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Abstract—This paper presents an application of a pedestrian-
detection system aimed at localizing potentially dangerous situa-
tions under specific urban scenarios. The approach used in this
paper differs from those implemented in traditional pedestrian-
detection systems, which are designed to localize all pedestrians
in the area in front of the vehicle. Conversely, this approach
searches for pedestrians in critical areas only. The environment is
reconstructed with a standard laser scanner, whereas the following
check for the presence of pedestrians is performed due to the
fusion with a vision system. The great advantages of such an
approach are that pedestrian recognition is performed on limited
image areas, therefore boosting its timewise performance, and no
assessment on the danger level is finally required before providing
the result to either the driver or an onboard computer for au-
tomatic maneuvers. A further advantage is the drastic reduction
of false alarms, making this system robust enough to control
nonreversible safety systems.

Index Terms—Artificial intelligence (AI), computer vision, fuzzy
logic, image processing, pattern recognition, pedestrian detection.

I. INTRODUCTION

EXISTING pedestrian-detection systems are based on the
search for pedestrians in the whole area in front of a

vehicle. Candidates are located using pedestrian characteristics
[1], such as shape, symmetry, texture, motion, and periodicity
of human leg motion. When fusion between different sensing
technologies is used, whether it is high level [2], [3] or low
level [4], each sensor searches for pedestrian-specific features
in the whole area in front of the vehicle.

In this paper, we describe a system for the detection of
pedestrians based on a new approach. It is designed to work in
a particularly challenging urban scenario, in which traditional
pedestrian-detection approaches would yield nonoptimal re-
sults. Instead of searching for pedestrians in a large area in front
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of the vehicle, making no assumption on the external environ-
ment, the system presented in this paper focuses on a specific
urban scenario in which not only is the detection of a pedestrian
of basic importance, but the danger of the situation can also
clearly be assessed. In fact, in an advanced driving-assistance
system, correct detection is just the first phase of a successful
product: The localization of a traffic sign, a traffic light, an
obstacle, or a pedestrian with no corresponding indication on
their position with respect to the vehicle and the environment
provides incomplete information. As an example, a pedestrian
detection system that is able to correctly localize all pedestrians
present in the scene provides a huge amount of information,
which still needs to be filtered to be useful to either the driver
or the onboard computer in charge of automatic maneuvers.
A possible filter may be implemented by fusing information
coming from other systems, such as lane detection or other
situation analysis engines, and controller area network (CAN)
data: A pedestrian exactly in front of the vehicle may or may
not be considered dangerous, depending on the surrounding
environment, as shown in Fig. 1.

In this paper, the Artificial Vision and Intelligent Systems
Laboratory (VisLab) at the University of Parma approached the
problem in the opposite way: Instead of detecting all possible
candidates and filtering them after the analysis of the environ-
ment, we first analyze the scenario and then search for possible
pedestrians in specific positions for that particular scenario. We
call this approach scenario-driven search (SDS). This way, all
detected pedestrians represent possible threats, and no further
filtering is needed (apart from a validation and a possible final
tracking step).

The scenarios that are considered here refer to the most com-
mon urban situations: When vehicles are moving on an urban
road, the most common threat that a pedestrian may pose, there-
fore requiring successful detection, is road crossing. Stopped
vehicles on the road or on the road edges may occlude visibility,
thus making the detection of the pedestrian more complex.

The underlying idea of our SDS approach applied to this
specific scenario is to localize stopped vehicles and then search
for pedestrians in their close proximity or in the areas partly
hidden by them. The stopped vehicles, whose edges will trigger
the search for pedestrians, may be parked cars on the road edge,
vehicles temporarily stopped on the road, vehicles queued in
a line in front of a traffic light or zebra crossing, or simply
jammed cars.

The first row of Fig. 2 shows some examples of situations in
which the visibility of a crossing pedestrian is partly or com-
pletely occluded by stopped vehicles. The second row of Fig. 2
highlights, for each situation, the areas on which the system will
perform a check for the presence of a possible pedestrian.
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Fig. 1. When a pedestrian is localized but no reference with respect to the environment is provided like in (a), the detector is not able to assess the danger level.
When environmental information are available, the very same pedestrian may (b) become a threat or (c) be in a safe position.

