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A New Approach to Vector Median
Filtering Based on Space Filling Curves

Carlo S. Regazzoniyiember, IEEE,and Andrea Teschioni

Abstract—The availability of a wide set of multidimensional In particular, the reduced vector median filter (RVMF) is
information sources in different application fields (e.g., color introduced that has been derived directly from the concept of
cameras, multispectral remote sensing imagery devices, etc.) is thevector median filter (VMF). The VMF [1] is defined as the
basis for the interest of image processing research on extensions L . .
of scalar nonlinear filtering approaches to multidimensional data generalization qf the scalar median filter [2] to the case of
filtering. vector-valued signals.

In this paper, a new approach to multidimensional median The RVMF operates a vectorial-scalar transformation fol-
filtering is presented. The method is structured into two steps. |owed by scalar data ordering instead of directly realizing a
Absolute sorting of the vectorial space based on Peano sPacemedian on the vectorial data, as for the VMF. The proposed

filling curves is proposed as a preliminary step in order to ¢ f tion is based th nceot of fillin v
map vectorial data onto an appropriate one-dimensional (1-D) ransformation is based on the concept of space g curves

space. Then, a scalar median filtering operation is applied. The (31, [4].
main advantage of the proposed approach is the computational  In Section V, it is shown that our method exhibits a much

efficiency of the absolute sorting step, which makes the method |ower computational complexity than other VMF implementa-

globally faster than existing median filtering techniques. This tinng and it is demonstrated that the RVMF performances are

is particularly important when dealing with a large amount of ' ble to th f other VME lizati

data (e.g., image sequences). Presented results also show that thg0Mmparabie 0. 0se O_ other realiza IOr!S.

filtering performances of the proposed approach are comparable ~ The paper is organized as follows. Sections Il and _”'

with those of vector median filters presented in the literature. provide a general description of the VMF and an introduction

to the problem. Section IV focuses the attention on the chosen

I. INTRODUCTION space filling curve and Section V shows the performances of

HE development of image processing methods for filtetrrJe proposed algorithm. Section VI concludes the paper.

ing and segmentation of vectorial information is becom-

ing more and more important, thanks to the availability of
a large amount of vectorial data. Noise filtering and enhance-The use of the median operator in image processing was in-
ment of color images and of multispectral remote-sensing dataduced by Tukey [5]. The median filter performs a nonlinear
are examples of applications where vectorial information muitering operation where a window moves over a signal, and,
be processed. at each point, the median value of the data within the window

Many sophisticated methods for scalar image processiiggtaken as the output.
are available that have been developed for grey-level imageThe median of a scalar sV = {z;:¢ = 1---n} was
processing. A direct extension of such methods to the multlefined as the valugygp such that
variate case can be performed by separately applying a scalar .
method to each component of a vectorial image. However, in TMED = m;}gaz s = ] (1)
many cases, this generalization exhibits several drawbacks, the ‘
most important of which lies in not exploiting interchannelnd it is known thatryep can always be chosen as one of
correlation. A further consequence of this approach is thidie x;.
computational complexity increases linearly with the number A statistical analysis of the median filter [2] revealed that it
of channels. Therefore, the study of new methods beconmsgperforms the moving average filter in the case of additive
necessary to realize efficient vectorial counterparts of scalang-tailed noise, and that it is very suitable for the removal
methods. of impulsive noise. These facts make the median filter very

In this paper, an image filtering method is proposed. Thatractive for digital image filtering applications.
proposed filter aims at extending median filters to the vectorial Astola et al. [1] proposed an extension of the median oper-
case by using a more flexible and more computationalftion to vector-valued signals, introducing some requirements
efficient method. for the resulting vector median.
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The extended definition implies that the vectorial operator has A zig-zag scanning 2D filling curve
properties similar to those of the median operation in the scalar

case, and also implies that the vector median is reduced to 8 g
the scalar median when the vector dimension is one. Such a 6 M
definition of the VMF requires that the VMF output be one 4 KNS
of the input vectors. O o iy i e, b, Ty i
. _ . e s X e i
One can observe that this definition of the VMF heavily 0 B e B R TS
0 2 4 6 8

depends on the choice of an appropriate ngfm|| for the
vectorial values; the related distance is used to make a sorting x1k
of the quantities) , ||lz; — z;|| corresponding to each vector
within the setW.

