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Abstract—Regional and global tsunami hazard analysis

requires simplified and efficient methods for estimating the tsunami

inundation height and its related uncertainty. One such approach is

the amplification factor (AF) method. Amplification factors

describe the relation between offshore wave height and the maxi-

mum inundation height, as predicted by linearized plane wave

models employed for incident waves with different wave charac-

teristics. In this study, a new amplification factor method is

developed that takes into account the offshore bathymetry proximal

to the coastal site. The present AFs cover the North-Eastern

Atlantic and Mediterranean (NEAM) region. The model is the first

general approximate model that quantifies inundation height

uncertainty. Uncertainty quantification is carried out by analyzing

the inundation height variability in more than 500 high-resolution

inundation simulations at six different coastal sites. The inundation

simulations are undertaken with different earthquake sources in

order to produce different wave period and polarity. We show that

the probability density of the maximum inundation height can be

modeled with a log-normal distribution, whose median is quite well

predicted by the AF. It is further demonstrated that the associated

maximum inundation height uncertainties are significant and must

be accounted for in tsunami hazard analysis. The application to the

recently developed TSUMAPS-NEAM probabilistic tsunami haz-

ard analysis (PTHA) is presented as a use case.

Key words: Tsunamis, inundation, probabilistic tsunami

hazard analysis, amplification factors, uncertainty quantification.

1. Introduction

The standard way to estimate tsunami inundation

maps is to apply numerical nonlinear shallow water

(NLSW) models that include drying-wetting schemes

(Titov and Gonzalez 1997; LeVeque and George

2008; Løvholt et al. 2010; Dutykh et al. 2011; de la

Asunción et al. 2013; Wronna et al. 2015; Macı́as

et al. 2017). However, if the inundation needs to be

quantified over large coastal stretches (e.g. country

scale or larger), NLSW inundation simulations are

most often not feasible. This is due either to the large

computational cost or to the lack of required high-

resolution topo-bathymetric models. This issue is

particularly relevant for probabilistic tsunami hazard

analysis (PTHA, Geist and Parsons 2006; Grezio

et al. 2017), in which a large number of scenario

simulations must be carried out to take into account

the natural potential variability of the tsunami sources

(e.g., Selva et al. 2016). Intermediate methods can

limit the number of scenario simulations for local

PTHA (Gonzalez et al. 2009; Lorito et al. 2015), but

they still require high-resolution coastal bathymetric

and topographical data that are typically not available

over large geographical scales. We still need simpler

methods for estimating tsunami inundation heights in

PTHA, particularly over large regions.

A faster, yet more approximate, method than

NLSW is to relate the nearshore surface elevation to

the water elevation at the shoreline, which then acts

as an approximation for the maximum inundation

height (MIH). We refer to this method as the ampli-

fication factor (AF) method. Combined with results

from offshore tsunami simulations, AF methods can

be used to estimate the tsunami maximum inundation

height at a coastal location.

The first version of the AF method (Løvholt et al.

2012, 2015) considered a set of only a few amplifi-

cation factors based on idealized and overly
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simplified bathymetric profiles. The idea was that, in

principle, these could be fitted to a coastline at any

given place. A related AF model that also enables a

fast calculation of tsunami heights for tsunami early

warning was recently developed by Gailler et al.

(2018). In contrast to the method of Løvholt et al.

(2012), which is the basis for the model in this paper,

the method developed by Gailler et al. (2018) needs

to be calibrated with detailed bathymetric/topo-

graphic information and with high-resolution NLSW

simulations for each site where it is applied.

For practical purposes, and due to a lack of

alternatives, the application of Green’s law amplifi-

cation to a given reference water depth (often 0.5 m)

has previously been employed to estimate tsunami

inundation heights from offshore points as an alter-

native to the AF method (Sørensen et al. 2012;

Brizuela et al. 2014; Horspool et al. 2014; Hébert and

Schindelé 2015). However, as pointed out by Hébert

and Schindelé (2015) and Davies et al. (2018), the

choice of the reference water depth in Green’s law

makes the method subjective. In this paper, it will be

demonstrated that the AF method represents a more

accurate method for estimating the coastal amplifi-

cation than Green’s law, because local factors

influencing the run-up, such as local bathymetry,

wave polarity, and wave length, enable a more

accurate approach. In addition, a series of new

facilities, which will be described in a moment,

makes the new AF method more suitable for use in

regional PTHA than other previous approximate

methods.

The AF method developed here has several new

characteristics. Rather than using a predefined set of

idealized bathymetric profiles, our method employs

cross-sections from actual local bathymetry. The

amplified height (AH) at the shoreline (see Fig. 1) is

then quantified with a linear shallow water (LSW)

model along a 1D profile close to orthogonal to the

shoreline, much like the previous AF method. For a

specific point on the coastline, the AH acts as a proxy

for the MIH. As discussed by Løvholt et al. (2012),

the AF method gives exact estimates for the MIH

even under the special condition of plane non-

breaking waves. Consequently, as will be demon-

strated in this paper, the AH is rather a good estimator

of the median of the whole MIH distribution along a

set of onshore transects, over a coastline stretch of,

say, a few kilometers. On the other hand, the AF

method is designed to operate over large stretches of

coastline, and the spatial resolution is much coarser

than in numerical tsunami inundation models.

