities of zji
are

placed somewhere in the extension of ẑji
. Since the length

of ẑji
should be roughly the same as that of mi, we would

want the uncertainty ellipses to be of such a size so that
the extremities of zji

lie within these ellipses as centered
at the extremities of ẑji

. Each such uncertainty ellipse will
be denoted by (l1, l2) where l1 is the length of the semi-
major axis and l2 the length of the semi-minor axis (see
Fig. 3). We obviously want l1 to be proportional to the
length difference between the projection of mi and ẑji

.
With regard to a value for l2, its purpose is to account
for the measurement errors in a direction perpendicular to
the orientation of a line. Such errors are usually small and
arise on account of sampling effects. In our experiments,
we have chosen a value of 4 pixels for l2. In general, this
value would depend on the imaging geometry and image
sampling rates.

With the extremity positional uncertainties l1, l2 and with
the slope of ẑji

denoted as θ given, the measurement
uncertainty V k

ji
can be calculated by considering l1, l2 as

its eigenvalues and θ and θ + π/2 as the slopes of the
corresponding eigenvectors respectively as follows:

V k
ji

= ΦΛ2ΦT (26)

where

Φ =
(

cosθ −sinθ
sinθ cosθ

)
,Λ =

(
l1 0
0 l2

)
(27)

III. FEATURE MATCHING ALGORITHM

In this section, we explain how we find the match be-
tween model edges and scene edges. Two modules are used
for this purpose: One is the search module that searches
the best candidate scene edges given an initial pose of
the target object. The other is the verification module that
verifies a match that is found by the search module using
the final estimated pose. This verification module provides
decision if the search module has to backtrack to find other
matches. Details of these two modules will be explained
in the following subsections.

1886

A. Search Module

As presented in Section II, all model edges are sequen-
tially matched with corresponding scene edges to maximize
the conditional probability that is given by Eq. (5). This
means that the statistics of the target pose pi−1 which
was updated by the i − 1th match constrains the match
for mi. We will denote the projection of mi as m∗

i which
is a random vector whose statistics can be calculated as
follows: Let (ū1

mi
, v̄1

mi
) and (ū2

mi
, v̄2

mi
) be the mean of

the pixel coordinates of m∗
i . Then, these mean values are

given by the following equation:

ūk

mi
W̄ k

i

v̄k
mi

W̄ k
i

W̄ k
i

 = (IntC) CH(p̄i−1)T

xk
i

yk
i

zk
i

1

 , k = 1, 2

(28)
where (xk

i , yk
i , zk

i), k = 1, 2 are the 3D coordinates of
the extremities of mi and IntC is the matrix of intrinsic
camera calibration parameters that is given in Eq. (21).
The uncertainty of m∗

i , which is denoted as Σm∗
i

can be
calculated as follows:

Σm∗
i

= J(m∗
i ,pi−1)Σpi−1

J(m∗
i ,pi−1)T (29)

where J(m∗
i ,pi−1) is a Jacobian matrix that can be easily

derived from Eq. (25) as follows:

J(m∗
i ,pi−1) =

∂f(pi−1,mi, zji)
∂pi−1

(30)

The projected uncertainty Σm∗
i

serve as the search region
in which the matching scene feature for m∗

i is searched.
Extracted straight-line edges in this search region are
considered as candidate scene features.

There may be more than one candidate matching scene
feature present in the search region. In this case, we select
the scene edge that has smallest Mahalanobis distance to
m∗

i . Note that the constraint equation that was defined in
Eq. (25) represent the pixel displacements between m∗

i

and ẑji
. Using this constraint equation, the Mahalanobis

distance between the two is given as follows [14]:

d(m∗
i , ẑji

, p̄i−1) = f(mi, z̄ji
, p̄i−1)T Σff(mi, z̄ji

, p̄i−1)
(31)

where z̄ji
is the mean of ẑji

and Σf is the uncertainty of
f which is given by the following equation:

Σf =
∂f

∂pi−1

T

Σpi−1

∂f

∂pi−1
+

∂f

∂zji

T

Σẑji

∂f

∂zji

(32)

Also, there may be no candidate appropriate for match
because of occlusion. This case is handled by allowing nil-
match for a model edge if it does not have any candidate
scene edge in the search region.

