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Abstract. We develop a rounding method based on random walks in polytopes, which leads to
improved approximation algorithms and integrality gaps for several assignment problems that arise in
resource allocation and scheduling. In particular, it generalizes the work of Shmoys & Tardos on the
generalized assignment problem in two different directions, where the machines have hard capacities,
and where some jobs can be dropped. We also outline possible applications and connections of this
methodology to discrepancy theory and iterated rounding.
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1. Introduction. The “relax-and-round” paradigm is a well-known approach in
combinatorial optimization. Given an instance of an optimization problem, we en-
large the set of feasible solutions I to some set I ′ ⊃ I – often the linear-programming
(LP) relaxation of the problem; we then map an (efficiently computed, optimal) so-
lution x∗ ∈ I ′ to some “nearby” x ∈ I and prove that x is near-optimal in I. This
second “rounding” step is often a crucial ingredient, and many general techniques
have been developed for it. In this work, we present a new rounding methodology
which leads to several improved approximation algorithms in scheduling, and which,
as we explain, appears to have connections and applications to other techniques and
problems, respectively.

We next present background on (randomized) rounding and a fundamental schedul-
ing problem, before describing our contribution.

Our work generalizes various dependent randomized rounding techniques that
have been developed over the past decade or so. Recall that in randomized rounding,
we use randomization to map x∗ = (x∗1, x

∗
2, . . . , x

∗
n) back to some x = (x1, x2, . . . , xn)

[41]. Typically, we choose a value α that is problem-specific, and, independently for
each i, define xi to be 1 with probability αx∗i , and to be 0 with the complementary
probability of 1−αx∗i . Independence can, however, lead to noticeable deviations from
the mean for random variables that are required to be very close to (or even be equal
to) their mean. A fruitful idea developed in [47, 29, 34] is to carefully introduce de-
pendencies into the rounding process: in particular, some sums of random variables
are held fixed with probability one, while still retaining randomness in the individ-
ual variables and guaranteeing certain types of negative-correlation properties among
them. See [1] for a related deterministic approach that precedes these works. These
dependent-rounding approaches lead to numerous improved approximation algorithms
in scheduling, packet-routing and in several problems of combinatorial optimization
[1, 47, 29, 34, 18].

We now introduce a fundamental scheduling model, which has spurred many
advances and applications in combinatorial optimization, including linear-, quadratic-
& convex-programming relaxations and new rounding approaches [36, 43, 45, 6, 22,
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34, 31, 8, 10, 15]. This model, scheduling with unrelated parallel machines (UPM) –
and its relatives – play a key role in this work. Herein, we are given a set J of n jobs,
a set M of m machines, and non-negative values pi,j (i ∈M, j ∈ J): each job j has to
be assigned to some machine, and assigning it to machine i will impose a processing
time of pi,j on machine i. (The word “unrelated” arises from the fact that there may
be no pattern among the given numbers pi,j .) Variants such as the type of objective
function(s) to be optimized in such an assignment, whether there is an additional
“cost-function”, whether a few jobs can be dropped, and situations where there are
release dates for, and precedence constraints among, the jobs, lead to a rich spectrum
of problems and techniques. We now briefly discuss two such highly-impactful results
[36, 43]. The primary UPM objective in these works is to minimize the makespan –
the maximum total load on any machine. It is shown in [36] that this problem can
be approximated to within a factor of 2; furthermore, even some natural special cases
cannot be approximated better than 1.5 unless P = NP [36]. Despite much effort,
these bounds have not been improved. The work of [43] builds on the upper-bound
of [36] to consider the generalized assignment problem (GAP) where we incur a cost
ci,j if we schedule job j on machine i; a simultaneous (2, 1)–approximation for the
(makespan, total cost)-pair is developed in [43], leading to numerous applications (see,
e.g., [2, 17]).

We generalize the methods of [33, 1, 47, 29, 34], via a type of random walk
toward a vertex of the underlying polytope that we outline next. We then present
several applications in scheduling and bipartite matching through problem-specific
specializations of this approach, and discuss further prospects for this methodology.

The rounding approaches of [33, 1, 47, 29] are generalized to linear systems as
follows in [34]. Suppose we have an n-dimensional constraint system Ax ≤ b with the
additional constraints that x ∈ [0, 1]n. This will often be an LP-relaxation, which we
aim to round to some y ∈ {0, 1}n such that some constraints in “Ay ≤ b” hold with
probability one, while the rest are violated “a little” (with high probability). Given
some x ∈ [0, 1]n, the rounding approach of [34] is as follows. First, we assume without
loss of generality that x ∈ (0, 1)n: those xj that get rounded to 0 or 1 at some point,
are held fixed from then on. Next, we “judiciously” drop some of the constraints in
“Ax ≤ b” until the number of constraints becomes smaller than n, thus making the
system linearly-dependent – leading to the efficient computation of an r ∈ <n that is
in the nullspace of this reduced system. We then compute positive scalars α and β
such that x1 := x + αr and x2 := x − βr both lie in [0, 1]n, and both have at least
one component lying in {0, 1}; we then update x to a random Y as: Y := x1 with
probability β/(α + β), and Y := x2 with the complementary probability α/(α + β).
Thus we have rounded at least one further component of x, and also have the useful
property that for all j, E[Yj ] = xj . Different ways of conducting the “judicious”
reduction lead to a variety of improved scheduling algorithms in [34]. The setting of
[47, 29] on bipartite b-matchings can be interpreted in this framework.