Fig. 2. (First row) Situations considered in this paper. (Second row) Areas of interest considered for the detection of a possible pedestrian. (a) A crossing
pedestrian is hidden by a parked vehicle. (b) A pedestrian is crossing the road behind a stopped bus. (c) A pedestrian is appearing between two parked vehicles.
(d) A pedestrian is crossing the road between two vehicles stopped on the other side of the road. It is important to note that situations (a) and (b) refer to specific
and predetermined urban areas (zebra crossings and bus stops). Situations (c) and (d) may happen in any portion of the road network.

In other words, this paper focuses on the detection of pedes-
trians appearing just behind occluding obstacles; pedestrians
that are clearly visible in the frontal area of the vehicle also
need to be detected, but this function, which is also available on
other systems [5], [6], is currently out of the scope of this paper.

The idea of focusing on a specific scene or scenario

(referring to a dynamic or a static environment, respectively)

is not new to pedestrian detection systems; in 2002, Franke

and Heinrich [7] developed a module that is able to detect balls

(which are usually a strong sign of the presence of a child).

Another example of very specific systems is that developed by

Curio et al. [8], which was based on the visual localization of

the specific moving pattern of human legs.

It is known [9] that parked vehicles, blocking the visibil-

ity of pedestrians, are one of the main causes of accidents.

Agran et al. [10] shows that the number of parked vehicles

along a street is the strongest risk factor for pedestrian injury

occurring on residential areas. Although, in these areas, parking

spaces should diagonally be arranged, there are situations, as

shown in Fig. 2, in which vehicles temporarily stop on the

road, and their position cannot strategically be organized and

carefully controlled, as in the case of parking lots. Although

some of the situations of Fig. 2 refer to specific urban areas

(i.e., zebra crossings and bus stops) that could specifically

be enhanced by intelligent infrastructures aimed at warning

oncoming vehicles, other situations can happen in any part of

the road network, making the installation of specific warning

infrastructures impractical.

The main characteristic required by our system is the capa-

bility to perform the following:

1) quickly detect pedestrians, given the short working range

and the particularly high danger of collision with a pedes-

trian suddenly appearing behind an obstacle;

2) detect pedestrians as soon as they appear, even when they

are still partly occluded;

3) limit the search to specific areas, which are determined

by a quick preprocessing.

Fig. 3 shows the coverage of different sensing technologies

(laser and vision) in a specific scenario considered in this paper.
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Fig. 3. Pedestrian partially hidden by parked cars may not be detected by a
laser scanner positioned in the front bumper but can be detected using vision,
even if partially occluded.

The fusion of laser scanner and vision can provide a quick and

robust detection in case of suddenly appearing pedestrians: The

laser scanner provides a list of areas in which a pedestrian may

appear, whereas the camera is able to detect the pedestrian, even

when he/she is not yet visible to the laser scanner.

A. Final Goal and Additional Requirements

The final goal of our pedestrian-detection system is to save

lives and increase road safety through the use of both reversible

and nonreversible driving-assistance systems. Once the pedes-

trian is detected with a sufficiently high confidence level, a

warning is sent to the driver. In our system, we use audible

warnings, but the final human machine interface is still to be

defined. Should the driver not promptly react to the warning,

the system would issue a second level of warning by blowing

the vehicle’s horn. This second warning is still considered a

reversible system, although it is much more invasive than the

former. The aim of this loud warning is to attract the attention

of both the pedestrian itself and, once again, the driver. In case

the danger level is not reduced due to a prompt action of the

driver (or the pedestrian), the intelligent vehicle will trigger a

nonreversible system, such as automatic braking.

Being a nonreversible and very invasive system, its triggering

must be preceded by an extremely careful analysis of the danger

level. Furthermore, the use of a nonreversible system requires

the complete processing to be thoroughly tested with respect to

false detections.

