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Simple Summary: For the growing number of cancer survivors worldwide, fatigue presents a
major hurdle to function and quality of life. Treatment options for cancer-related fatigue are still
emerging, and our current understanding of its etiology is limited. In this paper, we describe a new
application of a comprehensive model for cancer-related fatigue: the predisposing, precipitating, and
perpetuating (3P) factors model. We propose that the 3P model may be leveraged—particularly using
metabolomics, the microbiome, and inflammation in conjunction with behavioral science—to better
understand the pathophysiology of cancer-related fatigue.

Abstract: A major gap impeding development of new treatments for cancer-related fatigue is an
inadequate understanding of the complex biological, clinical, demographic, and lifestyle mechanisms
underlying fatigue. In this paper, we describe a new application of a comprehensive model for cancer-
related fatigue: the predisposing, precipitating, and perpetuating (3P) factors model. This model
framework outlined herein, which incorporates the emerging field of metabolomics, may help to
frame a more in-depth analysis of the etiology of cancer-related fatigue as well as a broader and more
personalized set of approaches to the clinical treatment of fatigue in oncology care. Included within
this review paper is an in-depth description of the proposed biological mechanisms of cancer-related
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fatigue, as well as a presentation of the 3P model’s application to this phenomenon. We conclude
that a clinical focus on organization risk stratification and treatment around the 3P model may be
warranted, and future research may benefit from expanding the 3P model to understand fatigue not
only in oncology, but also across a variety of chronic conditions.

Keywords: fatigue; metabolomics; survivorship

1. Introduction

Cancer-related fatigue is defined by the National Comprehensive Cancer Network
(NCCN) as a distressing, persistent sense of physical, emotional, and/or cognitive exhaus-
tion related to cancer that is not proportional to activity and interferes with functioning [1].
Moderate to severe fatigue affects up to 90% of patients during chemotherapy and approxi-
mately 30–40% years after treatment completion [1,2]. Unlike typical fatigue, cancer-related
fatigue tends to be more severe, distressing, and unlikely to be relieved by rest [3]. Patients
describe it as “devastating”, “never-ending” and “totally consuming” [4,5]. Fatigue is
associated with worse quality of life and lower likelihood of returning to normal daily
activities, including work [2,6–9].

Treatment options for cancer patients with fatigue are limited. Behavioral and psy-
chosocial interventions demonstrate benefit [10–14] but tend to be time intensive, limiting
uptake, compliance, and maintenance. Medications to treat sleep problems such as paroxe-
tine, sertraline, modafinil, and armodafinil have shown limited benefit for cancer-related
fatigue in randomized trials [15–20]. Evidence is mixed for methylphenidate, which may
be poorly tolerated [21–24]. Because of the limited benefit of pharmacotherapy and since
patients often prefer to avoid additional medications, behavioral treatment options for
cancer-related fatigue are urgently needed [25,26]. A major gap impeding development
of new treatments is an inadequate understanding of the complex biological, clinical, de-
mographic, and lifestyle mechanisms underlying fatigue [6]. In this paper, we describe a
new application of a comprehensive model for a better understanding of cancer-related
fatigue: the predisposing, precipitating, and perpetuating (3P) factors model. This model
framework outlined herein, which incorporates the emerging field of metabolomics, may
help to frame a more in-depth analysis of the etiology of cancer-related fatigue as well as
a broader and more personalized set of approaches to the clinical treatment of fatigue in
oncology care.