Moreover, local phenomena such as wave focusing

and refraction usually give rise to significant local

variability in the MIH that cannot be captured by the

AF method, which assumes plane wave amplification.

As shown in the lower panel in Fig. 1, there is typi-

cally significant alongshore coastal variability in

MIH. It was therefore necessary to upgrade the AF

method to capture this inundation height variability

as a model uncertainty.

Previous attempts to quantify AF-related tsunami

inundation height uncertainty and bias are limited to a

few studies (Davies et al. 2018, and references

therein). Davies et al. (2018) estimated the AF

uncertainty and bias by comparing offshore tsunami

simulations combined with AF analysis against

observed run-up for four tsunamigenic earthquakes

(Chile, 1960; Alaska, 1964; Indian Ocean, 2004;

Tohoku, 2011) using the previous AF version based

on idealized and much simplified bathymetric tran-

sects. The authors found that tsunami simulations

combined with the AF gave a relatively small bias

compared to observed run-up heights, whereas a large

log-normal root mean square (r� 0:9) was found.

However, their analysis merged uncertainty from the

source with the one associated with the AF method.

Therefore, their uncertainties combined the variabil-

ity due to tsunami source complexity (e.g.,

heterogeneous coseismic slip or other simplifications

in seismic source and tsunami generation) and prop-

agation modeling, and possibly even other sources

such as landslides, in addition to the inherent vari-

ability in the inundation process we try to quantify

here. Thus, their variability due to the inundation

process was not separated from the variability due to

the source and tsunami propagation. In this study, we

quantify the uncertainty of the inundation process

separately by employing detailed high-resolution

inundation simulations, tying the observed uncer-

tainties from the inundation simulations directly to

the AF method.

This paper is organized as follows: Section 2

describes the computation of the local amplification
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factors. In Sect. 3, we describe the inundation simu-

lations for six different test sites in southern Europe.

In Sect. 4, we estimate and analyze the bias and

uncertainty of the method by comparing the AF

performance at the test sites with the NLSW inun-

dation models. In Sect. 5, we demonstrate with an

example how the results can be used in a PTHA

developed for production of tsunami hazard maps in

the North-Eastern Atlantic, Mediterranean and con-

nected seas (NEAM) region.

Figure 1
Upper panel: Sketch exemplifying the amplified height (AH) obtained from the amplification factor method as well as the maximum

inundation height (MIH) obtained from a reference model over a local transect. The MIH represents the reference value, whereas the AH is a

proxy for the MIH. The dashed red curve is the envelope of the amplified wave signal using the AF method (we denote the height at the

shoreline AH). The yellow curve shows the corresponding maximum envelope of the coastal amplitude (offshore) and the inundation height

(onshore) obtained from an NLSW reference model, and we denote the maximum in this curve MIH. The vertical value where the inundation

height intersects the topography is the run-up height, and the corresponding horizontal distance is the inundation distance. Lower panel:

example of a coastal distribution of the MIH derived from the 2HD (depth-averaged 2D model) reference model, drawn together with the

single AH value derived for a single transect available for this coastal stretch

Vol. 176, (2019) New Site-Specific Tsunami Amplification Factors 3229



2. Amplification Factors Based on Local Bathymetric

Transects

2.1. New Amplification Factors Derived

from Transect Simulations

Løvholt et al. (2012) used a very limited set of

idealized bilinear profiles as a basis for the AF

computations. In the present study, instead, transects

of the coastal water depth were extracted directly

from the local bathymetry in the Mediterranean Sea,

the Black Sea, and the North-Eastern Atlantic (see

Fig. 2). The procedure for extracting these local

transects is explained in Appendix 1. Following

Løvholt et al. (2012), a 1D LSW model, solved over a

staggered Arakawa C-grid with variable spacing, is

used for the AF production runs. The resolution of the

grid depends on the wave period and the water depth

and is tuned to give a constant Courant number Cr =

0.9 over the entire domain. The Courant number is

here defined as

Cr ¼
ffiffiffiffiffi

gh
p

Dt

Dx
ð1Þ

where h is the local water depth, Dx is horizontal grid

resolution, and Dt the time step.

For waves with a period larger than 600 s, the grid

size ranges from about 300 m in the deepest part of

the domain (water depth of 2000 m) down to 7 m at 1

m depth; for a wave period shorter than 300 s, the

grid resolution varies from 80 m to about 2 m,

respectively. The grid spacing is not further refined in

water depths less than 1 m. The resolution applied in

Figure 2
Map showing all profiles applied in the study
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the simulations is justified by convergence tests. At

the shoreline we have applied a no-flux boundary

condition, and the waves are fed into the model from

the offshore boundary.

The new method for computing the amplification

factors starts with defining the AF points of interest

(POIs). The POIs are located at longitude-latitude

coordinates inside the computational domain

employed for the 2HD tsunami propagation simula-

tions. In this study, amplification factors are

computed for almost evenly spaced POIs located

every 20 km along the shoreline. For each POI along

the 50 m isobath, about 40 depth profiles (exemplified

in the upper panels of Figs. 3, 4, 5) are extracted

approximately normal to the shoreline, each with a

distance of 1 km apart, as described in Appendix 1.