The vector median can be computed by two different classes ) )
of algorithms, depending on the way in which the sorting is A further consideration concerns the fact that absolute
performed: absolute sorting or relative sorting. sorting can be easily extended to other kinds of filters, such

The methods belonging to the first class use the saf@ rank-order filters or morphological filters.
strategy for the median choice as in the scalar case: A scalal this paper, we propose a new vector sorting approach. To
rank value is first associated with each vector on which tfi@is end, the concept of space filling curves is exploited. The
sorting is made. proposed approach is of the absolute type, so the necessity for

For example, it is possible to consider the Euclidean distan€@00sing a reference vector for sorting can be avoided. -
of each vectow:; € W from the origin of thep-dimensional The problem of mapping a multidimensional space into
space and then to make a sorting of the vectors within the §8¢-dimensional (1-D) space has long been considered an
W according to this distance and to choose the median valfigPortant one in the image processing literature. Space filling

Fig. 1. Space filling curve used in image scanning algorithms.

from the distances, that is curves represent a possible solution to this problem. Space
filling curves can be defined as a set of discrete curves that
zypp = med {||z;]],} (3) make it possible to cover all the points ofpadimensional

vectorial space. In particular, a space filling curve must pass

errde.ffj < Whar}d I ”f IS an LP. horm. | h VMFthrough all the points of the space only once, and makes it
. erent choice (re_atlve sort_ln_g) to Imp em_ent_t € VMMhossible to realize a mapping ofadimensional space into
may involve decomposing the minimum operation in (2) int scalar interval

the following two steps. In Fig. 1 it is possible to observe quite a complicated two-
dimensional (2-D) filling curve useful for an image scanning:

1) Find zpgor = {Prototype vector within the sét’} By means of a space filling curve, for example, a set
. 4 idi i i _

2) zypp = arg min |lzpror — ;|- (4) of bidimensional eIemgnts may bg reduced to a list of 1
z; €W D elements, representing the curvilinear abscissa of the 2-D

The VMF implementations based on reduced ordering (#ONS along the curve itsel. _
The space filling curves have been used in cryptography

ordering) [6] adopt this strategy in order to compute the VIv”:roblems; Alexopoulogt al. [10] generated a family of scan-

within the vectorial setV. P! ; . . o
According to the r-ordering principle, multivariate orderin@'ng patterns for the protection of picture data in transmission.
4 image is scanned in a different way, as compared with

is reduced to a scalar one, where the scalar is a distath ; technique: Th It of thi o
function of the multivariate samples to a central location (i.€ ’e raster-scan technique. the resutt ol this New scanning 15
the prototype). the generation of a list of image pixels to which the inverse

The VMF implementations based on this concept may diﬁglcanning can_bg applied in th.e detection phase in order to
in the choice of the prototype, which can be, for example, yhecover the original image. An image scanning method based

mean of the Vector&zppor — %E?:lii) (r-ordering) or on space filling curves has also been employed by Quweider

the marginal median (m-ordering [7]), which is the result of gnd Isalirr'] [1f1] a}nd by Kamatet "?“' [12]d|n oOrIQer. t_lc_)hpbtalr;h q
scalar median operation independently performed along ef{fbagor' mt ofr “nage (I:O_Tt%ressmn Ia?' C% '?g' 'S(;T*e Ot
component of the multivariate samples. allows one to fully exploit the correlation between adjacen

The presented methods usually choose the prototype ve<§3ﬁels' Image coding algorithms based on space filling curves

using the modulus information of each vector. Further impl lave been proven to be much better than raster methods.

mentations of VMF based on relative sorting are presented
in [8] and [9]. In such algorithms, the prototype vectors are
chosen on the basis of the angular distance between the vectois/e used the concept of space filling curves as a starting
instead of rank information like that used by the previouslgoint in order to derive a vector sorting algorithm. Let us
presented vectors. consider, for example, the filling curve described above. As
The main advantage of absolute sorting methods is that itmeentioned earlier, the curve makes it possible to cover all the
possible to compute the VMF in only one step, so they exhilpbints of ap-dimensional space continuously and once. It is
a much higher computational efficiency than relative sortirthen possible to associate with each point ingtdimensional
methods. space a scalar value that is directly proportional to the length

Ill. PROBLEM DEFINITION
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of the curve necessary to reach the point itself starting from tihiector in a discrete vectorial spaé¢€ as
origin of thg coordinates. Vector sorting may be reduced to the Vry:Z—K KcCzv
simple sorting of the scalar values associated with each vector.

The problem is stated as follows: Lt be the set of vectors 2) y(tr) = i (te) = {z(te), - zpe(te)}  (10)
that have to be sorted. As previously said, the VMF can be itreZ, z,€K.
defined as the vectat,, € W that minimizes the cost . .
function MED For eachz,,, thearc lengthI'(t;) is defined as
148 tr p
T =2 Nl =l © vy = [ @lar= [\ S ara ay
i 0 0 i=1
That is where 4 exists, whereas the parameter represents the
— are min J 6 curvilinear abscissaof the curve.
LvED = A8 B (z;). 6) " Afilling curve makes it possible to cover, as the parameter

t;, varies, all the points of the discrete vectorial sp@ceso
The proposed filter is the RVMF, and its output is the vectahat each point is crossed only once, i.e.,
zyep that minimizes the cost function defined as Vo, € K3t : 2(t) = zy(th)