2. Proposed Biological Mechanisms of Cancer-Related Fatigue

The pathophysiology of cancer-related fatigue is thought to be multifactorial [27,28].
Despite this complexity, the large majority of studies on the biological mechanisms of
cancer-related fatigue have focused on immune and inflammatory variables, which are
hypothesized to induce fatigue via the effect of inflammatory mediators on brain systems
involved in “sickness behaviors.” Specific variants include genes regulating inflammation
(e.g., IL6, TNFA, and IL1) [29], inflammatory gene expression profiles (e.g., increased
NF-kB) [30–32], and circulating markers of inflammation (e.g., IL-1, TNFA, CRP, and
IL-6) [32–53]. Inflammation is linked with the dysregulation of biochemical and physiologi-
cal systems including peripheral (muscles and tissues) and central mechanisms (central
nervous system) [54] and may cause fatigue through cytokine dysregulation, hypothalamic–
pituitary–adrenal (HPA) axis dysfunction, 5-hydroxy-tryptophan (5-HT) neurotransmitter
dysregulation, circadian rhythm disruption, alterations in adenosine triphosphate (ATP),
muscle metabolism, and vagal afferent activation [28,54,55]. Recent research has suggested
that agents with anti-inflammatory properties (i.e., non-steroidal anti-inflammatory drugs
or NSAIDs, bupropion) could offer a safe, inexpensive, and widely-available means to
revolutionize the treatment of cancer-related fatigue [56–59]. These findings suggest that
pathophysiologic pathways and genetic mechanisms hold promise for the identification
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of new causal mechanisms and potential treatment targets; however, these mechanisms
are poorly understood. In addition, current models of pathophysiology do not take into
account the complex psychosocial and behavioral factors that may also play a major role in
cancer-related fatigue.

3. An Alternative Model of Cancer-Related Fatigue: The 3P Factors Model

The most notable framework previously proposed to describe complex disease pro-
cesses is the biopsychosocial model, an inter-disciplinary model that looks at the inter-
connection between biology, psychology, and socioenvironmental factors [60]. While the
biopsychosocial model has played a crucial role in counteracting biological reductionism
and progressing towards a more holistic philosophy of human health, it lacks the granu-
larity necessary to understand how various factors contribute to disease [61]. In contrast,
as shown in Table 1, the 3P model can be utilized to describe the complex biological and
psychological processes underlying cancer-related fatigue. The 3P model postulates that
predisposing factors place patients at risk of developing baseline fatigue (e.g., 1. biobehav-
ioral: age, biological sex, genetic variants, metabolomics, inflammation, body composition,
nutritional quality, circadian disruption, and co-morbidities; 2. psychosocial: depressed
mood, anxiety, insomnia, and perceived stress); precipitating factors spur the onset of
fatigue (e.g., changes in metabolism and inflammation due to cancer and/or chemotherapy
and treatment-related factors: systemic therapy and radiotherapy); and perpetuating fac-
tors worsen fatigue or cause it to become chronic (e.g., poor sleep, physical inactivity, and
poor diet). The 3P model (Figure 1) has been suggested for better understanding fatigue [62]
and successfully applied to other chronic conditions including sleep and pain [24,25].

Table 1. 3P definitions, examples, and recommended clinical actions.

3P Component Definition Examples Recommended
Clinical Actions

Predisposing
Factors

Relatively stable
patient characteristics

that increase risk
of developing

cancer-related fatigue

Sex; age; genetics; circadian
disruption; SNPS in circadian
regulation; body composition;

genetic variants altering
metabolome and inflammasome

Genetic pathway
analysis; risk

stratification; tailored
prehabilitation
interventions
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3.1. Predisposing Factors

Patient characteristics conceptualized as predisposing factors in cancer-related fatigue
include biological sex [63], genetics [34], body composition (e.g., body fat and low muscle
mass) [64–66], and viral exposures [67,68]. Additionally, circadian rhythms could play a
significant role in the etiology of fatigue through the modulation of arousal and sleep [54].

