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A New Approach to Vector Median
Filtering Based on Space Filling Curves

Carlo S. Regazzoni,Member, IEEE,and Andrea Teschioni

Abstract—The availability of a wide set of multidimensional
information sources in different application fields (e.g., color
cameras, multispectral remote sensing imagery devices, etc.) is the
basis for the interest of image processing research on extensions
of scalar nonlinear filtering approaches to multidimensional data
filtering.

In this paper, a new approach to multidimensional median
filtering is presented. The method is structured into two steps.
Absolute sorting of the vectorial space based on Peano space
filling curves is proposed as a preliminary step in order to
map vectorial data onto an appropriate one-dimensional (1-D)
space. Then, a scalar median filtering operation is applied. The
main advantage of the proposed approach is the computational
efficiency of the absolute sorting step, which makes the method
globally faster than existing median filtering techniques. This
is particularly important when dealing with a large amount of
data (e.g., image sequences). Presented results also show that the
filtering performances of the proposed approach are comparable
with those of vector median filters presented in the literature.

I. INTRODUCTION

T HE development of image processing methods for filter-
ing and segmentation of vectorial information is becom-

ing more and more important, thanks to the availability of
a large amount of vectorial data. Noise filtering and enhance-
ment of color images and of multispectral remote-sensing data
are examples of applications where vectorial information must
be processed.

Many sophisticated methods for scalar image processing
are available that have been developed for grey-level image
processing. A direct extension of such methods to the multi-
variate case can be performed by separately applying a scalar
method to each component of a vectorial image. However, in
many cases, this generalization exhibits several drawbacks, the
most important of which lies in not exploiting interchannel
correlation. A further consequence of this approach is that
computational complexity increases linearly with the number
of channels. Therefore, the study of new methods becomes
necessary to realize efficient vectorial counterparts of scalar
methods.

In this paper, an image filtering method is proposed. The
proposed filter aims at extending median filters to the vectorial
case by using a more flexible and more computationally
efficient method.
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In particular, the reduced vector median filter (RVMF) is
introduced that has been derived directly from the concept of
vector median filter (VMF). The VMF [1] is defined as the
generalization of the scalar median filter [2] to the case of
vector-valued signals.

The RVMF operates a vectorial-scalar transformation fol-
lowed by scalar data ordering instead of directly realizing a
median on the vectorial data, as for the VMF. The proposed
transformation is based on the concept of space filling curves
[3], [4].

In Section V, it is shown that our method exhibits a much
lower computational complexity than other VMF implementa-
tions, and it is demonstrated that the RVMF performances are
comparable to those of other VMF realizations.

The paper is organized as follows. Sections II and III
provide a general description of the VMF and an introduction
to the problem. Section IV focuses the attention on the chosen
space filling curve and Section V shows the performances of
the proposed algorithm. Section VI concludes the paper.

II. V ECTOR MEDIAN FILTERS

The use of the median operator in image processing was in-
troduced by Tukey [5]. The median filter performs a nonlinear
filtering operation where a window moves over a signal, and,
at each point, the median value of the data within the window
is taken as the output.

The median of a scalar set was
defined as the value such that

(1)

and it is known that can always be chosen as one of
the .

A statistical analysis of the median filter [2] revealed that it
outperforms the moving average filter in the case of additive
long-tailed noise, and that it is very suitable for the removal
of impulsive noise. These facts make the median filter very
attractive for digital image filtering applications.

Astola et al. [1] proposed an extension of the median oper-
ation to vector-valued signals, introducing some requirements
for the resulting vector median.

The median value of a vectorial set
, consisting of -variate samples, i.e.,

, is defined as

(2)
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The extended definition implies that the vectorial operator has
properties similar to those of the median operation in the scalar
case, and also implies that the vector median is reduced to
the scalar median when the vector dimension is one. Such a
definition of the VMF requires that the VMF output be one
of the input vectors.

One can observe that this definition of the VMF heavily
depends on the choice of an appropriate norm for the
vectorial values; the related distance is used to make a sorting
of the quantities corresponding to each vector
within the set .

The vector median can be computed by two different classes
of algorithms, depending on the way in which the sorting is
performed: absolute sorting or relative sorting.