The false positive rate (i.e., the number of wrong detections

per second) is a parameter that is gaining increasingly more

Fig. 4. (a) Hyundai Grandeur test vehicle equipped in Parma, Italy, and
(b) the replica in Seoul, Korea.

interest as the research progresses toward the integration of

higher levels of automation (i.e., nonreversible system). In the

case of automatic braking, the number of false positives is even

more important than the number of correct detections.
In the literature [1], many different pedestrian detection

systems have been surveyed, and a large number of test methods
for pedestrian detection systems have been proposed, which are
based on single-frame analysis, temporal analysis of continuous
video streams, or an event. Nevertheless, none of these methods
provide sufficiently high performance to be considered safe
enough to be fielded on a vehicle with a nonreversible safety
system. Although the performance of each method in terms of
false positive rate depends on a number of different parameters
(such as the desired correct detection rate), the best systems
are characterized by a false positive rate of about 0.01/frame.
Considering a system running at 10 Hz, it would provide one
false positive every 10 s. Clearly, this performance is very far
from the ideal system.

The approach described in this paper is an alternative to con-
ventional systems and aims to detect pedestrians in situations of
clear danger by limiting the search to specific areas. In addition
to being quicker than other systems, this method also aims to
reduce the number of false detections to zero.

The system presented in this paper has been developed and
tested by VisLab on a Hyundai Grandeur prototype vehicle;
Mando is using an exact replica of this system in Korea (see
Fig. 4) to double test time.

Section II presents the test vehicle setup. Section III de-
scribes the risky-area-detection subsystem.

In Section IV, considerations about vision fusion are dis-

cussed. In Section V, experimental results are presented, where-

as Section VI concludes this paper with some final remarks.

II. TEST VEHICLE

This section describes the perception system installed on our

test vehicle and the guidelines used to choose the sensors, the

actuators, and the processing system.

A. Sensing Technologies

Being designed to address an urban scenario in which the

prototype vehicle is running close to stopped vehicles, a lim-

itation on vehicle speed and detection range can be accepted.

Low-to-medium vehicle speeds of up to 50 km/h and a detection

range of about 40 m can be considered as a safe choice.

Environmental sensing requires stopped vehicles and other

standing obstacles to be detected; a laser-based solution is

sufficiently strong to localize large obstacles, such as vehicles,
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and classify them due to their shape. To overcome the lack

of speed information associated with laser scans, we selected

a particular laser scanner with the specific characteristic of

providing interlaced data. It groups a number of interlaced

scans together to form a single higher resolution scan. The

analysis of this interlaced data coupled with vehicle inertial

data allows the estimation of obstacle speed and, therefore,

localizing static objects.
The best technology to check for the presence of even

partly occluded pedestrians in given areas is vision. Monocular
vision is sufficient since no 3-D reconstruction is needed, with
distance measurements being already available. Although the
system is now being tested under daylight conditions, the use
of a near-infrared (NIR) camera and proper illumination allows
the extension of its operational range to the night.

B. Sensor Selection

The camera, i.e., an AVT Guppy F-036B, has been chosen
for several reasons. The sensor of 752 × 480 pixels has an
aspect ratio of slightly less than 15/9, which is particularly
suitable for automotive applications since it frames a large
lateral area, which often contains relevant information. The
sensitivity covers both the visible and NIR spectra. At night,
a high response to the NIR radiation allows the detection of
objects due to a specific illumination.

To achieve this, additional headlamps are mounted in front
of the vehicle. An NIR light-emitting diode headlight with
an aperture of about 25◦ is mounted in front of the radiator,
whereas headlamp blocks are customized by LS and consist of
two modules: 1) a visible-range bifunctional lamp acting as low
beam and high beam and 2) a NIR spectrum-range-only lamp.

The laser scanner is a SICK LMS 211-30206. The detection
capabilities (scanning angle of 100◦, minimum angular resolu-
tion of 0.25◦, up-to-80-m range, and fog correction) are suitable
for our goal.

The laser scanner is capable of 1◦ resolution, but due to four
subsequent rotations, the use of an interlacing system, and a
phase gap of 0.25◦, it is possible to decrease the final granularity
to 0.25◦. Every rotation takes 13.32 ms; therefore, in 53.28 ms,
four rotations are performed. The time difference between
measurements of the same scan is not negligible. Moreover,
when the vehicle is moving, the shift between the laser scanner
position when the first pulse is measured and its position when
the last pulse is measured is appreciable: The laser scanner
interlacing system makes this problem even more evident.

The camera and the laser scanner are not synchronized in
hardware to relax the set of requirements. This means that
a variable time shift exists between the data acquired by the
two sensors; displacement due to the nonsynchronization is
negligible, because the vehicle moves at a low speed, and the
processing rate is sufficiently high.