However, in the case of complex coastal geometries,

deviation from the normal incidence may take place.

The amplification factors are computed along

seven subjectively selected profiles out of the 40

profiles. The subjective selection was made to enable

computational feasibility. An initial wave of 1 m

height in deep water, shaped as a single-period

sinusoidal wave pulse (N-shaped wave), is fed over

the deep water boundary of the model (see Fig. 1).

Linear shallow water (LSW) simulations were carried

out for all profiles, both for leading trough or leading

peak and for a set of wave periods (120, 300, 600,

1000, 1800, and 3600 s).

Figure 3
Example of depth profiles (top) and amplification factors (bottom)

representing the hazard point 405 (at Sines, Portugal). The

amplification factors are shown for the seven depth profiles as

explained in the text, versus the wave period (seconds). The red and

blue curves are factors for leading peak and leading trough,

respectively. The thin curves are the factors for the seven local

profiles, while the thick lines are the median values for leading

peak and leading trough at this location

Figure 4
Example of depth profiles and amplification factors representing

the hazard point 7465 (at Heraklion, Greece). See also caption in

Fig. 3
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Maximum surface elevations from the LSW

simulation at 50 m depth and at the shoreline (0 m

depth) are extracted. For each profile, we compute the

amplification factor, which is defined as the ratio of

the height between the latter and the former (i.e. A1

and A2 in the upper panel of Fig. 1). We use the

median value of the seven amplification factors to

avoid unrealistic alongshore fluctuations. Examples

of amplification factors and related median values as

a function of the incident wave periods are shown in

the lower panels of Figs. 3, 4, 5. AF values for all

combinations of wave polarities and wave periods are

stored in lookup tables. As an example, amplification

factors for a leading trough polarity and wave period

of 600 s for the Mediterranean and Black Sea are

depicted in Fig. 6.

Two versions of the factors were produced, one

set using the raw amplification factor values and one

set of factors smoothed along the shoreline with a

median filter (using a filter length of five points). The

median filtering was performed as an additional

measure to avoid artificially short amplification

fluctuations along the shoreline (see example for the

Black Sea in Fig. 7).

As expected, we do observe that the shorter waves

and waves with leading trough are amplified more

than the longer waves and waves with a leading peak

(Figs. 3, 4, 5, lower panels). We also observe that the

amplification factors decrease as the period increases;

in some cases the behavior appears different and the

amplification factors are locally higher with respect

to lower periods such as in Fig. 5 (see around period

of 1000 s). This stems from interference between

incident and reflected waves in the linear shallow

water simulations: when the travel time from the POI

to the shoreline and back to the POI for the leading

trough matches the arrival of the trailing peak here,

the measured wave height at the POI is low (trough is

canceling the peak) and the amplification factor is

high.

3. Local Inundation Simulations for Bias

and Uncertainty Estimation

In order to evaluate uncertainties of the method of

amplification factors, we systematically compare its

results against direct NLSW inundation simulations.

The employed NLSW model (Tsunami-HySEA, de la

Asunción et al. 2013; Macı́as et al. 2017) is properly

benchmarked, and is hence a suitable reference model

towards the less accurate AF method. Still, a limita-

tion with this approach is that the inundation

simulations are not compared directly to field

observations.

Comparisons between the AF and the NLSW

models are undertaken at the six test sites for which a

suitable and sufficiently detailed DEM existed. The

test sites include one in the Atlantic Ocean, namely

Sines, Portugal, with the remainder in the Mediter-

ranean: Colonia Sant Jordi (Mallorca) and SE Iberia

in Spain, Siracusa and the Catania plain in Italy, and

Heraklion on the island of Crete in Greece (Fig. 8).

Figure 5
Example of depth profiles and amplification factors representing

the hazard point 10746 (at Sant Jordi, Mallorca). See also caption

in Fig. 3
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For each test site, we use 96 earthquake sources with

varying magnitude, strike, dip, and rake in order to

explore a variety of situations as far as the source

mechanism is concerned and, as a consequence, the

wave period and wave polarity variability. In partic-

ular, we use six different moment magnitudes (7.1,

7.5, 8.1, 8.5, 8.8, 9.0), four strike angles (22.5, 112.5,

202.5, 292.5), and four pairs of dip/rake angles (10/

90, 30/90, 50/270, 70/270). Empirical earthquake

scaling laws (Strasser et al. 2010) are then employed

to define the fault size (length and width) for each

earthquake source. The average slip (D) for each

scenario is established by considering the classical

relationship M ¼ lAD, where M is the seismic

moment, l is the shear modulus (30 GPa), and A is

the rupture area of the seismic source.