The methods belonging to the first class use the same
strategy for the median choice as in the scalar case: A scalar
rank value is first associated with each vector on which the
sorting is made.

For example, it is possible to consider the Euclidean distance
of each vector from the origin of the -dimensional
space and then to make a sorting of the vectors within the set

according to this distance and to choose the median value
from the distances, that is

(3)

where and is an norm.
A different choice (relative sorting) to implement the VMF

may involve decomposing the minimum operation in (2) into
the following two steps.

1) Find Prototype vector within the set

2) (4)

The VMF implementations based on reduced ordering (r-
ordering) [6] adopt this strategy in order to compute the VMF
within the vectorial set .

According to the r-ordering principle, multivariate ordering
is reduced to a scalar one, where the scalar is a distance
function of the multivariate samples to a central location (i.e.,
the prototype).

The VMF implementations based on this concept may differ
in the choice of the prototype, which can be, for example, the
mean of the vectors (r-ordering) or
the marginal median (m-ordering [7]), which is the result of a
scalar median operation independently performed along each
component of the multivariate samples.

The presented methods usually choose the prototype vector
using the modulus information of each vector. Further imple-
mentations of VMF based on relative sorting are presented
in [8] and [9]. In such algorithms, the prototype vectors are
chosen on the basis of the angular distance between the vectors
instead of rank information like that used by the previously
presented vectors.

The main advantage of absolute sorting methods is that it is
possible to compute the VMF in only one step, so they exhibit
a much higher computational efficiency than relative sorting
methods.

Fig. 1. Space filling curve used in image scanning algorithms.

A further consideration concerns the fact that absolute
sorting can be easily extended to other kinds of filters, such
as rank-order filters or morphological filters.

In this paper, we propose a new vector sorting approach. To
this end, the concept of space filling curves is exploited. The
proposed approach is of the absolute type, so the necessity for
choosing a reference vector for sorting can be avoided.

The problem of mapping a multidimensional space into
one-dimensional (1-D) space has long been considered an
important one in the image processing literature. Space filling
curves represent a possible solution to this problem. Space
filling curves can be defined as a set of discrete curves that
make it possible to cover all the points of a-dimensional
vectorial space. In particular, a space filling curve must pass
through all the points of the space only once, and makes it
possible to realize a mapping of a-dimensional space into
a scalar interval.

In Fig. 1 it is possible to observe quite a complicated two-
dimensional (2-D) filling curve useful for an image scanning:

By means of a space filling curve, for example, a set
of bidimensional elements may be reduced to a list of 1-
D elements, representing the curvilinear abscissa of the 2-D
points along the curve itself.

The space filling curves have been used in cryptography
problems; Alexopouloset al. [10] generated a family of scan-
ning patterns for the protection of picture data in transmission.
An image is scanned in a different way, as compared with
the raster-scan technique: The result of this new scanning is
the generation of a list of image pixels to which the inverse
scanning can be applied in the detection phase in order to
recover the original image. An image scanning method based
on space filling curves has also been employed by Quweider
and Salari [11] and by Kamataet al. [12] in order to obtain
an algorithm for image compression and coding: This method
allows one to fully exploit the correlation between adjacent
pixels. Image coding algorithms based on space filling curves
have been proven to be much better than raster methods.

III. PROBLEM DEFINITION

We used the concept of space filling curves as a starting
point in order to derive a vector sorting algorithm. Let us
consider, for example, the filling curve described above. As
mentioned earlier, the curve makes it possible to cover all the
points of a -dimensional space continuously and once. It is
then possible to associate with each point in the-dimensional
space a scalar value that is directly proportional to the length
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of the curve necessary to reach the point itself starting from the
origin of the coordinates. Vector sorting may be reduced to the
simple sorting of the scalar values associated with each vector.

The problem is stated as follows: Let be the set of vectors
that have to be sorted. As previously said, the VMF can be
defined as the vector that minimizes the cost
function

(5)

That is

(6)

The proposed filter is the RVMF, and its output is the vector
that minimizes the cost function defined as

(7)

where is a biunivocal transformation that allows
a vectorial-scalar transformation, and in our case

(8)

The only requirement to be met is that the functionbe
invertible, i.e., that exist.