C. Vehicle Setup

The laser scanner and NIR headlamps are located in the front
bumper, as shown in Fig. 5. The NIR camera is placed inside
the driving cabin near the rear-view mirror, as shown in Fig. 6.

A compact PC (an Intel Core 2 Duo–based Mini-ITX) is
installed in the boot. The onboard FireWire A controller is

Fig. 5. Detail of the front bumper showing the laser scanner integration and
the headlights.

Fig. 6. How the camera is installed inside the cabin.

used to connect the camera. An RS422-to-Universal-Serial-Bus
(USB) adapter provides an easy connection with the laser. In
addition, inertial data are gathered through the CAN bus using
a USB adapter.

Mando modified the vehicle braking system, allowing con-

trol of the braking strength by sending appropriate CAN mes-

sages from the processing box to the actuators. The braking

system installed on the test vehicle was replaced with Mando’s

MGH-40 ESC plus to control vehicle deceleration via CAN.

The braking system incorporates a deceleration control inter-

face (DCI) for high-level system functions, such as adaptive

cruise control (ACC) and precrash safety. As DCI receives

multiple deceleration commands, the deceleration coordinator

selects the desired deceleration based on priorities and vehicle

status. Once the desired deceleration is set, a feedforward

controller with a feedback loop controls vehicle deceleration

by controlling wheel brake pressures. The DCI braking range

extends up to 1.0 g, with a resolution of 0.01 g, a stable

error lower than 0.05 g, and a response time of 0.3 s. The

DCI cooperatively controls deceleration with vehicle-stability

control functions, such as electronic brake distribution, antilock

braking system, and electronic stability control (ESC).

The horn was also modified so that it can also be controlled

through a USB I/O board shown in Fig. 7(a). The processing

system controls the horn by simply writing on a serial port.

An additional 100-Hz yaw rate sensor, which was manu-

factured by Siemens VDO and Mando, was also installed in

the car’s center of mass to get more accurate yaw measure-

ments. The sensor is connected through the processing system

via the CAN bus. The yaw rate sensor provides both lateral

acceleration and yaw rate. Yaw rate values are provided with

an accuracy of 0.0625◦/s. Fig. 7(b) shows the sensor.
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Fig. 7. (a) USB I/O board used to control the horn. (b) Special yaw rate sensor.

Fig. 8. Laser data (a) without correction and (b) with correction.

III. FOCUS OF ATTENTION

Two different laser data classifications are developed to make

the algorithm robust. Both methods are based on clustering

pulses into straight lines, but while the first method considers

the last scan only to classify obstacles, the second method uses

a number of subsequent scans to verify obstacle positions and

hence estimate their speed.

A. Data Alignment

As already explained in Section II, shifts between subsequent

laser scanner measurements can be appreciable and may cause

clustering or classification problems since obstacle shapes may

appear distorted.

By using ego-motion data provided by the ESP CAN box,

it is possible to estimate vehicle rototranslation and therefore

correct the position measured for each pulse. The vehicle speed

is used to correct translation, whereas the steering wheel angle

allows calculating the yaw rate and, therefore, the rotation

correction matrix. The yaw rate can be computed as

yaw rate =
Vfr + Vfl

tw cos δ

where Vfr and Vfl are the front right and front left wheel speeds,

respectively; δ indicates the wheel angle; and tw is the vehicle

front track.

As yaw rate measurements are affected by noise, an addi-

tional yaw rate sensor is installed on the vehicle to increase

precision and perform a sharper data correction.

Fig. 8 shows raw and corrected laser data referring to non-

moving obstacles: The four laser rotations that create a scan

Fig. 9. Moving obstacle is represented by four different lines, even after data
correction.

are clearly visible before the correction, whereas the obstacle

appears as a single line after the correction.

Pulses echoed by moving obstacles cannot be compacted

into a single line since the obstacle position changes during

the multiscan: Moving obstacles are still characterized by four

parallel lines after data correction, as shown in Fig. 9. This

information will be used for obstacle classification.