We use the NLSW Tsunami-HySEA numerical

code (see, e.g., de la Asunción et al. 2013; Macı́as

et al. 2017) to simulate the distribution of the tsunami

inundation height over the extent of the different

Figure 6
The amplification factors for the Mediterranean and Black Seas for the case with a leading trough and a wave period of 600 s. The factors are

filtered along the shoreline with a median filter as explained in the text

Figure 7
The amplification factors for Black Sea as function of the hazard points lying along the shoreline (ID numbers). The figure shows the effect of

filtering the factors along the shoreline. The labels ‘‘neg’’ and ‘‘pos’’ relate to leading trough and leading peak, respectively. The tag ‘‘-sm’’

indicates filtered values (median filter), as explained in the text
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sites. All offshore tsunami simulations are conducted

on regular grids with a spatial resolution of 30 arc-

sec. The NLSW models additionally use nested grids

to simulate detailed local inundation at test sites. The

resolution of the finest grid is about 10 m at all

locations. The Manning-friction (n) is set to n ¼ 0:03

in all simulations. We note that while n ¼ 0:03 is

typically a friction value for overland flow (e.g.

Kaiser et al. 2011), this value will be site-dependent

and vary spatially as well, and hence using a constant

value represents a simplification.

For each test site and source scenario we apply the

new AF method to quantify MIHs. As prescribed by

the method, MIH is quantified by multiplying the

maximum offshore surface elevation retrieved at the

POI, taking wave characteristics retrieved from time

series at the POI, with specific AF retrieved from the

relevant lookup table. The method for selecting the

maximum offshore surface elevations and related

wave periods and polarities at the POI are described

in Appendix 2.

4. Maximum Inundation Height Uncertainty

and Bias

As explained in Sect. 3, the comparison between

the AF method and corresponding NLSW simulations

is made from six locations, each site subject to about

96 earthquake-induced tsunami scenario simulations.

The new AFs depend on the coastal slope configu-

ration, the tsunami wave period, and the tsunami

wave polarity, as simulated in a single POI located

offshore along the 50 m isobath. As the AFs are based

on a linear method, they are amplitude-independent.

For each scenario, we extracted the largest MIHs

from the NLSW simulations for a given coastline

location. MIH maxima were extracted in either the

Figure 8
Location map showing the six test sites (dots) used for local inundation simulations and the epicenters of the earthquake scenarios (stars). The

insets show the topo-bathymetric nested grids used for each test site in the simulations
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north–south or east–west direction, line by line, for

each grid cell along the preferred coordinate axis.

That is, if the shoreline is oriented mostly east–west

for a given site, we search along lines oriented in the

north–south direction, while if the shoreline is pre-

dominantly oriented more north–south for another

site, we search along lines oriented in the east–west

direction. In some special cases, the height of the

terrain landside of the shoreline is too high and too

steep to be inundated. In these situations, we also

include values of maximum surface elevation for a

small distance seaside from the shoreline (at least one

cell away).

From counting all MIHs over the computational

domain (NLSW) at each test site, we obtain an MIH

empirical probability density function (ePDF) for

each simulation. Each MIH ePDF is then fitted to a

log-normal probability density function (PDF), using

standard fitting tools in Matlab. We note that the log-

normal PDF implies a normal distribution of the

natural logarithm of the random variable with median

el and variance r2, in this case representing the MIH.

The log-normal distribution of the MIH reads:

pðMIHÞ ¼ 1
ffiffiffiffiffiffi

2p
p

MIHr
exp� ðlnMIH� lÞ2

2r2

 !

ð2Þ

We stress that the log-normal median value of the

MIH over the computational domain for the NLSW

simulation is el. These fitted medians, arising from

each NLSW simulation, are compared with amplified

heights (A� g, where A is the amplification factor

and g is the height offshore) resulting from the AF

method, in order to quantify biases for the individual

simulations (and later on bias distribution). To this

end, we define the normalized bias

� ¼ ðA� gÞ � el

el
; ð3Þ

to quantify the MIH bias due to the AF method

towards the more accurate NLSW model for each

model run and site. Examples of PDF for three

individual model runs for the Catania, Heraklion, and

SE Iberia sites are shown in Fig. 9. As demonstrated,

the MIH distributions can be quite heterogeneous in

terms of both their shape and/or their widths. To this

end, we performed a Kolmogorov–Smirnov test

(Massey 1951) (using the logarithm of the MIH as the

density variable) to investigate the validity of the fit

of each empirical distribution towards a log-normal

distribution. Below, we refer to this as the KS test.

Using the KS test, we found that just 7% of the dis-

tributions from individual model runs had p values

higher than 1% (i.e. more than 1% probability of

exhibiting a log-normal distribution). Some sites, in

Figure 9
Distribution of MIHs from three individual NLSW simulations,

including median values from each distribution and the related AH.

Upper panel, MIH distribution in Catania due to a Mw 8.5

earthquake. Middle panel, MIH distribution in Heraklion due to a

Mw 7.5 earthquake. Lower panel, MIH distribution in SE Iberia due

to a Mw 7.1 earthquake
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particular Colonia Sant Jordi, had higher representa-

tion of statistically significant log-normal fits than

other sites. We speculate that heterogeneous spatial

characteristics in some of the other sites have given

rise to different mean MIH in different parts of the

domain, implying that these sites are not easily fitted

into one single distribution. This deserves to be better

investigated. Nonetheless, the median MIHs from the

NLSW simulations have values close to the simpli-

fied AHs in the present examples.