The main advantage of the choice of such a cost function
is that it is not necessary to define an appropriate vector norm

for the -dimensional space, as the norm can be
univocally chosen.

The algorithm by which we can find the vector may
be decomposed into three steps:

1) Compute for all

2)

3)

(9)

The first step is the application of the function to
each vector belonging to the set , followed by a scalar
median operation performed on the set of transformed values

: The result provided by the RVMF is eventually
given by the antitransformed value of the median among the
transformed values.

Before carrying out the minimum operation that leads to
the vector median, we introduce into the proposed definition
a vectorial-scalar transformation that allows us to simplify
the solution of the problem itself. Through the use of filling
curves, we also obtain a remarkable reduction in computational
complexity, as compared with previous algorithms for vector
sorting, and a considerable decrease in the processing time,
thus obtaining comparable results, even though with a loss in
terms of signal-to-noise ratio (SNR) performances.

IV. THE CHOSEN SPACE FILLING CURVE

A space filling curve , associated with a 2-D lattice
allows the association of a scalar value with a-dimensional

vector in a discrete vectorial space as

1)

2)

3)

(10)

For each , the arc length is defined as

(11)

where exists, whereas the parameter represents the
curvilinear abscissaof the curve.

A filling curve makes it possible to cover, as the parameter
varies, all the points of the discrete vectorial space, so

that each point is crossed only once, i.e.,

If and then
(12)

In accordance with (12), a filling curve substantially makes a
scanning operation of the space and it generates a list of
vectors in which there is no repetition of the same
element .

An important consequence of the definition of filling curve
is that the curve is invertible, i.e.,

If then
(13)

So far, the characteristics of a general space filling curve have
been introduced. Let us now examine the required properties
of the specific class of filling curves used in this paper to
define the RVMF.

The curve we are searching for should reflect a “natural”
ordering of vectors in the space. In particular, it should
be regular, and it should avoid irregular jumps similar to the
ones in the curve of Fig. 1.

In fact, a filling curve like the one of Fig. 1 presents two
main disadvantages, as follows, due to the fact that jumps
between close vectors in the space are not uniform:

• There is a “suboptimal” mapping of closeness properties
in the space onto the 2-D filling space (i.e., ordering
does not follow a natural, continuous rule, but it is subject
to “jumps”).

• Computation of the arc length could be complex.

The first point expresses a local constraint on the absolute
ordering we are searching for. In particular, we can define an
optimal mapping in the following way.

Let us define
to be a neighborhood set of the pointin the space and

be a neighborhood set
of points in the space.

Then we say that a space filling curve is optimal if all the
points belonging to the neighborhood set ofin the space
are close to (i.e., such that ) in the space, too.

In a formal way it can be expressed as

card

card (14)
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For example, if , then card , so that it is
possible to say that the optimality constraint implies that there
exist two points and that are close to in the

space and which map onto the two elements of .
This clearly does not hold in the curve of Fig. 1.

There does not exist a unique space filling curve that
satisfies the above requirements, so that it is necessary to
introduce some additional criteria. To this end, we note that
the desired curve should be able to generate a sorting of the
space points, which maintains, at best, modulus and angular
information.

In this paper, we define a strategy to design a curve where
a greater weight is given to the first requirement (i.e., rank
preservation according to modulus information).

Let us define the of as

(15)

According to (15), the following property has to be valid.
Given two vectors

If then
(16)

In such a way, a higher value of the parameterwill be
associated with vectors having a larger distance
from the origin, and vice versa. The resulting curve can
be imagined as consisting of successive layers, increasingly
ordered according to the value.

Within each layer, the curve is chosen in such a way as
to preserve angular information at the best. Among the set of
space filling curves satisfying (14) and (16), a particular filling
curve has been chosen, according to the latter observation.

The case of a bidimensional space will be first
illustrated for two reasons. The first one is that some concepts
and demonstrations are easier to be understood in the 2-D case,
and they can be extended to the three–dimensional (3-D) case
with a direct generalization.

The second reason is that the 2-D case can be very in-
teresting by itself because it has several applications (e.g.,
displacement field motion field filtering).