B. Data Clustering

First, the pulses that belong to the same rotation are con-

nected together: Moving obstacles are then identified by four

different and parallel clusters, whereas standing obstacles are

identified by four overlapping clusters. The pulses are clustered

as chains of segments. The points that cannot be joined into any

chain of the same rotation are then checked for merging with

points of other rotations, considering proximity only. The points

that cannot be connected to any other point or are close to the

limit of the laser scanner range (about 80 m) are permanently

discarded.

C. Segment Merging

Up to now, pulses are joined into chains of segments without

any other information. Adjacent segments with approximately

the same orientation can be merged into a longer segment, pre-

serving the obstacle shape but reducing both the data-structure

complexity and the details of the representation. Considering

a chain of segments, it is possible to compute the straight line

that connects the chain start and end points. Then, the distance

between this line and all the internal points is computed, and

if the maximum distance is larger than the threshold, the line is

split into two lines. These steps are iterated while the maximum

distance is larger than the threshold. The result is that each

chain is therefore finally segmented into a polyline.

Fig. 10 shows a moving vehicle: The rear bumper is framed

as four parallel lines, whereas its side, which is parallel to the

vehicle movement direction, is marked by a single line.

D. Line Merging

Every obstacle in the laser scanner field of view is identified

by four lines, i.e., one for each laser rotation that composes the

whole high-resolution scan. In the case of static obstacles, the

four lines are almost perfectly overlapping, due to the previous

data correction, and can be merged. Conversely, in the case of

moving obstacles, the lines are parallel but not overlapping;

therefore, static and moving obstacles can be located and cor-

rectly classified. Fig. 11 shows the algorithm steps. This quick,

simple, yet very effective process aimed at identifying static
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Fig. 10. Moving vehicle and its motion direction. The four parallel lines cor-
respond to its rear bumper, whereas the single line corresponds to its left side.
The blue points are polyline start points, the cyan points are corner points, the
red points are polyline endpoints, and the violet points are generic line points.

Fig. 11. Steps of the algorithm. (a) Data clustering. (b) Approximation using
polylines. (c) Line merging. All the points are merged into a single line. To
simplify the following steps, small drifts are ignored.

obstacles may generate false negatives when the vehicle’s pitch

is not negligible. Section IV will discuss this issue.

E. Early Obstacle Classification

The polylines obtained so far can be classified according only

to their size and shape. It is possible to divide obstacles into the

following categories:

1) possible pedestrian;

2) road infrastructure;

3) L-shaped obstacle;

4) generic obstacle.

Obstacles that are eventually classified as pedestrians are

supposed to have a limited size, whereas obstacles that have a

large size and are almost parallel to the vehicle are assumed to

be road edges (guardrails, buildings, road infrastructures, etc.).

A simple and fast method based on line orientation is used

to detect L-shaped obstacles. All obstacles that have yet to be

classified are tagged as generic obstacles. The results obtained

so far are satisfactory; Fig. 12 shows an example.

Fig. 12. Obstacle classification. All possible classifications based on shape

are represented in the image.

Information about obstacle movement that was already esti-

mated in the previous step is also stored for further usage.

F. Temporal and Shape-Based Correlation

The classification explained in the previous section classifies
all small obstacles as possible pedestrians. Even if it is possible
that all pedestrians are correctly classified, a number of false
positives may indeed be present.

Fixed obstacles along the road (particularly parked vehicles)
are used here to localize critical areas in front of the vehicle so
that attention can be focussed on the immediate proximity of
the edges of these risky areas, in which pedestrians can appear
and become dangerous.

Polylines provided by the previous scans are aligned and

rototranslated according to ego-motion; then, the overlap be-

tween the current and previous polylines is checked to provide

a new classification in the following four classes: 1) moving

obstacle; 2) static obstacle; 3) changing-shape obstacle; and

4) new obstacle.

Scan data referring to moving obstacles should have little or

no spatial overlap when the time window is large, but unfortu-

nately, the side of a moving vehicle appears as static (high spa-

tial overlap). Anyway, due to the previous labeling of L-shaped

objects, the bumper and the sides of the same vehicle belong to

the same object, which therefore inherits the moving label.

Obstacles that are represented by overlapping scans in the

given time window are marked as static, even when the newer

scan lines are longer and more accurate than the older scan lines

(due to the vehicle getting closer to the obstacle).

When there is no correspondence between the current and the

old polyline, the object is classified as a new obstacle.