J(T(z,;) = > | T(x;) — Tlzy)| (7) If #,t € Z andty, # t; theny(ty) # v(t).
‘ In accordance with (12), a filling curve substantially makes a
whereT : ZP — Z is a biunivocal transformation that allowsScanning operation of th& space and it generates a list of

(12)

a vectorial-scalar transformation, and in our case vectorsz; € I in which there is no repetition of the same
elementg;,,.
Typp = arg min J(T'(z;)). (8) An important consequence of the definition of filling curve
2, €W is that the curve is invertible, i.e.,
The only requirement to be met is that the functiénbe If v(tx) = z; then (13)
: ; : 1o
invertible, i.e., thatl’~* exist. K — Z iy Nz = e

The main advantage of the choice of such a cost function

is that it is not necessary to define an appropriate vector noffl far, the characteristics of a general space filling curve have
| - ||, for the p-dimensional space, as the norm can be been introduced. Let us now examine the required properties

univocally chosen. of the specific class of filling curves used in this paper to
The algorithm by which we can find the vectey;,, may define the RVMF.
be decomposed into three steps: The curve we are searching for should reflect a “natural”
ordering of vectors in thel space. In particular, it should
1) ComputeT'(x,) for all z, € W be regular, and it should avoid irregular jumps similar to the
2) T(z*) = med {T(z;)} (9) ones in the curve of Fig. 1.

In fact, a filling curve like the one of Fig. 1 presents two
main disadvantages, as follows, due to the fact that jumps

The first step is the application of the functidf(-) to between close vectors in th€ space are not uniform:

each vector belonging to the sét, followed by a scalar * There is a “suboptimal” mapping of closeness properties
median operation performed on the set of transformed values in the K space onto the 2-D filling space (i.e., ordering

T'(z;): The resultz,,p, provided by the RVMF is eventually does not follow a natural, continuous rule, but it is subject
given by the antitransformed value of the median among the t0 “‘jumps”).

transformed values. « Computation of the arc length could be complex.

Before carrying out the minimum operation that leads tdhe first point expresses a local constraint on the absolute
the vector median, we introduce into the proposed definitimmdering we are searching for. In particular, we can define an
a vectorial-scalar transformation that allows us to simplifgptimal mapping in the following way.
the solution of the problem itself. Through the use of filing Let us defineNg(z) = {y : v € K, ||y,z|| < df\{z}
curves, we also obtain a remarkable reduction in computationalbe a neighborhood set of the pointin the X space and
complexity, as compared with previous algorithms for vecta¥z(t,) = {t., : |tm —tx|? < d’}\{tx} be a neighborhood set
sorting, and a considerable decrease in the processing tiwiet, points in theZ space.
thus obtaining comparable results, even though with a loss inThen we say that a space filling curve is optimal if all the
terms of signal-to-noise ratio (SNR) performances. points belonging to the neighborhood settpfin the Z space
are close ta: (i.e.,z such thaty(z) = #;) in the K space, too.

In a formal way it can be expressed as

3) zypp = T HT(2")).

IV. THE CHOSEN SPACE FILLING CURVE

A space filling curvey, associated with a 2-B x N lattice ~ card{ti : ti € Nz(tx),v(z) = t, Iv(y) = ti,y € Ne(2)}
S allows the association of a scalar value with-dimensional = cardVz (tx) (14)
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For example, ifd’ = 1, then cardNz(¢;) = 2, so that it is The 2D chosen filling curve
possible to say that the optimality constraint implies that there

exist two pointsy, andy, € N (z) that are close ta in the 6 [ pep—————————
K space and which map onto the two elementsVof(¢s). 4 b ‘
This clearly does not hold in the curve of Fig. 1.

There does not exist a unique space filling curve that
satisfies the above requirements, so that it is necessary to 0
introduce some additional criteria. To this end, we note that
the desired curve should be able to generate a sorting df'the x1k
space points, which maintains, at best, modulus and angular rig. 2. Graphic representation of the chosen 2-D filling cuve
information.

In this paper, we define a strategy to design a curve Whegehe parametet;, are
a greater weight is given to the first requirement (i.e., rank

x2k

preservation according to modulus information). L%J
Let us define thd| - ||max Of z; as z1p(ty) = Z hopt1(te — (2p+1)?) >0
(18)
||£k||max = InaX{.’L'lk, Tty xpk} (15) L%J
zax(tr) = Z hap(tx = (2p)?) > 0.

According to (15), the following property has to be valid. p=0

Given two vectorsg,, z; € I The decomposition into function series of the two vector com-
ponents reveals that they can be interpreted as a superposition
of the same basis functial,(¢) translated along the, axis.