A. The 2-D Case

In the 2-D case, the filling curve is reduced to a function
which associates with a scalar value a vector in the 2-D

space, that is

(17)
The graphic representation of the chosen filling curve in the
2-D space (see also [13]) is the following.

The dependence of the components of each vector on the
parameter is expressed in a graphic way by these relations:
The direct relations joining the components and of

Fig. 2. Graphic representation of the chosen 2-D filling curve.

to the parameter are

(18)

The decomposition into function series of the two vector com-
ponents reveals that they can be interpreted as a superposition
of the same basis function translated along the axis.

Let us define the basis functions and as

(19a)

(19b)

Fig. 4(a) and (b) illustrates in a graphic way the behavior of
and .

The shape of the generic-order basis function is
defined starting from the first order function in the
following way ( can be interpreted as an offset term
depending on the chosen starting point of the curve):

(19c)

Using (19c) it is possible to observe that the shape of the basis
function is periodically repeated in (18) scaled up and
dilated along the axis.

From (18) and (19c) it is possible to demonstrate that the
regularity of the reiterations of the basis functions strongly
depends on the parameter.

A further interesting property of the proposed filling curve
is

(20)
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(a)

(b)

Fig. 3 (a)–(b) 2-D components of the chosen filling curve.

(a)

(b)

Fig. 4. (a)–(b) Graphic representation of the 2-D basis functions.

where we define and that

(21)

In the case of the chosen filling curve, the arc length of
the curve is coincident with its curvilinear abscissa. Fig. 5
illustrates in a graphic way such properties.

It is now necessary to demonstrate that (14) and (16) are
satisfied in the case of the chosen space filling curve. The
chosen filling curve performs an optimal mapping for a
neighborhood system with , so that card

.
Let us see how, starting from a chosen vector, it

is possible to calculate the corresponding valueof the
curvilinear abscissa.

Fig. 5. Graphic representation of the derivatives ofx1k(t) andx2k(t).

If , then, by definition of and
by construction

and (22)

The value could be even or odd; it means that, if
and

or (23)

Let us suppose, without a loss of generality, that ;
if we define

(24)

we will have

(25)

By construction and by definition of

(26)

According to (20) and (26) it must be and
and the following statement will hold:

(27)

The obtained functions allow us to associate with each scalar
value a point in the 2-D space ; conversely, it
is possible to transform a point in the 2-D space into the
corresponding scalar value.

There is quite a complicated analytic relation that binds, in
this case, the parameter to the components and
of : div is the integer division,mod is the remainder of the
integer division, and , as follows:

even odd

hist

(28)

Expression (28) can be decomposed into four main terms,
i.e., even, odd, hist, and : In Appendix A the relations
between these terms and (18) and (19) definitions and the
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Fig. 6. C-like algorithm for the computation of�1 in 2-D case.

demonstration of validity of (16) for the chosen filling curve
are presented.

Consequently, the ranking of vectors can be performed
according to thearc length of the filling curve at different
2-D space points.

The C-like algorithm for the computation of the arc-length
is described in Fig. 6.

The algorithm is simple and computationally efficient.

B. The 3-D Case

The generic expression of the 3-D space filling curve is
expressed by

(29)

To design a space filling curve able to be used for color image
processing it is necessary to extend results obtained in the
2-D case to the 3-D case.

The extension of the 2-D filling curve to the 3-D space
is performed in order to preserve, as much as possible, the
characteristics of the described curve for the 2-D case: in
particular, in a similar way with respect to the 2-D case, the 3-
D filling curve can be imagined as an expansion of successive
increasing layers, ordered according to the value of
each 3-D vector.

A possible strategy is to impose that the 3-D filling curve
crosses all points at the same value in a continuous
way, e.g., by covering in a ordered way the three sides of a
cube.

In this way, it is possible to think that the behavior of the 3-
D filling curve on a single side of the cube having
will reflect the behavior that the 2-D filling curve follows in
the 2-D space.

Moreover, it was shown in the 2-D case that it is possible
to find a relation which allows to associate a scalar value,
representing the arc length of the filling curve, with a vector

.
In Appendix A it is also shown that such a relation is

composed by a term representing the history of the curve up to
the considered layer and by an “updating” term, which gives
the shift of the vector within the layer itself and that the
hist term increases in a quadratic way according to .