Static obstacles are important to locate the areas of interest

in which vision will search for pedestrians; changing-shape

obstacles are also of basic importance since they may contain a

pedestrian in a very precise region of their shape.
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Fig. 13. Obstacle classification. All possible classifications based on move-

ment are shown. Note that moving polylines change their position in world
coordinates.

To trace obstacles, the centroid of each polyline is computed.

Centroids are used to simplify the computation: more complex

laser scanner data processing based on comparison between

each point of the polylines are presented in [11]. The distances

between the centroid of the last scan and the centroids of

previous scans are computed and used for classification.

Polylines are labeled, considering all their points, as

follows:

1) fixed obstacle;

2) moving obstacle;

3) unknown obstacle.

A polyline is labeled as fixed if all the distances between its

current centroid and all the past centroids are below a threshold,

whereas it is labeled as moving if the same distances increase

with time. Another check is made to detect fixed obstacles: The

threshold is increased according to the distance to the vehicle

(to compensate for a decreasing accuracy) and the time gap (to

partly compensate for errors in ego-motion reconstruction). A

polyline is labeled as unknown if it can be labeled as neither

fixed nor moving; this may happen the first time an obstacle

appears or when the detection is not stable due to bad reflections

of the laser beam. To compensate for inaccurate results in laser

data processing, the five previous labels are also used; the

polyline is labeled with the most common label.

A result obtained with this classification is shown in Fig. 13,

which also shows an estimation of the speed of the object

represented by the polyline.

Fig. 14. Highlighted zone represents the driving corridor.

G. Driving Corridor

Polylines labeled according to their shape, size, and history

represent a high-level and easy-to-use structure containing all

the information needed for the following steps of the algorithm.

This information can be used to identify the environment (static

obstacles and vehicles) and the moving obstacles (pedestrians

and vehicles). Obstacles identified as static by the second

classification stage are used to define the environment structure.

Fixed obstacles are used to build the driving corridor, i.e., the

area that may be reached by the vehicle in the near future, as

shown in Fig. 14.

The driving corridor can be composed of multiple forks, but

the width of each subcorridor must be larger than the vehicle

width; forks with a width narrower than this threshold are

discarded. It is important to note that the corridor does not

always overlap with the free space in front of the vehicle since it

is built using only fixed obstacles and may also include moving

obstacles.

H. Dangerous Areas and Possible Pedestrians

As already explained in the introduction, the algorithm is

focused on the detection of suddenly appearing pedestrians

and on areas hidden by a static obstacle or between two static

obstacles. These areas are located along the corridor edges.

Static obstacles that are used to build the corridor are also used

to identify dangerous areas, i.e., areas in which pedestrians may

appear. Dangerous areas are located behind the furthest point of

each static polyline, as shown in Fig. 15.

Authorized licensed use limited to: Universita degli Studi di Parma. Downloaded on January 11, 2010 at 09:27 from IEEE Xplore.  Restrictions apply. 



BROGGI et al.: NEW APPROACH TO URBAN PEDESTRIAN DETECTION FOR AUTOMATIC BRAKING 601

Fig. 15. Dangerous areas and possible pedestrians. (Circles) Dangerous areas.
(Boxes) Possible pedestrians.

Obstacles moving inside the corridor, or near its edges, with

a speed and a size typical of a pedestrian, are tagged as possible

pedestrians.

IV. VISION FUSION

The regions of interest are 2-D areas in world coordinates;

their corresponding areas in the image are then located by

camera calibration and perspective mapping. Indeed, cam-

era calibration and, more generally, system calibration play

a basic role in a fusion system and need to be carefully

tackled.

A large variation of vehicle pitch angles during motion may

change camera orientation with respect to the world, but most

importantly, it also causes the laser scanner to scan the scene

using a different orientation. For on-road applications, this

is generally considered a limited issue in the case of short

distance sensing, and it is even less important when obstacles

are vertical. Conversely, in the case of appreciable pitch angles,

particularly negative angles that tilt the laser scanner toward the

ground, the laser scanner’s scanning plane may intersect with

the ground or point to the sky, therefore yielding nonsignificant

results.

An additional accelerometer is used to compute pitch. The

instantaneous vehicle pitch is fed to the system (to inhibit the

generation of wrong results during vehicle pitching).

The developed fusion is a laser-driven one: A laser is used to

generate candidate, and vision is used to validate the candidate.