Predisposing risk factors for cancer-related fatigue include poor performance status,
chemoradiotherapy, female sex, insomnia, neuroticism, pain, and depression [69]. In
cancer-related fatigue, the role of genetic variation remains unclear. Twin studies have
shown the heritability of fatigue to be between 6% and 50%, with a higher concordance in
monozygotic twins than dizygotic twins. Some preliminary studies have identified sets of
inflammation-related genetic polymorphisms that are associated with increased fatigue in
cancer patients [34], but the generality of these effects remains to be determined. Genome-
wide association studies (GWAS) in fatigue-related diseases have identified variants in
genes involved in cognition and circadian rhythms [70–72]. We propose that genetic
variants altering metabolic including inflammatory traits may also be associated with
cancer-related fatigue through inflammation pathways. Publicly available lists of high-
scoring genetic–metabolomic associations known as “genetically influenced metabotypes”
include several variants located in or near genes encoding enzymes central to human lipid
metabolism, including polyunsaturated fatty acid biosynthesis (e.g., FADS1, ELOVL2) and
biosynthesis of phospholipids (e.g., SPT16A) [73], which have not been explored in cancer-
related fatigue. Similarly, “genetically influenced inflammotypes” [74] can be identified by
inflammatory-based genome-wide association studies (iWAS), but also have not yet been
explored among cancer patients with fatigue.

Previous viral exposure—for example, to Epstein–Barr virus, human herpesvirus,
Lyme disease, or COVID-19—may predispose individuals to fatigue through cell alterations,
hyperinflammation, mitochondrial modulation, and autoimmunity, although research in
this area is lacking [75,76]. Additionally, anthropometry measurements (e.g., obesity) have
been associated with links in apnea, sleep quality, and inflammatory biomarkers.

3.2. Precipitating Factors

Factors that may initially precipitate the development of cancer-related fatigue remain
unclear, though likely include metabolic dysregulation (alterations in metabolic genes
and regulatory pathways), as well as inflammation (overproduction of pro-inflammatory
cytokines) and accelerated cellular aging (e.g., the premature shortening of telomeres and
altered DNA methylation) due to cancer treatment. For example, chemotherapy is known
to accelerate aging [77,78]. Chemotherapy may also damage mitochondria in muscle and
deconditioning of muscle that may contribute to perceptions of fatigue [79–82].
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Multiplicative interactions between precipitating factors may also exist. Studies in-
vestigating muscle fatigue in cancer patients show metabolic dysregulation, including
energy, lipid, and amino acid metabolism [83–86]. Furthermore, evidence supports that
chemotherapy may damage mitochondria in muscle that in turn increases fatigue, and
the deconditioning of muscle further contributes to perceptions of fatigue. In particu-
lar, studies have focused on tryptophan catabolism [87–89]. An essential amino acid,
tryptophan drives de novo synthesis of serotonin and niacin. Serotonin modulates be-
havioral and neuropsychological processes and niacin produces NAD, a co-factor crucial
for energy homeostasis that is linked with aging and circadian regulation (SIRT1). Trials
modifying tryptophan have demonstrated reductions in physical and mental fatigue fol-
lowing endurance exercise [90]. Furthermore, metabolic disturbances related to chronic
fatigue syndrome have included alterations in 20 metabolic pathways including sphin-
golipids, phospholipids, purine, cholesterol, microbial metabolites, pyroline-5-carboxylate,
riboflavin, amino acids, peroxisomal and mitochondrial metabolism [91]. All are directly
regulated by redox or the availability of NADPH, highlighting the importance of the mito-
chondria, cellular organelles that produce energy [91]. Sphingolipids and phospholipids
accounted for almost 70% of the variation in metabolic phenotype in a study of 84 patients
with chronic fatigue syndrome, and differences among males and females were observed.
Area under the receiver operator characteristic curve analysis showed accuracies in pre-
dicting fatigue of 94% (95% CI = 84–100%) for males and 96% (95% CI = 86–100%) for
females. Three other metabolomics studies of fatigue-associated diseases support the key
role of sphingolipids and phospholipids in addition to irregularities in energy, amino acid,
and nucleotide metabolism [92–94]. The alterations in sphingolipids may be related to
impaired lipid metabolism and mitochondria energetics, with evidence suggesting that
PPAR suppression in the muscle of cancer patients could mediate this [81,95,96]. Further-
more, in vitro studies have demonstrated that ceramides induce oxidant production in the
mitochondria, have specific effects in certain tissues (e.g., adipocyte ceramides and inflam-
mation) and increase oxidant activity [97], depressing muscle fiber force and exacerbating
muscle fatigue [98]. While a number of pathological pathways have been identified as
playing a role in cancer-related fatigue, it is possible that different mechanisms are respon-
sible for different dimensions of fatigue (e.g., mental fatigue vs. physical fatigue). Further
delineation of unique dimensions of fatigue associated with each pathway will assist in the
identification of new intervention targets for the specific type of fatigue experienced.