This is mainly due to the fact that, as it can be easily seen
from Fig. 2, the arc length of the curve from the origin to one
of the points or is equal to the number of points
of the square of side , that is .

From Fig. 2 it is also possible to note that the behavior of
the curve in the 2-D space can be considered as an oscillatory
path from one coordinate axis to the other one.

This behavior is reflected into the basis function as a
scaled-up mirroring of the semitrapezoidal shape correspond-
ing to the path itself.

A curve with a similar behavior in the 3-D case is shown
in Fig. 7.

On this basis, we can define the curve of Fig. 7 in an analytic
way as

(30)

where a basis function is used.
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(a)

(b)

(c)

Fig. 7. Graphic representation of the chosen 3-D filling curve: the curve
starts inA in (a) and ends inB; the curve starts inB in (b) and ends inC;
the curve starts inC in (c) and ends inD.

The parametric behaviors of the components of the 3-D
vector scanned by the curve are represented in a graphic way
as shown in Fig. 8(a)–(c).

These relations can be considered as a generalization of
expression (18).

(a)

(b)

(c)

Fig. 8. (a)–(c) 3-D components of the chosen filling curve.

A regularity is also present in the 3-D components, as in the
2-D case: This corresponds to a well-defined path followed by
the 3-D curve on the different sides of the cube.

The possible behaviors of the coordinates expressed
by the basis function are a periodic repetition, scaling up,
mirroring and dilation along the axis.

In particular, we can observe that the coordinate
remains constant when the side of the cube corresponding
to the plane is crossed.

To better understand the behavior of , it is possible
to fix a certain layer of the 3-D cube and to examine the
dependence of each component of the 3-D vector on the
parameter within the layer.

If the curve of Fig. 8 is chosen, the following graphic
expression is obtained, for example, for at the layer

.
In general, each 3-D component can be expressed as a

series function depending on the basis function : This
is consistent with the fact that, on a single 3-D layer, the
behavior of the curve on each side of the cube is the same
followed by the 2-D curve in order to cover all the points of
the 2-D space.

Along the same face, the other coordinates correspond to a
scaled-up and truncated version of either a normal or
a mirrored version of the basis shape [see Fig. 4(b)]
depending on the direction by which the curve crosses the
plane (see Fig. 10). In particular, if we consider the path for

shown in Fig. 9(a), the three versions , and
can be individuated:
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Fig. 9. Graphic representation of the profile ofx1k(t) at layerp = 3.

(a)

(b)

(c)

Fig. 10. C; M, andN profiles individuated on the profile of Fig. 9.

On the basis of this description it can be shown that a
coordinate crossed by the filling curve periodically describes
a well-defined cycle in which it can be found in one of three
statuses (i.e., or ).

It is also possible to observe from Fig. 7 that the same
behavior of the curve in the 3-D space is repeated after a
number of layers equal to the dimension of the input vector
(i.e., three).

This justifies the periodicity by which the different coordi-
nates are expressed in (30).

It is also possible to demonstrate that, also in the 3-D case,
properties (20) and (21) can be generalized to

(31)

(32a)

(32b)

(32c)

Also in this case, the arc length of the curve is coincident
with the curvilinear abscissa.

The analytic relation that gives the arc-length in the 3-D
case is

(33)

Also in this case,div is the integer division,mod is its
remainder, and .

The is nonzero only if is equal to zero,
and so on for and .

The hist term contains the previous history and

(34)

is nonzero if and iff and and
are equal to zero.

We can see that (31) is of the same kind of (28), even if,
in the 3-D case, thehist term obeys to a cubic law because
of the fact that in this case all the points of a cube will to be
covered by the filling curve. From Fig. 7, one can easily see
that the arc length of the curve from the origin to one of the
points or is equal to the number
of points of the cube of side , that is, .

In the 3-D case, in order to calculate the arc length of the
chosen filling curves, three operations will be necessary: A
maximum computing in order to find which has
to be selected, another maximum computing, made only on
two numbers (i.e., the two coordinates that do not correspond
to the maximum previously calculated), which corresponds to
the maximum calculation made in the case of the 2-D filling
curve, and finally a shift calculation which, as in the 2-D case,
normally consists in an addition operation.