A. Classification

Once the areas of attention are located, the search for pedes-

trians is triggered in these areas. Specific image windows are

defined using a perspective mapping transformation, consider-

ing 90 cm as the pedestrian width and 180 cm as the pedestrian

height. These image areas are resampled to a fixed size (24 ×

48 pixels).

AdaBoost was chosen to label each region of interest;

AdaBoost is a technique that is widely used for the classifi-

cation of pedestrians [12]. Haar features were chosen for the

weak classifier [13]. Different Haar features are selected for

each iteration, as suggested by Viola and Jones [14].

Instead of using two classes only (pedestrians and nonpedes-

trians), the following three classes are used here:

1) pedestrians;

2) nonpedestrians;

3) appearing pedestrians.

Appearing pedestrians are pedestrians that are initially not

completely visible, i.e., partially occluded by obstacles, so that

only a part of the pedestrian’s shape can be framed, i.e., the

upper or the side part only.

AdaBoost was trained using image windows determined by

the previous steps of the algorithm. Roughly 100 000 images

were dumped and manually divided into classes. Candidate

selection is a complex and critical step for the AdaBoost

training process [15]. Both normal and flipped samples are used

in the training process. If two or more images are very similar

(i.e., the pixelwise difference is less than a threshold), only

one of them is used in the training process. In Fig. 16, some

examples of images used in the training process are presented,

i.e., images framed in Italy, the Netherlands (during tests before

the IV 2008 demonstration), and Korea. Different pedestrians

and pedestrians in different postures must be chosen. Different

light conditions must be considered as well (see Fig. 16).

Unfortunately, image sets freely available on the Internet [16]

are not complete and cannot be used here since, in this case, we

also need samples containing even partly occluded pedestrians

(see the third row of Fig. 16).

As AdaBoost classification can be too specific on the images

that are used during the training phase, a new sequence is

used to assess the obtained classifier performance. To make the

classification more precise, misclassified images are added to

the training set for a new training.

B. Alerts and Warnings

Once a pedestrian partly hidden by a vehicle is detected by

the vision system only, the system issues an internal alert; in

this case, no warning is provided to the driver, because the

danger level has yet to be determined.

When an alert is issued, the search continues in the same

zone, and tracking is started. As soon as a tracked pedestrian

also becomes visible to the laser scanner, the direction of

its movement is considered; if a pedestrian moving from the

corridor’s edge to the corridor’s center is detected, a warning is

then issued to the driver. Fig. 17 shows an alert and the warning

following it.
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Fig. 16. Images used for training. (First row) Pedestrians. (Second row) Nonpedestrians. (Third row) Partly occluded pedestrians or, as defined in this paper,
appearing pedestrians.

Fig. 17. Two subsequent frames of a sequence. (a) The system detects the
partly occluded pedestrian and issues an internal alert but no warning to the
driver. (b) When a detection of a fully visible pedestrian follows the internal
alert, a warning is promptly sent to the driver.

It is of basic importance to note that the driver is warned only

when the pedestrian is completely visible, like in other systems.

However, the system presented in this paper is more reactive

than others since the tracking starts when the pedestrian is only

partially visible to one of the sensors; in an urban situation

like this, promptness is an important key to the success of the

system.

Fig. 18 shows some results obtained under complex condi-

tions (bad weather condition, poor light condition, etc.) and a

misclassification, i.e., a suddenly appearing pedestrian detected

as a normal pedestrian.

V. RESULTS

Usually, performance assessment of pedestrian-detection
systems provides the percentage of correctly localized pedes-
trians and the false alarm rate. As this system is developed
under a new perspective, performance figures are provided as
the percentage of appearing pedestrians correctly identified
and the false alarm rate. Indeed, it is not important to detect
all the pedestrians present in the scene but only the dangerous
pedestrians.

A set of sequences (different from that used for the training)
was considered for extensive performance assessment, for a
total driving time of about 10 h in complex urban scenarios.
An entire week was dedicated to the final test; a total of 236 km
was driven during the day and at night, under different weather
conditions (sunny, cloudy, rain, and fog). Various scenarios
were included: downtown, large and narrow roads, underground
car parks, highways, and rural roads. During night tests, sce-
narios with and without external illumination were acquired.
To complete the test sets, some specific situations were staged
(such as very dangerous pedestrian crossings), but a number
of dangerous scenarios were framed during normal driving
anyway.