3.3. Perpetuating Factors

Perpetuating factors are conceptualized as characteristics and behaviors that may
worsen or prolong fatigue including poor dietary pattern, irregular meal timing [99,100],
physical inactivity [101], and poor sleep [102–107]. Previous research suggests that anti-
inflammatory dietary patterns, such as prudent and Mediterranean diets, offer a plausible
mechanism to mitigate cancer-related fatigue through reducing inflammation and improv-
ing body composition [108–110]. The key components of the Mediterranean dietary pattern
include high intake of vegetables, fruits, whole grains, legumes, and nuts; moderate intake
of seafood and red wine; and olive oil as the main fat source [111,112]. Anti-inflammatory
dietary patterns are associated with improvements in the gastrointestinal (GI) microbiota
and lessening of metabolic endotoxemia, defined as a 2- to 3-fold increase in circulating lev-
els of bacterial endotoxin [113]. In comparison, pro-inflammatory dietary patterns, such as
the Western dietary pattern, widely consumed in the United States, is characterized by high
consumption of red and processed meats; high consumption of sugar-sweetened beverages
and refined grains; and low consumption of fresh fruits, vegetables, and legumes [114–116].
Western diets contribute to metabolic endotoxemia through changes in the GI microbiome
and bacterial fermentation end products, intestinal physiology and barrier function, and
enterohepatic circulation of bile acids [113]. Additionally, the Western dietary pattern has
been correlated with pro-inflammatory markers associated with cancer-related fatigue, in-
cluding tumor necrosis factor (TNF)-α, C-reactive protein, interleukin (IL)-6, and IL-8 [117].
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Dietary patterns promoting hyperinsulinemia and chronic inflammation, including the
empirical dietary index for hyperinsulinemia (EDIH) and empirical dietary inflammatory
pattern (EDIP), strongly influence risk of weight gain, type 2 diabetes, cardiovascular
disease, and cancer [118]. The EDIH and EDIP have predicted concentrations of known
insulinemic and inflammatory biomarkers, and the EDIH further predicted risk of future
cancer [119].

In addition to evaluating dietary patterns based on self-reported questionnaires, the
role of diet in cancer-related fatigue can be investigated through nutritional metabolomics,
the study of food-related metabolites in a biofluid that can provide an objective measure
of recent or habitual dietary intake [120]. Moreover, untargeted metabolomics offers
a discovery tool to identify small molecules both influenced by dietary behavior and
associated with disease, thus characterizing endogenous response to diet, and metabolic
targets for dietary intervention for disease prevention. To our knowledge, nutritional
metabolomics studies of cancer-related fatigue are yet to be implemented. The microbiota
has been recognized to play a role in human disease [121], and the mechanisms by which
these microorganisms contribute to host health have been extensively investigated over
the past decade. The microbiome, specifically bacterial metabolites, has been linked with
inflammation and oxidation. Two studies in mice have suggested that the gut microbiota
produces metabolites from dietary tryptophan that regulate inflammation in the gut and
central nervous system [122].