We could expect that in the case of the relation
binding the parameter to the -D components of a filling
curve appropriately designed would be composed by a hist
term (e.g., is the side of the layer of the-D hypercube)
and by a term which gives the shift of the considered vector
within the layer with side .

More in general, in order to calculate the arc length of a-
dimensional filling curve designed by extending the 2-D and
3-D presented curves, it will be necessary to progressively
transform a -dimensional vectorial space by computing

maxima within sets whose dimension is progressively
decreased: At the th calculation, the vectorial space
is reduced to a scalar one and the “updating” term to be added
to hist can be calculated.

In a more complicated way than in the 2-D case, it can be
demonstrated that such a choice of the filling curve will satisfy
the properties (14) and (16). In particular, in order to demon-
strate the validity of (16), we can refer to the demonstration
of Appendix A, because if we choose the particular side of
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the 3-D on which we are, we come back, as we already said,
to the 2-D situation, and then the demonstration of Appendix
A is valid.

The -like algorithm to compute the arc-length in the 3-D
case is shown in Fig. 11.

C. The 3-D RVMF

Immediately successive to the choice of the filling curve is
the introduction of the transformation, which is defined for a
vector and for the chosen 3-D filling curve as

(35)

After having computed, for each vector the value,
it is possible to rank the vectors within a mask and to
compute the scalar median as in [2].

The RVMF output is given by

(36)

where .

V. RESULTS

In this section, an application of the proposed method to
color image filtering is presented.

RVMF filter performances are evaluated, and RVMF is
compared with

1) marginal median[7] (i.e., ordering performed along each
component of the multivariate samples);

2) r-ordering about the mean[6] (i.e., ordering of the
multivariate samples according to their distances to a
preselected central location, in such case the mean of
the multivariate samples);

3) (Conditional)-ordering[6] (i.e., ordering of only one
of the components—other components are simply listed
according to the position of the ranked component);

4) VMF with Square Euclidean Distance[6] (i.e., ordering
performed according to the square modulus of each
vector);

in terms of signal-to-noise ratio (SNR). The test image selected
for the comparison is the color version of Lena. The test image
has been contaminated using Gaussian and “salt and pepper”
impulsive noise source models: A correlation factor
between the components of the vectorial noise is used in the
experiments.

The SNR has been used as quantitative measure for evalu-
ation purposes. It is computed as

SNR

(37)

where and are the image dimensions, and
and denote the original image vector and the estimation

at pixel , respectively.
Table II summarizes the results obtained for the test image

Lena for a filter window 3 3: The noise corruption types
are illustrated in Table I.

TABLE I
NOISE DISTRIBUTIONS

One can observe that the filter produces comparable results
with the r-ordering implementation, which is currently con-
sidered the filter that gives better performances, in the case
of impulsive noise; as expected, the performances are a few
worse for Gaussian noise, since the proposed transformation
is based on a nonlinear distance.

Moreover, r-ordering performs a relative sorting, which usu-
ally produces better results than absolute sorting; a comparison
with methods based on an absolute sorting has been also made.

For example, RVMF gives almost the same performances
in terms of SNR as the marginal median, while performances
of RVMF are usually better than c-ordering and VMF ones.

A comparison also has been made between RVMF and mar-
ginal median in terms of computational complexity; marginal
median has been chosen because of its simplicity and because
of the fact that it provides optimal computational performances
among absolute sorting-based methods.

For each pixel of a -dimensional image a window
with points is considered. Marginal median requires
sorting operations: Since each sorting requires, as an average
term, comparisons [16] ( being the cardinality of
the set to be sorted), then globally for the whole image, the
marginal median will require
comparisons).

If a Sun SparcStation 20 is chosen, for each comparison one
clock cycle is required [15]. Then marginal median operation
will require clock cycles.

For what concerns RVMF, it has been shown that the
following operations are necessary for an image:

1) maximum calculations one
addition , as an average;

2) scalar median operation.