4.1. Inundation Height Statistics for the Full

Parameter Set

A first impression of the overall results can be

drawn by inspecting Fig. 10, showing a histogram of

all the median MIHs derived by the NLSW simula-

tions compared with respective AHs. This

figure shows that while overall distributions are

comparable for the two models, there seems to be a

weak tendency for median MIH values from NLSW

simulations to exceed the AHs.

To gain a deeper and more quantitative insight,

we carried out a statistical analysis based on the MIH

PDFs, biases, and log-normal uncertainties. In the

statistical analysis, both the merged results and

statistics isolating the effects of different factors

were analyzed.

The distribution of the normalized AF bias for all

model simulations at all sites is shown in the upper

panel of Fig. 11. The individual biases are close to

being normally distributed, and the KS test returned a

p value of 41%. The mean bias is ��AF= -5%, which

indicates that the AH is slightly lower than the

median MIH predicted by the NLSW model. This is

in contrast to the first version of the AF method

(Løvholt et al. 2012), for which a positive bias was

quantified, though against observations rather than

simulations (Davies et al. 2018), as already noted.

Figure 11 further shows that the standard deviation of

the normalized AF bias is rAF ¼ 0.28. Similarly, we

computed the normalized bias using Green’s law

amplification to a reference depth of 0.5 m. As shown

in the lower panel of Fig. 11, Green’s law applied to

this reference depth provides a strong positive bias of

��Green = 18%, meaning that Green’s law would

strongly overestimate the inundation height predicted

by the NLSW reference model. Furthermore, the

Green’s law biases are associated with a significantly

larger uncertainty (rGreen = 0.46). The Green’s law

biases are moreover more strongly skewed than AF

biases and definitely not normally distributed accord-

ing to the KS test. This difference may reflect, among

other things, the reference depth subjectivity that is

not present in the AF method.
Figure 10

Distribution of median MIHs from the NLSW simulations com-

pared to all the corresponding AHs

Figure 11
Normalized bias: upper panel, using amplification factors; lower

panel, using Green’s law
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The bias from various model runs represents just

one component of the variability. In addition to the

variability of the bias, as shown in Fig. 9, the tsunami

inundation height does vary spatially across each site.

This variability is related only to the properties of the

NLSW simulations at the site, and not to the AF

method as such. However, when applying the AF

method, we must take this uncertainty into account.

For the examples shown in Fig. 9, we obtain log-

normal standard deviations r of 0.26, 0.43, and 0.23,

respectively. The distribution of all the r values is

shown in Fig. 12, displaying a mean value of �r = 0.25

and standard error of rr = 0.41. By visual inspection,

the distribution of local standard deviations seems to

follow a log-normal distribution relatively closely,

despite the data displaying a more peaky behavior

than the fitted log-normal PDF. It is worth noting that

of the three sources of uncertainty contributing to the

AF (bias uncertainty r�, mean local uncertainty �r,

and standard error rr), the standard error rr is the

largest contributor. In this study, rr reflects the

variability owing to different sites, tsunami sources,

wave polarity, wave period, etc. In the next subsec-

tion, we will demonstrate with examples how bias

and variability differ.

Taking the root mean sum of the different r’s (r�
= 0.28, �r = 0.25, and rr = 0.41) for the full parameter

set simulations, we arrive at a root mean square sum

of 0.55 due to the inundation process. It is noted that

Davies et al. (2018) found an overall uncertainty of

0.92 when comparing PTHA results with observa-

tions from past events. If the uncertainty found in this

paper is representative for the inundation process, the

overall uncertainty of 0.92 in Davies et al. (2018)

would be the sum of the inundation uncertainty and a

residual uncertainty due to other sources. By remov-

ing the inundation uncertainty from the uncertainty

obtained by Davies et al. (2018), we obtain a residual

uncertainty of 0.73, from which we may speculate

that the variability due to the inundation would then

contribute to just less than half of the total uncertainty

found by Davies et al. (2018). In this context, we note

that Geist (2002) reports coefficients of variation in

the range of 0.25–0.35 due to variable slip, which is

thought to be one of the governing factors in

inundation height uncertainty. These aspects deserves

to be better investigated. On the other hand, Davies

et al. (2018) used idealized AF profiles, which are

most likely have a larger overall bias due to a more

crude bathymetric representation. In any case, the

present analysis shows that the variability in inunda-

tion is a strong overall component in the inundation

height uncertainty, which needs to be accounted for

in a regional PTHA method.

4.2. Inundation Height Statistics for Parameter

Subsets

The bias and variability are further examined by

carrying out the statistics for certain sets of param-

eters (e.g. only for positive wave polarity, only for

short-period waves, for an individual site).

First, we examine the bias and local MIH

variability separately for the two wave polarities

(leading trough and leading peak). The statistical

distributions for the two different polarities are quite

similar to those shown in Figs. 11 and 12, and hence

we choose not to display them. We also note that the

p values of the bias distributions are 91 % and 14 %,

respectively. However, the small to moderate average

biases (3% for leading trough and 8% for leading

peak) suggest that the distinction between leading

trough and leading peak was necessary. Such a

distinction cannot be made with simpler methods

such as Green’s law amplification.