In terms of general lifestyle, prior research in fatigue-associated diseases highlights
the role of lipid mediators including sphingolipids, phospholipids, and oxygenated polyun-
saturated fatty acids (PUFAs) (oxylipins). Sphingolipid metabolites play key roles in the
regulation of both trafficking and function of immune cells, and there are indications that
sphingolipid metabolism might be altered by inflammation [123]. Ceramides, key sphin-
golipids, promote numerous inflammatory processes, including induction of macrophages
and B cells [124]. Prior studies indicate alteration of ceramide metabolism among patients
with chronic fatigue syndrome [92]. Intervention trials show that diet can lower ceramide
levels [125]. In the PREDIMED study, a Mediterranean dietary intervention mitigated
potential deleterious effects of elevated plasma ceramide concentrations on cardiovascu-
lar disease [126]. Similarly, omega-3 polyunsaturated fatty acid (n3-PUFA) is a common
phospholipid, which plays an important role in immunomodulatory activities. Ceramides
and its metabolites have been proposed as an intermediate link between over-nutrition
and certain underlying abnormalities driving disease risk, insulin resistance and low-grade
inflammation [127–129]. Data suggest beneficial effects of n3-PUFA in reducing fatigue
in cancer patients [33,130–133]. N-3 PUFA therapy upregulates the muscle transcriptome,
including several pathways that control mitochondrial function in both human [134], and
animal studies [135–137], emphasizing the role of energy metabolism. Other metabolic
pathways related to diet that might also contribute to fatigue include dysregulated tryp-
tophan catabolism. Tryptophan is an amino acid metabolized into several molecules
involved in energy production [87–89]. Potential interventions might target modulation
of tryptophan-related molecules via administration of branched chain amino acids. In
addition to endogenous metabolites, untargeted approaches may identify unexpected or
novel exposures that might play an important role in cancer-related fatigue by implicating
exogenously derived chemicals. Adherence to specific dietary patterns (e.g., time-restricted
eating) may offer a novel, cost-effective strategy to reduce cancer-related fatigue while
quantification of targeted metabolites may allow for a robust evaluation of metabolite
changes in people with cancer-related fatigue over time [138].

There is an interaction of diet, physical activity, and sleep on many levels (e.g., be-
havioral, circadian, obesity, metabolic). Particularly, intermittent fasting regimens have
been hypothesized to influence metabolic regulation via effects on (a) circadian biology,
(b) the gut microbiome, and (c) modifiable lifestyle behaviors, such as sleep [100]. Evi-
dence suggests that irregular meal timing may impact metabolic health. Specifically, eating
more frequently, reducing evening energy intake, and fasting for longer nightly intervals
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may lower systemic inflammation and subsequently reduce breast cancer risk [99]. In
another study examining associations between fasting duration, timing of first and last
meals, and cardiometabolic endpoints using data from the National Health and Nutrition
Examination Survey (NHANES), evidence suggested that there were beneficial effects on
cardiometabolic health of starting energy consumption earlier in the day [139].

In addition to diet, physical inactivity and sleep disturbance represent key modifiable
perpetuating factors associated with cancer-related fatigue [101]. In a systematic review
and meta-analysis of randomized controlled trials, physical activity has been identified as
effective for mitigating cancer-related fatigue in colorectal cancer [140]. Moderate-intensity
aerobic exercise training and a combination of moderate-intensity aerobic and resistance
training have reduced fatigue in patients with breast and prostate cancer, both during
and following cancer therapy [141,142]. Reductions in fatigue from exercise training ap-
pear to result from both independent and supervised interventions [143], highlighting
its potential applicability to a wide range of cancer patients and survivors. Similarly,
sleep disturbance confers risk of cancer-related fatigue across various cancer diagnoses.
A recent meta-analysis studying risk factors for cancer-related fatigue in 84 studies with
144,813 participants found that patients with insomnia had significantly higher odds of
cancer-related fatigue [69]. Notably, the odds ratio for insomnia was higher than the odds
ratio for treatment of chemoradiotherapy, although the magnitude of these effects was
not formally compared. In patients with chronic myeloid leukemia receiving cognitive
behavioral therapy for targeted-therapy-related fatigue, improvements in sleep and physi-
cal activity were associated with declines in fatigue [101]. Sleep disturbance and physical
inactivity both contribute to known pathways for cancer-related fatigue (e.g., inflammation,
circadian disruption) [144,145]. Emerging evidence suggests that sleep disturbance and
physical inactivity may also implicate additional pathways, such as accelerated aging and
gene expression through DNA methylation. For example, one study of 2078 women found
that those with insomnia showed advanced biological age relative to chronological age [146].
In another study, individuals with insufficient sleep showed hypomethylation of DNA
in regions associated with neuroplasticity and neurodegeneration [147]. Further research
is necessary to elucidate the nuanced role of sleep and physical activity in cancer-related
fatigue. Please see Table 1.