One also has to consider that, for each maximum calculation
the set of elements to be sorted is decreased each time of one
element itself. The Sun SparcStation 20 workstation requires
one clock cycle also for the addition, so the global number of
clock cycles required by RVMF are

(38)

Fig. 12 shows the behavior of the computational complexity
(measured as clock cycles necessary for each pixel of an
image) of the two methods, by using as independent variable
the dimension of the space and after having fixed a mask
dimension : One can see that the complexity is much
lower in the case of the RVMF, even if there is the possibility
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TABLE II
SNR (dB) FOR THE LENA IMAGE, WINDOW 3 � 3

Fig. 11. C-like algorithm for the computation of�1 in 3-D case.

Fig. 12. Computational complexity of RVMF and marginal median.

that for a high value of marginal median could become
better.

Finally, qualitative results concerning the application of
RVMF, marginal median, and r-ordering MF to three sample
noisy images are presented; Lena in Fig. 13 has been corrupted
by 4% impulsive noise, the squirrel image of Fig. 14 by 6%
impulsive noise, and the house of Fig. 15 by 8% impulsive
noise. From the visual point of view, r-ordering gives the best
performances, but one can also see that performances achieved
by RVMF are always comparable and in some cases (e.g., in
Fig. 14) better than ones obtained by marginal median filter.

VI. CONCLUSION

In this paper, an image filtering method, called the reduced
vector median filter (RVMF), has been proposed. The filter

implements a new approach for extending median filters to
vectorial data.

The ranking operation for multivariate data is performed by
a step in which the filter operates a vectorial scalar transfor-
mation followed by scalar data ordering instead of directly
realizing a median on the vectorial data. The transformation is
based on the concept of a space filling curve.

The general characteristics of space filling curves have been
examined and particular curves chosen for the transformation
are presented for the 2-D and 3-D curves. Peculiarities of this
curve have been presented and an application of the method
to color image filtering has been discussed.

Results have shown the good computational efficiency of
the proposed method.

Since the presented method is based on absolute sorting
of vectorial data, it seems interesting to investigate possible
extensions of the proposed approach to new rank-order filters
and morphological operators for vectorial data processing.

APPENDIX A

In order to make easier the readability of the paper, the
mathematical expressions of the termsevenand odd in (28)
are reported in this Appendix. At this end, let us examine
the superposition of the graphical expressions of and

; there are four different possibilities to be considered:
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Fig. 13. (a) Noisy (impulsive noise 4%) Lena image. (b) Lena image filtered
by RVMF. (c) Lena image filtered by marginal median. (d) Lena image filtered
by r-ordering median.

1) and even;
2) and even;
3) and odd;
4) and odd.

Fig. 14. (a) Noisy (impulsive noise 6%) squirrel image. (b) Squirrel image
filtered by RVMF. (c) Squirrel image filtered by marginal median. (d) Squirrel
image filtered by r-ordering median.

The evenfunction is composed by contributions coming from
events 1) and 2), whileodd function is composed by contri-
butions coming from events 3) and 4).Even is nonzero only
if is even, and so on forodd.
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Fig. 15. (a) Noisy (impulsive noise 8%) house image. (b) House image
filtered by RVMF. (c) House image filtered by marginal median. (d) House
image filtered by r-ordering median.

Let us find how it is possible to calculate the mathematical
expressions of the termseven is composed by. If we are in
situation 1), then (22) and (24) hold. Since within theinterval
only one value of has to be found, the profile has to be

considered and, in particular, the basis function which has to
be examined for if is, as it is also shown by Fig.
A1, , which, if , holds

(A.1.1)

and the contribution to theevenfunction given by the event
1) is then equal to .

By following the same reasoning for the events 2), 3), and
4), the following expressions ofevenandodd are obtained:

even

odd

The global expression that allows to compute the arc length,
which is composed by a “history” term and by an “updating”
term, will be then finally given by (28). Let us now demon-
strate the validity of (16) for a choice of filling curve whose
the arc length is expressed by (28) itself.

Let and be two vectors and let us impose, without
a loss of generality, and with

. It is now possible to
demonstrate that, if and .
In fact, as we have shown in this Appendix, we can write

(A.1.2)

and we have and . In the
worst case, it will be, for (A.1.2), and .
Then, we will have

(A.1.3)

and finally .
This is equal to say that (16) holds for the chosen 2-D

filling curve.
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