Second, we examine the bias by making statistics

for different ranges of incident wave periods T from

the offshore tsunami simulations, that is T � 600 s,

600 s\T � 1800 s, and 1800 s \T . The bias

distributions are all normally distributed, with p
Figure 12

Distribution of the variability from all model runs
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values from KS tests ranging from 53 % to 84 %. The

bias distributions in Fig. 13 show that the shortest

wave periods display a positive bias (AH overesti-

mation), and the intermediate wave periods a small

negative bias (AH underestimation), whereas for the

longest wave periods a strong negative bias is

observed (AH underestimation). The strong bias for

the longest wave periods may be due to several

factors. Determining the causes for these offsets

should be subject to further investigation. However,

we assume that the limited number of wave periods

covered by the AF look-up tables can provide biases

for instances when an input wave period from a

tsunami simulation is pronouncedly different from

the ones in the look-up table. Further, the filtering and

zero-crossing techniques sometimes introduce wave

lengths that are too large, which reduces inundation

heights in the AF method. We also see that the largest

bias variability is observed for the shortest and

longest wave periods. However, the largest fraction

of simulations are located in the intermediate regime.

Third, we examine the bias and local variability

for three sites (Catania, Heraklion, and SE Iberia) in

Fig. 14. Strong negative average biases (AH under-

estimation) are shown for Catania and Heraklion,

whereas a slight positive bias (AH overestimation) is

shown for SE Iberia. We further see that the three

sites have pronouncedly different spreads with

respect to both the bias and local variability, with

the Heraklion site being clearly more heterogeneous,

and SE Iberia the site with the smallest variability.

This is also reflected in the p values from the KS tests

using the bias distributions as input, giving lowest

values for Heraklion (1%) and highest values for SE

Iberia (61%). It is noted that from a practical point of

view, separating the variability and bias from differ-

ent locations is not feasible, as we cannot perform

NLSW simulations at all relevant locations. Conse-

quently, merging uncertainties from different sites

would increase the overall MIH uncertainty in a

PTHA analysis.

5. Uncertainty Treatment in PTHA

Summarizing from previous sections, the AF

depends on both the characteristics of local bathy-

metry (coastal slope configuration) and the

characteristics of the tsunami scenario (dominant

period and polarity), as simulated in a single POI

located offshore. Multiplying the AF to the tsunami

simulated in this POI, we obtain an approximate

median MIH for the nearby coast due to the consid-

ered individual tsunami scenario.

For the i-th tsunami scenario in the j-th POI, we

indicate the maximum offshore elevation at the POI

and the corresponding MIH value with gij and MIHij,

Figure 13
Normalized bias distributions for different ranges of the wave

period obtained from offshore tsunami simulations. Upper panel,

short wave periods (T � 600 s); Middle panel, intermediate wave

periods (600 s \T � 1800 s); Lower panel, long wave periods

(T[ 1800 s)
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respectively. MIHij corresponds, after correction for a

generally quite small bias, to the median value of the

distribution of MIH values that the i-th tsunami sce-

nario causes in stripes of land perpendicular to the

coast and located around the projection to the coast

and inland of the j-th POI.

In fact, as demonstrated by the NLSW simula-

tions, this distribution can be approximated by a log-

normal distribution for MIH, with a median that is

well approximated by MIHij and a reasonably small r

(the standard deviation of the natural logarithm of

MIH). These parameters are different for different

scenarios and POIs. In particular, for the i-th tsunami

scenario gij at the j-th POI, we indicated these

parameters with lij and rij, and, considering the AF

Aij and the normalized bias �ij (compare Eq. (2)), we

have lij ¼ lnðAij gij/(1? �ij)). Among these parame-

ters, the AF Aij and gij depend on both the coastal

slope around the POI and the tsunami scenario.

Instead, the parameters rij and �ij depend primarily on

Figure 14
Bias and variability for three different sites. Left panels, model bias. Right panels, model variability. Upper panels, Catania site. Middle

panels, Heraklion site. Lower panels, SE Iberia site
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the local coastal configuration around the j-th POI

and can be estimated only with an NLSW simulation

of the i-th tsunami scenario in the j-th location.

For the purpose of PTHA, a large number of POIs

are defined, each POI uniquely representing an entire

stretch of the nearby coastline. Assuming that this

coast is reasonably close to the POI, we may assume

that, for each tsunami scenario, the MIH distribution

on this coast is again well represented by a log-nor-

mal distribution. Given one randomly selected coastal

point represented by the j-th POI, the probability that

a given MIH value is exceeded due to the i-th tsunami

scenario in the stripe to which this point belongs, can

be computed from this log-normal distribution, that

is:

Prijð[MIHjMIHijÞ ¼ 1� U
lnMIH� ln lij

rij

� �

¼ 1� U
lnMIH � ln ðAijgij=ð1þ �ijÞÞ

rij

� �

;

ð4Þ

where Uð:Þ indicates the cumulative distribution

function of a normal distribution.