4. Clinical Implications

Use of the 3P model can benefit clinical oncology practice by offering pathways to
prevention and mitigation strategies for cancer-related fatigue. First, screening for predis-
posing factors of cancer-related fatigue may facilitate risk stratification of cancer patients at
the time of diagnosis. Risk stratification has been endorsed by experts in oncology health-
care delivery science as a personalized approach to care in which survivors are triaged
to distinct care pathways based on their individual needs [148]. For example, patients
who display a genetic predisposition to cancer-related fatigue and fit a predetermined
risk profile of sociodemographic factors can be appropriately routed to prehabilitation
and behavioral counseling to prevent fatigue such as by intervening upon the modifiable
predisposing (e.g., obesity) or precipitating factors.

Additionally, if routed to appropriate care early in the onset of fatigue, these patients
may learn mitigating physical and cognitive-behavioral strategies [149–151]. Prehabilita-
tion, a multidisciplinary clinical process on the continuum of care that occurs between
diagnosis and treatment, involves targeted interventions to reduce the incidence and
severity of future impairments [152]. For patients deemed at high risk for cancer-related
fatigue, prehabilitation may beneficially include prescribed physical activity regimens,
energy conservation techniques, and dietary consultations to prevent fatigue onset during
and after treatment. Targeting pre-treatment windows for multimodal prehabilitation can
help patients increase their physiologic reserve or functional capacity as early as possi-
ble, mitigating the effects of fatigue-inducing circumstances such as physical inactivity,
inflammation, anorexia, and skeletal muscle loss. A recent, single-group study involving
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individualized, home-based aerobic and resistance training prior to breast cancer surgery
demonstrated reduced fatigue over the intervention period [153]. More evidence, including
randomized controlled trials of prehabilitation, is needed to confirm longer-term, post-
treatment impact on fatigue. Multimodal prehabilitation interventions can also be delivered
concurrently with cancer therapies, such as exercise during neoadjuvant chemotherapy or
radiation therapy [154]. Prehabilitation may also profitably include cognitive behavioral
therapy to reduce dysfunctional fatigue-related beliefs. If routed to appropriate care early
in the onset of fatigue, patients can learn cognitive-behavioral strategies for optimizing
sleep, emotion, and daily activity patterns in order to mitigate fatigue [149–151,155]. In fact,
a recent study found that reduced fatigue in cancer patients was attributable to changes
in cognition (specifically self-efficacy) stemming from cognitive behavioral therapy rather
than to changes in physical activity [156]. Interventions targeting self-efficacy may therefore
be particularly beneficial for patients with higher risk of fatigue.

After stratifying patients by risk based on predisposing (e.g., genetic) and perpetuating
(e.g., diet, physical activity) factors, healthcare practitioners can leverage the 3P model
by conducting ongoing screening for precipitating factors of cancer-related fatigue. These
factors—such as metabolic dysregulation and inflammation—may arise at any point during
cancer treatment, and can be watched closely using biomarker testing. Through monitoring
for precipitating factors, providers can identify at-risk individuals who are not initially
flagged for prehabilitation due to predisposing factors. These individuals would then
receive prehabilitation appropriate for their specific needs, including specific exercise
interventions optimally timed for each patient’s unique constellation of ability, challenges,
and needs [157–159].