Y(tr) = 2y, v(t) = 2y, (16)  Let us define the basis functiong(t) and h,(t) as

If ||£k||max > ||£l||max thent;, > 4.

t te[0,1)
In such a way, a higher value of the parametgrwill be ho(t) = 1—t+3 ig E’g; (19a)
associated with vectors having a larggr ||ma.x distance 0 [374’]
from the origin, and vice versa. The resulting curve can ¢ te0,1)
be imagined as consisting of successive layers, increasingly 1 teL,2)
ordered according to thi - ||ma.x Value. i—1 te[2,3)
Within each layer, the curve is chosen in such a way as hi(t) =9, fe [3’ 5) (19b)
to preserve angular information at the best. Among the set of —t+7 te [5: 7)
space filling curves satisfying (14) and (16), a particular filling 0 te[7,8).

curve has been chosen, according to the latter observation, . ) ) , .

The case of a bidimensional spage — 2) will be first Fig. 4(a) and (b) illustrates in a graphic way the behavior of
illustrated for two reasons. The first one is that some conceﬁ&(t) and Ay (t). . . . .
and demonstrations are easier to be understood in the 2-D cas& '€ Shape of the generjg-order basis functiorh,,(t) is

and they can be extended to the three—dimensional (3-D) c4€dned starting from the first order functid;(¢) in the

with a direct generalization. following way (ho(t) can be interpreted as an offset term

The second reason is that the 2-D case can be very ffPending on the chosen starting point of the curve):
teresting by itself because it has several applications (€.9.h,(t)

displacement field motion field filtering). phi(t/p) t e [0,2p)
t—p te2p,2p+1)
= +1 2 2p+1
A. The 2-D Case I’Thl(mt—2g’T+3) te2p+1,4p+3)
In the 2-D case, the filling curve is reduced to a function 0 t€[dp+3,4p+4).
~ which associates with a scalar value a vector in the 2-D (19c¢)

space, that is Using (19¢) it is possible to observe that the shape of the basis

function h,(t) is periodically repeated in (18) scaled up and
v:Z — Ky, KyCZ? Ky=1[0,X1max] X [0, Xomax] dilated along thet, axis.
v(tr) = (zx(te), 22, (t)). From (18) and (19c) it is possible to demonstrate that the
(17) regularity of the reiterations of the basis functions strongly
The graphic representation of the chosen filling curve in tifiepends on the parametgy.
2-D space (see also [13]) is the following. A further interesting property of the proposed filling curve
The dependence of the components of each vector on thds
parametet;, is expressed in a graphic way by these relations:

X — -2 2 —
The direct relations joining the components, and z»;, of 7Ol = o) +int) =1 vteZ (20)
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dx 1k/dt (solid line) vs dx2k/dt (dotted line)

e

x1K(t)

[ I B I L 2 I BN
L b j
3 T 43

Fig. 5. Graphic representation of the derivativest@f (¢t) and .z (¢).

% If ||Z4]lmax = Z1x = A, then, by definition off,(¢) and
by construction
A:mE)=A and z3(E)=0 teZ (22)
t The [ value could be even or odd; it means that] i€ Z
(b) andr € Z
Fig. 3 (a)-(b) 2-D components of the chosen filling curve (l =% + 1) or (l — 27,)' (23)
ho(t) Let us suppose, without a loss of generality, tfiat 2r +1);
if we define
""""" T={2+2+1,2+31+2} (24)
‘ ’ : we will have
0 1 2 3 4 A = max hy(t — 12). (25)
\ tel
(@) By construction and by definition df,(¢)
h1(t) E1x(t) = hy(t=1%) = 0. (26)
tcl tel

According to (20) and (26) it must bé(t),.r = +1 and
y(t);cr € (0, 4) and the following statement will hold:

o 1 2 3 4 5 & 7 8 At eI a(f) = Tar. (27)
t The obtained functions allow us to associate with each scalar
(b) value ¢;, a point in the 2-D spacéz;;,x2r); conversely, it

Fig. 4. (a)—(b) Graphic representation of the 2-D basis functions. 1S possible to transform a point in the 2-D space into the
corresponding scalar valug.
There is quite a complicated analytic relation that binds, in

where we defineii,(t) = @k (t+) and that this case, the parametéf to the components;; and o
] ] of 4: div is the integer divisionmod is the remainder of the
(t)aa(t) =0 Ve Z (1) integer division, andd = max(z 1y, z2:), as follows:

_ 1
In the case of the chosen filling curve, the arc length of tx =7 (@1, Tak)

the curvey is coincident with its curvilinear abscissa. Fig. 5 = {even(z1y, zar) + oddz 1, z2y)
illustrates in a graphic way such properties. Adiv2

It is now necessary to demonstrate that (14) and (16) are + hist(z s, z2x) } * <A—>
satisfied in the case of the chosen space filling curve. The 3 —Amod2
chosen filling curve performs an optimal mapping fa¥a(¢) Adiv?2
neighborhood system withd/ = 1, d = 1, so that card + max 1(z1y, wox) ¥ <1_ m)- (28)
Nz(ty) = 2. 2