In the tests, the following performance indexes were
considered:

1) number of pedestrians suddenly appearing in front of the
vehicle (that must generate warnings to the driver);

2) number of pedestrians that appeared in front of the ve-
hicle that have successfully been tracked and which can
be hit by the vehicle (that must trigger the automatic
brake);

3) number of fully visible pedestrians, which can be hit by
the vehicle (that must trigger the automatic brake).

For each performance index, the number of correct detec-
tions, false positives, and false negatives were computed.

A total of 24 suddenly appearing pedestrians were correctly
detected in the tests (case 1). Only one false positive is present
(due to a misclassification of a parked scooter).

Considering the actual camera frame rate of 15 frame/s and
the test duration, the false positive rate is about 2 × 10−6 false
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Fig. 18. Some suddenly appearing pedestrians correctly detected (a) in an underground parking, (b) in the rain, (c) behind a misaligned vehicle, (d) behind a
wall, and (e) at night, and (f) a suddenly appearing pedestrian detected as a nondangerous pedestrian (false negative).

TABLE I
RESULTS OF A 10-H DRIVE (∼236 km, ∼540 000 IMAGES)

positive/frame. Only one missed warning out of 11 was due
to a pedestrian misdetection; the others are caused by either
alert misses or delayed detections. However, in these cases,
even if the warning signal is not promptly issued to the driver,
the automatic brake would have stopped the vehicle, avoiding
the crash if the pedestrian would have been in a dangerous
situation.

All pedestrians into the deceleration area are localized (no

false negatives): Five fall under case 2, whereas eight fall

under case 3. No false positives are present, due to the special

attention paid to develop this SDS approach. Anyway, it is im-

portant to note that, for safety reasons, given that the tests were

performed in real traffic, the size of the deceleration area was

increased; nevertheless, the system behaved very satisfactorily.

Table I summarizes the results.

The limited number of dangerous events requiring the inter-

vention of our safety system is not surprising: During normal

driving, dangerous situations are not frequent; in addition, we

staged some of them to challenge our system.

The analysis of the results obtained during the test also

highlighted good results in the case of rain, when pedestrians

Fig. 19. Processing time versus the number of analyzed areas.

with umbrellas were detected as well. Anyway, the system is

not able to discriminate between multiple pedestrians moving

together or in situations in which the laser scanner is not able

to obtain a clear picture, e.g., when pedestrians hold bags or

other large objects. Moreover, suddenly appearing pedestrians

walking very slowly or pedestrians under very critical lighting

conditions can be missed.

Fig. 19 shows the processing time at the variation of the

number of analyzed areas. (The values are computed using

a Core-2-Duo PC running at 2.0 GHz.) Considering that the

laser scanner works at about 20 Hz, full-speed processing is

achieved.
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TABLE II
MAIN STEPS OF THE ALGORITHM AND THE MAIN ADVANTAGES

OVER TRADITIONAL SYSTEMS

VI. CONCLUSION

This paper has presented a new scheme to increase safety and
possibly avoid collisions with vulnerable road users. Instead of
implementing a generic pedestrian-detection system, followed
by both a validation step and the assessment of the danger level,
this work has proposed an innovative approach: Whenever a
specific environment structure is detected (i.e., stopped vehicles
that may hide pedestrians), the possible presence of pedestrians
is checked in specific areas only.

Not only does this solution approach the problem from a
different perspective with respect to traditional implementa-
tions, but it also focuses on a particularly critical environment,
which is typical of urban accidents. In addition to directly
providing detections of dangerous situations, it also boosts
timing performance since the computationally intensive part,
i.e., vision-based pedestrian recognition, is performed only on
limited portions of the image.

The system was developed to tackle a very specific yet very
common scenario, whereas it does not cover the many other
dangerous situations that may occur in an urban environment.
The search for all the pedestrians present inside the so-called
driving corridor can generalize the system yet maintain the
scenario-driven approach, as the search is performed only in
a corridor dynamically built using laser scanner data. As a con-
clusion, Table II summarizes the main steps of this system and
highlights the specific advantages over traditional pedestrian-
detection systems.
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