While being monitored for the emergence of new precipitating factors, cancer patients
can concurrently receive education and training in health self-management techniques
to mitigate symptoms of cancer-related fatigue. Health self-management is defined as
“the individual’s ability to manage the symptoms, treatment, physical and psychosocial
consequences and lifestyle changes inherent in living with a chronic condition” [160].
Crucially, self-management training can teach cancer survivors the tools they need to
sustainably maintain physical activity, adhere to dietary recommendations, and exercise
energy conservation and sleep hygiene techniques. These health behaviors reduce the risk
of long-lasting fatigue after the conclusion of the treatment phase. Furthermore, research
has demonstrated that symptoms may appear in a cascade pattern, and treating symptoms
higher in the cascade may prevent downstream symptoms. For example, sleep disturbance
contributes to fatigue, which in turn contributes to depressed mood. Interventions for
cancer-related fatigue therefore may be specifically targeted to mitigate symptoms early in
the cascade, such as sleep disturbance [161].

Indeed, while clinicians may benefit from education about the 3P model in order to
leverage its content for clinical practice, patients may also benefit from comprehensive
education about the predisposing, precipitating, and perpetuating factors involved in
cancer-related fatigue to promote sustainable, independent management of symptoms.
Future health self-management training endeavors for cancer survivors may be enhanced
by support from web-based health self-management training tools. This emerging area of
practice provides patients with hyper-tailored health self-management plans, sometimes
enhanced by machine-learning to be granularly responsive to the unique strengths and
challenges of each person [162,163]. Please see Figure 2 for an overview of recommended
clinical actions organized using the 3P model. Further research is needed to establish
web-based tools powered by artificial intelligence specifically for the self-management of
cancer-related fatigue.
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5. Future Directions for Research

While clinical care can leverage the 3P model to prevent or mitigate symptoms of
cancer-related fatigue, future research is also warranted to further investigate its pathophys-
iology and efficacy/effectiveness of adopting a 3P model in cancer care. One potentially
fruitful target area for study may be the metabolome. The metabolome directly reflects the
underlying biochemical activity and state of cells and tissues, including energy production.
Because the metabolome is downstream of genomics, transcriptomics, and proteomics, it
may be the closest molecular phenotype to the patient-reported phenotype of cancer-related
fatigue. The metabolic state of an individual at the time of illness is produced by current
environmental and host biological conditions, host susceptibility, and the aggregate history,
time, and magnitude of exposures recorded as metabolic memory [164]. Moreover, preclini-
cal research has recently identified inflammation-independent “metabolic reprogramming”
as a mediator of cancer-induced fatigue in animal models [165,166]. Thus, the metabolome
could provide a comprehensive snapshot of cellular processes at a single point in time that
is also representative of cumulative exposures, ideal for discovery of new mechanisms of
cancer-related fatigue.

The 3P framework proposed here to conceptualize cancer-related fatigue may also
be applicable to fatigue related to other conditions such as chronic fatigue syndrome,
post-COVID syndrome, rheumatoid arthritis, and multiple sclerosis. Through applying
the 3P framework, researchers and clinicians studying fatigue across a wide variety of
illnesses and chronic diseases may be able to more readily understand the pathophysiology
of fatigue as it presents across various diagnoses, as well as systematically identify and mit-
igate predisposing, precipitating, and perpetuating factors relevant to unique populations
experiencing fatigue.

6. Conclusions

For the growing number of cancer survivors worldwide, fatigue presents a major
hurdle to a return to function and quality of life after cancer treatment. Treatment options
for cancer-related fatigue are still emerging, and our current understanding of its etiology
is limited. The presented 3P model may be leveraged—particularly using metabolomics,
the microbiome, and inflammation in conjunction with behavioral science—to better un-
derstand the pathophysiology of cancer-related fatigue. While application of the 3P model
alone will not be enough to solve the complex problem of cancer-related fatigue, it may
represent a key step towards ameliorating this pervasive issue for patients. A clinical focus
on organizing risk stratification and treatment around the 3P model would be warranted.
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Future research may benefit from expanding the 3P model to understand fatigue not only
in oncology, but also in the wider context of a variety of chronic conditions.
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