Let us see how, starting from a chosen veckgy, it Expression (28) can be decomposed into four main terms,
is possible to calculate the corresponding vatyeof the i.e., even, odd, histand Max_1: In Appendix A the relations
curvilinear abscissa. between these terms and (18) and (19) definitions and the
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Algorithm for calculation of the arc length of the 2D filling curve

begin
compute A = m(l.r(xl [} k)
if (A=0) then tkap = 0 endif
if (A=1) then tkap = max_1{ (xl b X0k )
else
if (A even) then
if (X = A)then p_I = Xy endif
if (X =A)and (x; < A)thenp ] =2%A-x;, endif
endif
if (A odd) then
if(Xy, =Ajthenp I = x; endif
if(x) = A)and (X3 < A)thenp | =2%A-xy, endif
endif
thap = p_1 + A°
endif
return tkap

Fig. 6. C-like algorithm for the computation of —' in 2-D case.

demonstration of validity of (16) for the chosen filling curve Moreover, it was shown in the 2-D case that it is possible
are presented. to find a relation which allows to associate a scalar vajye

Consequently, the ranking of vectors can be performedpresenting the arc length of the filling curve, with a vector
according to thearc length of the filling curve at different z, € Z2.

2-D space points. In Appendix A it is also shown that such a relation is
The C-like algorithm for the computation of the arc-lengtikomposed by a term representing the history of the curve up to
is described in Fig. 6. the considered layer and by an “updating” term, which gives

The algorithm is simple and computationally efficient.  the shift of the vectot,, within the layer itself and that the
hist term increases in a quadratic way according|4Q||max-
B. The 3-D Case Thls_ls mainly due to the fact that, as it can be _egsny seen
] ) o from Fig. 2, the arc length of the curve from the origin to one
The generic expression of the 3-D space filling curve i the points(0, A) or (A, 0) is equal to the number of points

expressed by of the square of sidet, that is A2.
From Fig. 2 it is also possible to note that the behavior of
v:Z— Ks, Ks3CZ° the curve in the 2-D space can be considered as an oscillatory
K3 = [0, X1 max] % [0, X2 max] X [0, X3 max] (29) path from one coordinate axis to the other one.

This behavior is reflected into the basis functigy(¢) as a
scaled-up mirroring of the semitrapezoidal shape correspond-

. - . ineg to the path itself.
To design a space filling curve able to be used for color imag A curve with a similar behavior in the 3-D case is shown

processing it is necessary to extend results obtained in meFig 7

2-D case to the 3D case. - On this basis, we can define the curve of Fig. 7 in an analytic
The extension of the 2-D filling curve to the 3-D spac$vay as

is performed in order to preserve, as much as possible, the

characteristics of the described curve for the 2-D case: in

Y(tr) = (wir(tr), wor (tr), zar(tr)).

particular, in a similar way with respect to the 2-D case, the 3- [%J
D filling curve can be imagined as an expansion of successivewr(tx) = Y B3P (t— (3p+2)%) >0
increasing layers, ordered according to the||,.x value of p=0
each 3-D vector. LwJ
A possible strategy is to impose that the 3-D filling curve _ 3D _ 3 30
crosses all points at the sarfje ||...x value in a continuous wan(tn) = 1;) B (b= Gp+ 1)) te>0 (39)
way, e.g., by covering in a ordered way the three sides of a R
cube. [ Fampe=2 |
In this way, it is possible to think that the behavior of the 3- z1x(tx) = Z h3p) (te — (3p)°) t >0
D filling curve on a single side of the cube havid|max = A p=0
will reflect the behavior that the 2-D filling curve follows in
the 2-D space. where a basis functioh3”(t) is used.
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Xix

(b)

s . >
/ : X1k

©

Fig. 7. Graphic representation of the chosen 3-D filling cuyvehe curve
starts inA in (a) and ends iB; the curve starts itB in (b) and ends irC';
the curve starts irC' in (c) and ends inD.

x1k component of 3D filling curve

(b)

©

Fig. 8. (a)-(c) 3-D components of the chosen filling cumve

A regularity is also present in the 3-D components, as in the
2-D case: This corresponds to a well-defined path followed by
the 3-D curve on the different sides of the cube.

The possible behaviors of the,(¢) coordinates expressed
by the basis function are a periodic repetition, scaling up,
mirroring and dilation along thé; axis.

In particular, we can observe that the coordinaig(¢)
remains constar(iC) when the side of the cube corresponding
to the planexsyxsy is crossed.

To better understand the behavior /g§° (), it is possible
to fix a certain layem of the 3-D cube and to examine the
dependence of each component of the 3-D vector ontthe
parameter within the layep.

If the curve of Fig. 8 is chosen, the following graphic
expression is obtained, for example, foy;(t;) at the layer
p = 3.

In general, each 3-D component can be expressed as a
series function depending on the basis functigyit): This
is consistent with the fact that, on a single 3-D layer, the
behavior of the curve on each side of the cube is the same
followed by the 2-D curve in order to cover all the points of
the 2-D space.