This curve can be interpreted as the hazard curve

for the hazard intensity MIH of one randomly

selected point within the stretch of coastline near the

j-th POI, conditional to the occurrence of the i-th

tsunami scenario with best guess

MIH ¼ MIHij ¼ Aijgij=ð1þ �ij).

There is, however, a certain degree of epistemic

uncertainty regarding the parameters of this equation.

Indeed, all these parameters are reasonably well known

only for the locations in which we have the NLSW

simulations. In fact, the computational cost for achieving

this for all POIs of a regional hazard quantification is

typically unaffordable, since they are a very large num-

ber, andmoreover precise local topographic/bathymetric

data are usually not available. The parametersAij, lij, �ij,

and rij must then be estimated from the available

general information. More specifically:

– Aij for a set of different tsunami scenarios has been

extracted as shown in previous sections.

– The time history of the tsunami and the local gij
may be estimated from linear simulations of the

propagation in deep sea of each individual tsunami

scenario.

– In regional PTHA, these simulations are barely

affordable; therefore, both tsunami time history

and gij are here approximated as a linear combi-

nation of unit sources (Molinari et al. 2016). Here

we introduce zij as a further source of epistemic

uncertainty, which is introduced by combining unit

sources rather than simulating all of them as a

single source. The treatment of this uncertainty is

elaborated below.

– For the estimation of the parameters �ij and rij, we

assume that combining all the information from

selected test sites reasonably approximates the

variability of these parameters for all the POIs.

To propagate this epistemic uncertainty for the i-th

tsunami scenario at the j-th POI, we adopt a Monte

Carlo simulation scheme. We take as input the

applicable Aij and zij obtained from the simulation of

the i-th tsunami scenario based on unit source

combination for the j-th POI. Then, for each POI

and each tsunami scenario, we sample:

– The correction d� from the empirical distribution

d ¼ ðz� gÞ=g. This is the distribution of the

relative error of the approximated g values due to

the use of unit sources (as defined in Molinari et al.

(2016), see their Figure 4d). This distribution is

obtained by aggregation of a very large number of

NLSW simulations with variable source and site,

over a quite large range of tsunami intensities (up

to [ 10m), and we may assume that they reason-

ably approximate this uncertainty source for PTHA

purposes.

– The parameters �� and r� from the empirical

distributions of b and r of Fig. 11, upper panel, and

Fig. 12.

To obtain the consequent hazard curve, we can

substitute each sampled {d�,��,r�} to the correspond-

ing quantities into Eq. (3) as:

Prijð[MIHjMIHijÞ

¼ 1� U
lnMIH� ln ðAijzij=ðð1þ d�Þð1þ ��ÞÞÞ

r�

� �

;

ð5Þ

in particular, we set MIHij = Aij zij as the best-guess

reference MIH from the modeled i-th scenario in the

j-th POI.

3240 S. Glimsdal et al. Pure Appl. Geophys.



Repeating this procedure N (e.g. 1000) times, we

obtain N alternative conditional hazard curves, rep-

resenting the sampled epistemic uncertainty in the

conditional hazard. To increase the computational

efficiency of this estimation, since {d�,��,r�} do not

depend on the selected POI or tsunami scenario, they

can be pre-computed for a discrete number of pos-

sible MIH values, to be subsequently applied to the

different scenarios and POIs.

In Fig. 15, we report one example of the obtained

epistemic uncertainty for a MIHij value of 5m. In this

example, we see that for the mean of the epistemic

uncertainty of the model, the frequency of MIH

exceeding 5m in one randomly selected point over the

coastline is 50%,with resultingwide confidence ranges

of � 15% considering the 16th and 84th percentiles.

6. Conclusion

In this paper, a new version of the amplification

factor (AF) method for tsunami inundation height

estimation has been presented. The new version

represents a major upgrade compared to previous AF

models, by taking into account the local bathymetry

and the uncertainty introduced by using an approxi-

mated approach to the inundation process estimation

through NLSW models. Because of the new AF

capabilities, we can for the first time properly esti-

mate the probability distribution of the maximum

inundation height for PTHA. Another step forward is

that the resulting MIHs emerging from the model are

anchored towards a comprehensive set of more

accurate reference models. The new method is

implemented for the whole NEAM region, for the

purpose of probabilistic tsunami hazard analysis for

the TSUMAPS-NEAM project.

The AF method is set up to estimate the median

value of the maximum inundation height at an area

along the coast, when combined with tsunami prop-

agation models. By linking the AF results with local

inundation NLSW simulation results, we have also

been able to add the inundation uncertainty into the

AF model. Statistical analysis of the different sources

of uncertainty is performed through 576 local inun-

dation simulations for different earthquake sources

and coastal sites. For example, the quantified bias

indicates that the AF method may yield a slight

underestimation (5%) of the median inundation

height at a given site. However, the AF method yields

much more accurate results than the Green’s law

method with respect to both a smaller overall bias and

reduced uncertainty.