B. Verification Module

We use a test of mean method to decide if the match
given by the search module is acceptable, i.e., if any model
edge was matched with a wrong scene edge that makes
large pose estimation error. Recall that the evaluation of
the constraint equation f(mi, ẑji

,pN) represents the pixel

0.05
0.1

−0

0

.1

0

.1

O

Z

Y

X

(a) Rendered range data (b) Wire-frame model

Fig. 4. Model of a target object.

displacements between the projection of mi with respect
to the final estimated pose pN and ẑji

. If this match is
wrong with respect to pN, then the Mahalanobis distance
d(mi, ẑji

,pN) that was defined in Eq. (31) should be
significantly larger than zero. Hence, we test if the sum
of the Mahalanobis distance between all model edges and
their corresponding scene edges with respect to pN have
zero mean. For all model features that are not nil-matched,
we calculate the following sum of distances

D =
∑
i∈Q

f(mi, z̄ji
, p̄N)T Σ−1

f f(mi, z̄ji
, p̄N) (33)

where Q is the set of indices of model features that
have non-nil matches. Since f(mi, z̄ji

, p̄N) has Gaussian
distribution, D has chi-squared distribution with 4(N −
q) degrees of freedom, where q is the number of nil-
matches. Hence, we can decide if the search module should
backtrack by comparing D with a threshold that is set
appropriately considering the distribution of D.

IV. MODELLING THE TARGET OBJECT

The 3D models of target objects are represented by
approximated polyhedra that consist of straight edges in
Cartesian space. In constructing 3D model of an object
for pose estimation, short line segments are not favored
because their accurate localization is vulnerable to noise
in the input image. Furthermore, our system can estimate
accurate pose of an object by matching a small number of
features. Hence, only a small number of long line segments
are selected for 3D models of target objects. The line-
segments that are used for object models were delineated
off-line by a human from 3D range data of target objects
which were acquired by structured-light scanner [15]. An
example picture of the rendered range data image of a target
object is depicted in Fig. 4-(a), and its corresponding wire-
frame model in Fig. 4-(b) where the three colored axes
represent the object-centered target coordinate frame.

Since our system tracks a target object that undergoes
unlimited degrees of rotation, there are two other groups
of line segments that are not suitable for feature matching
depending on the viewing direction. One is the group of
self-occluded line segments. The Binary Space Partitioning
tree [16] is used to remove self-occluded line segments at
a specific viewing angle. The other is that of line segments
that are parallel to the viewing angle. The lines that are

1887

parallel to the viewing angle are projected to a point on
an input scene, hence it cannot be used for line segment
match. These lines are also removed for feature matching.

V. EXPERIMENTAL RESULTS

A. Pose Estimation Accuracy Analysis

In order to analyze the pose estimation accuracy, we
need actual pose – ground truth – of the target object when
the target moves in the vicinity of the camera. However,
measuring the ground truth pose of the target object while it
moves is virtually impossible. Instead, we fixed the location
of the target object and captured the input scenes when
the camera is at known positions. To do so, we mounted
the camera on a robot end-effector and moved it in three
arbitrary paths that was defined on the surface of imaginary
spheres of radius 750, 650, and 550 mm respectively. The
pose of the camera is calculated from the robot kinematics
that can be acquired from the robot controller and camera
hand-eye calibration. The ground truth pose of the target
can be easily calculated from the pose of the target at
the first scene and the relative pose of the camera at each
consecutive position where the input scene was captured.
The pose of the target at the first scene was measured
visually by aligning the projection of model to the scene.