Along the same face, the other coordinates correspond to a
scaled-up and truncated version of either a nor®) or

The parametric behaviors of the components of the 3-® mirrored (M) version of the basis shape [see Fig. 4(b)]
vector scanned by the curve are represented in a graphic wi@pending on the direction by which the curve crosses the

as shown in Fig. 8(a)—(c).

plane (see Fig. 10). In particular, if we consider the path for

These relations can be considered as a generalizationzgf(t) shown in Fig. 9(a), the three versiofs M, and N

expression (18).

can be individuated:
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x1k(t) Profile (layer p=3) Al_so in this case, the arc length of the curve is coincident
with the curvilinear abscissa.
The analytic relation that gives the arc-length in the 3-D

3 .
2 case is
i —
ok v ‘( te = @ik, Toks T3k
© ® w o o w @ oo = {mod_0(x1x, Tor, T3x) + mod_1(x1x, Tax, T3x)
+ mod_2(x1x, Tog, 3k) + hist(Tix, Tor, T3x)}
Fig. 9. Graphic representation of the profilexgf; (¢) at layerp = 3. Adiv?2 1( )
* | 7 | + max_l(x1x, Tok, T3k
% — Amod?2 T
Normal (N) profile .
Adiv?2
sl ). (33)
5 —Amod?2

Also in this case,div is the integer divisionmod is its
remainder, andd = max(z1x, T2k, T3k )-
The mod_0 is nonzero only ifAmod 3 is equal to zero,

t and so on formod_1 and mod_2.
(a) The hist term contains the previous history and
Constant (C) profile hist(x1x, Tok, T3r) = A>. (34)
3 Max_1 is nonzero ifA = 1 and ¢, = 0 iff xy; andzo, and
21 r3, are equal to zero.
14 We can see that (31) is of the same kind of (28), even if,
0 in the 3-D case, thdist term obeys to a cubic law because

of the fact that in this case all the points of a cube will to be

t covered by the filling curve. From Fig. 7, one can easily see
(b) that the arc length of the curve from the origin to one of the
points (0,0, 4), (0, A,0) or (A,0,0) is equal to the number
of points of the cube of sidet, that is, /3.

In the 3-D case, in order to calculate the arc length of the
chosen filling curves, three operations will be necessary: A
maximum computing in order to find whicihod_i(-) has
to be selected, another maximum computing, made only on
M two numbers (i.e., the two coordinates that do not correspond

t to the maximum previously calculated), which corresponds to
© the maximum calculation made in the case of the 2-D filling
curve, and finally a shift calculation which, as in the 2-D case,
normally consists in an addition operation.

We could expect that in the case &f € ZP the relation

On the basis of this description it can be shown that kinding the parametet; to the p-D components of a filling
coordinate crossed by the filling curve periodically describesirve v appropriately designed would be composed by a hist
a well-defined cycle in which it can be found in one of thregerm A? (e.g., A is the side of the layer of the-D hypercube)
statuses (i.e.C, N or M). and by a term which gives the shift of the considered vector

It is also possible to observe from Fig. 7 that the sanwithin the layer with sideA.
behavior of the curve in the 3-D space is repeated after aMore in general, in order to calculate the arc length gf a
number of layers equal to the dimension of the input vectdimensional filling curve designed by extending the 2-D and
(i.e., three). 3-D presented curves, it will be necessary to progressively

This justifies the periodicity by which the different coorditransform ap-dimensional vectorial space by computifyg—
nates are expressed in (30). 1) maxima within sets whose dimension is progressively

It is also possible to demonstrate that, also in the 3-D casiecreased: At thép — 1)th calculation, the vectorial space
properties (20) and (21) can be generalized to is reduced to a scalar one and the “updating” term to be added

to hist can be calculated.

v = \/j;%k(t) + 33, ) +34 () =1 VteZ (31) In a more complicated way than in the 2-D case, it can be

demonstrated that such a choice of the filling curve will satisfy

Mirrored (M) profile

Fig. 10. C, M, andN profiles individuated on the profile of Fig. 9.

3‘71’““)3‘72’““) =0 vteZ (322) the properties (14) and (16). In particular, in order to demon-
(t)aan(t) =0 VteZ (32b)  strate the validity of (16), we can refer to the demonstration
Top(t)Zsr(t) =0 Vte Z (32c) of Appendix A, because if we choose the particular side of
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the 3-D on which we are, we come back, as we already said, TABLE |
to the 2-D situation, and then the demonstration of Appendix NoISE DISTRIBUTIONS
A iS Valid- Number Noise model
The C-like algorithm to compute the arc-length in the 3-D 7 Crmssian (6220)
case is shown in Flg 11. 2 Gaussian (o=10) impulsive (1%)
3 Impulsive (2%)
C. The 3-D RVMF 7 T
Immediately successive to the choice of the filling curve iss Tmpulsive (6%)
the introduction of the transformation, which is defined for a5 Impulsive (10%)
vectorg;, and for the chosen 3-D filling curve as
T(zy) = ’Y_l(ik) =tk (35) One can observe that the filter produces comparable results

with the r-ordering implementation, which is currently con-
sidered the filter that gives better performances, in the case
of impulsive noise; as expected, the performances are a few
worse for Gaussian noise, since the proposed transformation
is based on a nonlinear distance.