By comparing results from the inundation simula-

tions with the AF results, we find mainly three sources

of uncertainty related to employing the AF method,

namely variability in positive and negative biases,

local variability in the maximum inundation height

(owing to the fact that AF is non-local), and the stan-

dard error, i.e. the uncertainty of the variability

(because different sites and sources produce different

inundation variability). Overall, the results show that

the inundation variability is strong and needs to be

accounted for in a regional PTHA method.

When the inundation statistics is conducted for

smaller subsets of the simulation data, for instance for a

single site, statistical distributions tend to be rather

heterogeneous. When the results are aggregated, more

well-defined normal distributions (for the bias) and log-

normal distributions (for the local variability) are

Figure 15
Conditional hazard curve for a MIHij = 5 m and relative epistemic

uncertainty. In gray, we report the N = 1000 sampled alternative

curves, while in blue and red we report different statistics of the

epistemic uncertainty (blue, mean; red median; dotted red 2nd,

16th, 84th, and 98th percentiles)
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obtained. Taking into account that the AF method is

designed for regional applications, at present state,

merging uncertainties from different sites and sources

into a single uncertainty seems to be the most robust

option, although this increases the overall uncertainty in a

hazard estimate. However, by including many more

NLSW simulations in the future, for example covering

more sites and sources, we would expect to improve run-

up estimation capabilities and to reduce related uncer-

tainties, for instance by better taking into account

individual bias factors.

Hence, in its present form, the AF method is

primarily set up to assist regional hazard quantifica-

tion, and cannot be used for estimation of maximum

run-up heights or as a replacement for local detailed

inundation maps. For correct use, both the uncertainty

and the bias associated with the method and with the

specific hazard metric need to be taken into account.
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Appendix

1 Extraction of Bathymetric Profiles

The SRTM15? bathymetric model (15 arc-sec

spatial resolution, http://topex.ucsd.edu) was used as

the basis for extracting profiles within both the

Mediterranean Sea and the Black Sea, while for the

North-Eastern Atlantic the SRTM30? (30 arc-sec

spatial resolution), improved with local data in Por-

tugal (Zitellini et al. 2009), was used. The procedure

for acquiring the bathymetric profiles began with

extracting offshore points along a 50 m depth isobath

with an initial separation distance of 2 km; then the

POIs were down-sampled to about 20 km for the sake

of computational feasibility and because they provide

a non-local, averaged representation of the coastal

hazard points suitable for the TSUMAPS-NEAM

model resolution.

A nearest-neighbor algorithm was used to identify

corresponding coastline points, i.e. connecting the

offshore to the onshore points. These identified

shoreline points were then applied to define a piece-

wise linear shoreline contour. A set of 40 transects

spaced at about 1 km and perpendicular to this con-

tour line were then created (i.e. 20 km to each side of

the offshore hazard points, see Figs. 2 and 16). All

profiles that intersected islands were deleted in order

to avoid positive values (i.e., land). Profiles with

anomalous orientation with respect to the shoreline

were then identified and manually corrected.

However, we could not straightforwardly apply

the above procedure in areas characterized by com-

plex non-planar shorelines with many islands, such as

the Aegean islands, deep and narrow bays (e.g.,

fjords), and the Croatian islands. Therefore, in these

areas, some POIs were left out without transects in

the automatic procedure and for most areas are
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Figure 16
Map depicting the main features used to trace the transects. The offshore points at 50 m depth are colored magenta, and the corresponding

shoreline points are colored green. The piecewise linear shoreline contour passes through three points on the shoreline, and a group of profiles

perpendicular to the line and to the shoreline is displayed
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transect positions drawn manually. For our study, a

total of 149 profiles were extracted for the Black Sea,

935 profiles for the Mediterranean Sea, and 1158

profiles for the North-Eastern Atlantic region (Fig. 2).

2 Extraction of Wave Periods

In a search for a maximal offshore surface ele-

vation, waves arriving later than 2 h after the first

wave arrival were neglected. Wave characteristics

needed to determine the AF are extracted from the

mareograms recorded at the offshore grid nodes

placed along the 50 m isobath outside each test site

location (an example in Fig. 17). The automatic

procedure works as follows:

1. Find the tsunami first arrival

– We analyzed the variance of the signal

2. Check whether the signal is long enough to

perform the analysis

– We set the minimum length of the signal to 90

min starting from the first arrival

3. Find the time window where the signal amplitude

is significantly larger than the background level

– We analyzed the variance of the signal

4. Find the maximum wave amplitude (Hmax)

5. Select a time window (W) for performing the

analysis

– We opted for a 2-h window centered around

Hmax

6. Remove from the signal the spurious short oscil-

lations that could lead to wave period estimates

that are too small, while roughly preserving the

Hmax

– We used a robust LOWESS (locally weighted

scatter plot smoothing) technique within W

7. Find the first relative minima on the filtered

waveform located before and after the Hmax (see

point 3 above)

8. Estimate the period of the signal

– We computed the distance between the minima

(from point 6 above)

9. Estimate the polarity of the leading wave

– We evaluated the trough-to-peak ratio (R),

where the trough is the first relative minimum

before the Hmax and the peak is just Hmax;

polarity is negative if R[ 25%, positive

otherwise
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