The target object that is used for this experiment is a
toy truck whose dimension is 41 cm (length) × 25 cm
(height) × 20 cm (width). Table I shows the statistics
of the error between the ground truth pose of the target
and the estimated pose. One can clearly see the error in

Distance Stat X Y Z Yaw Pitch Roll
(mm) (mm) (degree)

abs mean 2.3 2.9 6.7 1.0 1.7 0.4
750 std 1.6 1.8 3.9 0.6 1.2 0.3

abs max 6.9 7.6 19.5 2.9 5.6 1.3
abs mean 1.5 2.8 8.5 0.5 1.5 0.5

650 std 1.2 1.7 4.7 0.4 1.2 0.3
abs max 5.2 7.6 25.7 2.0 4.4 1.7
abs mean 1.6 4.1 7.3 0.5 1.3 0.3

550 std 1.0 2.5 4.8 0.4 0.9 0.3
abs max 5.1 11.4 24.2 2.1 4.9 1.3

TABLE I

STATISTICS OF POSE ESTIMATION ERROR

Z component of the target object pose, which represents
the distance between the target and the camera, is larger
than the others. It is because the depth is estimated by
considering the scale of the target in the input scene since
we use monocular image. This is, of course, an inherent
problem in monocular vision. We believe this error can be
reduced by using a multiple camera system.

B. Tracking Results

Three image sequences with complex background (Com-
plex), occlusion (Occlusion) and non-smooth object motion
with large change of viewing aspect (Non-smooth motion)
were captured to test the tracking system. Since it was very
difficult to get the ground truth for these sequences, we
provide only qualitative results by presenting the movies

that show the tracking results.2 Some example pictures
that show the pose estimation results for the sequences are
depicted in Fig. 5.

C. Pose Estimation Performance Analysis

The proposed tracking system is tested on a personal
computer with AMD Athelon 2200+ 2.0 GHz processor
and 512 Mb system memory. For the three test sequences,
the average pose estimation time was 0.033 second which
was close to the frame rate but the average straight edge
extraction time was 0.32 second. The straight edge ex-
traction process includes the median filtering of the input
scene which is needed because we use a interlaced-scan
camera that captures the edges of moving object cluttered.
We are working on improving the performance by using
progressive-scan camera for input scenes and employing
signal processing hardware.

The performance statistics for the three sequences are
presented in Table II. Fig. 6 depicts the plots of processing
time for the three test sequences. As can be seen from Fig.
6, pose estimation process takes quite significant amount of
time for some frames. This is because the feature matching
process currently backtracks indefinitely until it finds a
match that breaks the backtracking condition in Eq. (33).
We believe this situation can be avoided by setting a limit
in backtracking or pruning the search process.

Image Pose Estimation Feature Extraction
(seconds) (seconds)

Seq. mean std mean std
Complex 0.040 0.096 0.317 0.017

Occlusion 0.042 0.137 0.326 0.013
Non-smooth motion 0.016 0.022 0.318 0.012

TABLE II

STATISTICS OF TRACKING PERFORMANCE

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a new approach to the use of
edge extremities in a generic model-based object tracking
framework. Using the proposed approach, the extended
Kalman filter that is used for pose estimation can handle
edge fragmentation effectively by assigning measurement
uncertainties to the extremities of extracted edges.

The pose estimation error analysis shows that our track-
ing system can give accurate pose of a target object while
tracking. Also, our tracking experiment shows that our sys-
tem can track the target object successfully under various
conditions – such as occlusion, complex background and
non-smooth motion with large change of viewing aspect of
the target.

There are two issues still remain to be solved. One is
related to the fact that the slow feature extraction process
is a significant bottleneck in the overall tracking procedure.

2Movies that show the tracking results are posted on the following
URL:

http://rvl1.ecn.purdue.edu/RVL/Projects/ModelBasedTracking/

1888

(a) Complex (b) Occlusion (c) Non-smooth motion

Fig. 5. Example images of pose estimation results for the three test image sequences. Red plots show the initial pose of the target and yellow plots
show the estimated pose.