After having computed, for each vectgy, the T'(x,,) value,
it is possible to rank the vectors; within a mask and to
compute the scalar median as in [2].

The RVMF output is given by

Tygp = Y(T(2*)). (36) Moreover, r-ordering performs a relative sorting, which usu-
ally produces better results than absolute sorting; a comparison
where T'(z*) = med(7(z;)). with methods based on an absolute sorting has been also made.
For example, RVMF gives almost the same performances
V. RESULTS in terms of SNR as the marginal median, while performances

RVMF are usually better than c-ordering and VMF ones.
A comparison also has been made between RVMF and mar-
RVMF filter performances are evaluated, and RVMF iginal median in terms of computational complexity; marginal

' median has been chosen because of its simplicity and because

compared .Wlth . . ) of the fact that it provides optimal computational performances
1) marginal mediarj7] (i.e., ordering performed along eachamong absolute sorting-based methods.
component of the multivariate samples);

. ' . For each pixel of a&)-dimensionalV x N image a window
2) r-oro!erln_g about the mear{6_] (ie., 0“?'6”99 of the with A/ points is considered. Marginal median requifes M
multivariate samples acqordmg to their distances to g ting operations: Since each sorting requires, as an average
preselected central location, in such case the mean.of, 1 x log(L) comparisons [16]4 being the cardinality of

the multivariate samples); , the set to be sorted), then globally for the whole image, the
3) C (Conditional)-ordering[6] (i.e., ordering of only one arginal median will requireV x N x (D x M x log(M))
of the components—other components are simply Iist% mparisons)

accordi_ng to the positi_on of th_e ranked _compone_nt); If a Sun SparcStation 20 is chosen, for each comparison one
VMF with Square I_Euclldean Distangs] (i.e., ordering clock cycle is required [15]. Then marginal median operation
performed according to the square modulus of eag\n" require N x N x (D x M x log(M)) clock cycles.

vector); For what concerns RVMF, it has been shown that the

in terms Of Signal-to-noise ratiO (SNR) The test image Selectﬁqk)wing Operations are necessary for Ahx N image:
for the comparison is the color version of Lena. The test imagel) N x N x {(D — 1) maximum calculations+1 one

has been contaminated using Gaussian and “salt and pepper” addition}, as an average:

impulsive noise source models: A correlation factos 0.5 2) N x N x {1 scalar median operatidn

between the components of the vectorial noise is used in the . . .
experiments. One also has to consider that, for each maximum calculation

The SNR has been used as quantitative measure for evéﬂ?— set of elements to be sorted is decreased each time of one
ation purposes. It is computed as element itself. The Sun SparcStation 20 workstation requires
' one clock cycle also for the addition, so the global number of

In this section, an application of the proposed method fg
color image filtering is presented.

4)

SNR= 10log, clock cycles required by RVMF are
N1 N2 P 2 D
k=0 221=0 (Eizo y; (k, l))
= =¥ : - (37) N x N x ixlogi+1+MlogM }. (38)
S S (Sl ) = (kD)) 2 ixlog 5

where N1 and N2 are the image dimensiong(k,!) and Fig. 12 shows the behavior of the computational complexity

#(k,1) and denote the original image vector and the estimati¢gmeasured as clock cycles necessary for each pixel 8f aiV

at pixel (k, 1), respectively. image) of the two methods, by using as independent variable
Table Il summarizes the results obtained for the test imatiee D dimension of the space and after having fixed a mask

Lena for a filter window 3x 3: The noise corruption typesdimensionM = 9: One can see that the complexity is much

are illustrated in Table I. lower in the case of the RVMF, even if there is the possibility
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TABLE I
SNR (dB) ForR THE LENA IMAGE, WinDow 3 x 3
NOISEMODEL | MARGINAL R-ORDERING | C-ORDERING | VMF RVMF
MEDIAN
1 14.93 15.93 13.58 14.38 14.42
2 14.78 14.68 12.54 13.62 13.90
3 13.41 13.77 12.10 13.20 13.32
4 10.82 17 9,96 10.61 10.77
5 9.62 10,10 8.71 9.57 9.64
6 8.05 9.24 8.05 8.68 8.72

Algorithm for calculation of the arc length of the 3D filling curve

begin

compute A = nmx(_\‘l koXog X3 k)

if (A=0) then tkap = 0 endif

if (A=1) then thap = nz(z.\'ﬁ](.\']k N S A.)

else
if (Amod3 = 2) thenp | = m{)d_Z(,\‘M Xy ,_\'M) endif
if (Amod3 = 0) then p_I = mod_0(x,,.x,, .xy, ) endif

if (Amod3 = [)thenp | = nm(/_/(.\‘u Ny ..\‘M) endif

tkap =p I + A'
endif
return tkap

Fig. 11. C-like algorithm for the computation of—! in 3-D case.

implements a new approach for extending median filters to
vectorial data.

The ranking operation for multivariate data is performed by
a step in which the filter operates a vectorial scalar transfor-
mation followed by scalar data ordering instead of directly
= : _ realizing a median on the vectorial data. The transformation is
0 1 2 3 4 5 8 based on the concept of a space filling curve.

The general characteristics of space filling curves have been
examined and particular curves chosen for the transformation
are presented for the 2-D and 3-D curves. Peculiarities of this

Fig. 12. Computational complexity of RVYMF and marginal median. curve have been presented and an application of the method
that for a high value ofD marginal median could become!© color image filtering has been discussed. o
better. Results have shown the good computational efficiency of

Finally, qualitative results concerning the application dhe proposed method.

RVMF, marginal median, and r-ordering MF to three sample Since the presented method is based on absolute sorting
noisy images are presented; Lena in Fig. 13 has been corrupgtéyectorial data, it seems interesting to investigate possible
by 4% impulsive noise, the squirrel image of Fig. 14 by 69%xtensions of the proposed approach to new rank-order filters
impulsive noise, and the house of Fig. 15 by 8% impulsivanhd morphological operators for vectorial data processing.
noise. From the visual point of view, r-ordering gives the best
performances, but one can also see that performances achieved
by RVMF are always comparable and in some cases (e.g., in
Fig. 14) better than ones obtained by marginal median filter. |5 order to make easier the readability of the paper, the
mathematical expressions of the terexenand odd in (28)

are reported in this Appendix. At this end, let us examine

In this paper, an image filtering method, called the reducélte superposition of the graphical expressionscgf(¢) and
vector median filter (RVMF), has been proposed. The filter(¢); there are four different possibilities to be considered:

Computational Complaxity

— ke Ned e
— Rk

D {Dimantion of the vectorial space )

APPENDIX A

VI. CONCLUSION
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Fig. 13. (a) Noisy (impulsive noise 4%) Lena image. (b) Lena image filterdelg. 14. (a) Noisy (impulsive noise 6%) squirrel image. (b) Squirrel image
by RVMF. (c) Lena image filtered by marginal median. (d) Lena image filterefiitered by RVMF. (c) Squirrel image filtered by marginal median. (d) Squirrel

by r-ordering median. image filtered by r-ordering median.
D || |lmax = A = z1, and A even; The evenfunction is composed by contributions coming from
2) ||+ |lmax = A = x21, and A even; events 1) and 2), whiledd function is composed by contri-
3) || llmax = A = 21, and A odd; butions coming from events 3) and 4venis nonzero only
4) || lmax = A = o and A odd. if A is even, and so on foodd
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considered and, in particular, the basis function which has to
be examined foro(t) if ¢ € I is, as it is also shown by Fig.
Al, hyy1(t), which, if ¢ € I, holds

1+ Dhy (/1 +1)) =1t (A.1.1)

and the contribution to thevenfunction given by the event
1) is then equal taroy.

By following the same reasoning for the events 2), 3), and
4), the following expressions @venandodd are obtained:

ever(zix, Tax) = | (215 div A) + (295, div A)

(
. <1 3 (215 div A)
HE — 7z mod A

>*@*A—mw

Od(x.’lilk,.’ljlk) = (.’Egk div A) + (.’Elk div A)

. <1 _ (zxdiv4)

#2h — 7o mod A

)*@*A—x%).

The global expression that allows to compute the arc length,
which is composed by a “history” term and by an “updating”
term, will be then finally given by (28). Let us now demon-
strate the validity of (16) for a choice of filling curve whose
the arc length is expressed by (28) itself.

Let z;, andgz; be two vectors and let us impose, without
a loss of generality)|z;,||max = Ar and||z;||max = A; with
A, Ay > 1, Ay > Ay, A = A+ 1. It is now possible to
demonstrate that, ify, = y~%(z;) andt; = v~ 1(z)), tx > t.

In fact, as we have shown in this Appendix, we can write
th = A2 + 6
PR (A.1.2)
ty = Al + 61

and we have) < &, < 2% A and0 < & < 2 x A;. In the
worst case, it will be, for (A.1.2)¢, = 0 and é§; = 2 x A;.
Then, we will have

te= A7 = (A4 +1)? = A7 +2x A (A.1.3)

and finallyt;, = t; +1 > ;.
This is equal to say that (16) holds for the chosen 2-D
filling curve.
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