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Frame number

S
ec

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Frame number

S
ec

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

Frame number

S
ec

(a) Complex (b) Occlusion (c) Non-smooth motion

Fig. 6. Processing time for the three sequences. Red plots show the feature extraction time, blue plots the pose estimation time and green plots the
total elapsed time.

Since the feature extraction process mostly consists of
low-level image processing, we are currently working on
enhancing the feature extraction performance with the
help of signal processing hardware. The other is that our
backtracking criterion can slow down the pose estimation
process although it can handle nil-matches effectively. To
solve this problem, we are currently investigating the pos-
sibility of limiting the extent of backtracking and devising
an appropriate pruning procedure for the elimination of
inapplicable matches.

REFERENCES

[1] G. N. DeSouza and A. C. Kak, “A subsumptive, hierarchical,
and distributed vision-based architecture for smart robotics,” IEEE
Trans. Systems, Man and Cybernetics, vol. 34, no. 5, pp. 1988–2002,
2004.

[2] F. Martin and R. Horaud, “Multiple-camera tracking of rigid ob-
jects,” Int’l J. Robotics Research, vol. 21, no. 2, pp. 97–113, Feb.
2002.

[3] T. Drummond and R. Cipollar, “Real-time visual tracking of com-
plex structures,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 24, no. 7, pp. 932–946, July 2002.

[4] T. N. Tan, G. D. Sullivan, and K. D. Baker, “Pose determination and
recognition of vehicles in traffic scenes,” in Proc. the 1994 European
Conf. Computer Vision, May 1994, pp. 501–506.

[5] E. Marchand, P. Bouthemy, and F. Chaumette, “A 2d-3d model-
based approach to real-time visual tracking,” Image and Vision
Computing, vol. 19, no. 13, pp. 941–955, Nov. 2001.

[6] F. Jurie, “Tracking objects with a recognition algorithm,” Pattern
Recognition Letters, vol. 19, no. 3-4, pp. 331–340, 1998.

[7] P. Mittrapiyanuruk, G. N. DeSouza, and A. C. Kak, “Calculating the
3d-pose of rigid objects using active appearance models,” in Proc.
the 2004 IEEE Int’l Conf. Robotics and Automation, pp. 5147–5152.

[8] L. Vacchetti, V. Lepetit, and P. Fua, “Stable real-time 3d tracking
using online and offline information,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 26, no. 10, pp. 1385–1391, 2004.

[9] D. G. Lowe, “Robust model-based motion tracking through the
integration of search and estimation,” Int’l J. Computer Vision,
vol. 8, no. 2, pp. 113–122, 1992.

[10] A. Kosaka and A. C. Kak, “Fast vision-guided mobile robot naviga-
tion using model-based reasoning and prediction of uncertainties,”
Computer Vision, Graphics and Image Processing:Image Under-
standing, vol. 56, no. 3, pp. 271–329, 1992.

[11] A. Kosaka and G. Nakazawa, “Vision-based motion tracking of rigid
objects using prediction of uncertainties,” in Proc. 1995 IEEE Int’l
Conf. Robotics and Automation, Nagoya, Japan, 1995.

[12] J. Weng, P. Cohen, and M. Herniou, “Camera calibration with
distortion models and accuracy evaluation,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 14, no. 10, pp. 965–980,
1992.

[13] Z. Zhang, “A flexible new technique for camera calibration,” Mi-
crosoft Research, Tech. Rep. MSR-TR-98-71, Mar. 1999.

[14] N. Ayache, Artificial Vision for Mobile Robots. MIT Press, 1991,
ch. 11, pp. 187–189.

[15] J. Park and A. C. Kak, “Multi-peak range imaging for accurate 3d
reconstruction of specular objects,” in Proc. the Sixth Asian Conf.
Computer Vision, Jan. 2004.

[16] M. Paterson and F. Yao, “Efficient binary space partitions for hidden
surface removal and solid modeling,” Discrete and Computational
Geometry, vol. 5, no. 5, pp. 279–304, 1990.

1889