We further generalize the above-sketched approach of [34]. Suppose we are given a
polytope P in n dimensions, and a non-vertex point x belonging to P. An appropriate
basic-feasible solution will of course lead us to a vertex of P, but we approach (not
necessarily reach) a vertex of P by a random walk as follows. Let C denote the set of
constraints defining P which are satisfied tightly (i.e., with equality) by x. Then, note
that there is a non-empty linear subspace S of <n such that for any nonzero r ∈ S,
we can travel up to some strictly-positive distance f(r) along r starting from x, while
staying in P and continuing to satisfy all constraints in C tightly. Our broad approach
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to conduct a random move Y := x+R by choosing an appropriately random R from
S, such that the property “E[Yj ] = xj” of the previous paragraph still holds. In
particular, let RandMove(x,P) – or simply RandMove(x) if P is understood – be
as follows. Choose a nonzero r ∈ S arbitrarily, and set Y := x+f(r)r with probability
f(−r)/(f(r) + f(−r)), and Y := x − f(−r)r with the complementary probability of
f(r)/(f(r) + f(−r)). Note that if we repeat RandMove, we obtain a random walk
that finally leads us to a vertex of P; the high-level idea is to intersperse this walk
with the idea of “judiciously dropping some constraints” from the previous paragraph,
as well as combining certain constraints together into one. Three major differences
from [34] are: (a) the care given to the tight constraints C, (b) the choice of which
constraint to drop being based on C, and (c) clubbing some constraints into one. As
discussed next, this recipe appears fruitful in a number of directions in scheduling,
and as a new rounding technique in general.

Capacity constraints on machines, random matchings with sharp tail bounds. Han-
dling “hard capacities” – those that cannot be violated – is generally tricky in various
settings, including facility-location and other covering problems [21, 27, 38]. Moti-
vated by problems in crew-scheduling [23, 42] and by the fact that servers have a limit
on how many jobs can be assigned to them, the natural question of scheduling with a
hard capacity-constraint of “at most bi jobs to be scheduled on each machine i” has
been studied in [50, 54, 53, 52, 19]. Most recently, the work of [19] has shown that
this problem can be approximated to within a factor of 3 in the special case where
the machines are identical (job j has processing time pj on any machine). In § 2, we
use our random-walk approach to generalize this to the setting of GAP and obtain
the GAP bounds of [43] – i.e., approximation ratios of 2 and 1 for the makespan
and cost respectively, while satisfying the capacity constraints: the improvements are
in the more-general scheduling model, handling the cost constraint, and in the ap-
proximation ratio. We anticipate that such a capacity-sensitive generalization of [43]
would lead to improved approximation algorithms for several applications of GAP,
and present one such in Section 5.

Theorem 2.1 generalizes such capacitated problems to random bipartite b-matchings
with target degree bounds and sharp tail bounds for given linear functions; see [24] for
applications to models for complex networks. Recall that a (b)-matching is a subgraph
in which every vertex v has degree at most b(v). Given a fractional b-matching x in
a bipartite graph G = (J,M,E) of N vertices and a collection of k linear functions
{fi} of x, many works have considered the problem of constructing (b-)matchings X
such that fi(X) is “close” to fi(x) simultaneously for each i [3, 30, 40, 29]. The works
[30, 40] focus on the case of constant k; those of [3, 29] consider general k, and require
the usual “discrepancy” term of Ω(

√
fi(x) logN) in |fi(X)−fi(x)| for most/all i; in a

few cases, o(N) vertices will have to remain unmatched also. In contrast, Theorem 2.1
shows that if there is one structured objective function fi with bounded coefficients
associated with each i ∈M , then in fact all the |fi(X)− fi(x)| can be bounded inde-
pendent of N . This appears to be the first such result here, and helps with equitable
max-min fair allocations as discussed below.

Scheduling with outliers: makespan and fairness. Note that the (2, 1) bicriteria
approximation that we obtain for GAP above, generalizes the results of [43]. We now
present such a generalization in another direction: that of “outliers” in scheduling
[31]. For instance, suppose in the “processing times pi,j and costs ci,j” setting of
GAP, we also have a profit πj for choosing to schedule each job j. Given a “hard”
target profit Π, target makespan T and total cost C, the LP-rounding method of [31]
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either proves that these targets are not simultaneously achievable, or constructs a
schedule with values (Π, 3T,C(1 + ε)) for any constant ε > 0. Using our rounding
approach, we improve this to (Π, (2+ε)T,C(1+ε)) in § 3. (The factors of ε in the cost
are required due to the hardness of knapsack [31].) Also, fairness is a fundamental
issue in dealing with outliers: e.g., in repeated runs of such algorithms, we may not
desire long starvation of individual job(s) in sacrifice to a global objective function.
Theorem 3.2 accommodates fairness in the form of scheduling-probabilities for the
jobs that can be part of the input.

Max-Min Fair Allocation. This problem is the max-min version of UPM, where we
aim to maximize the minimum “load” (viewed as utility) on the machines; it has
received a good deal of attention recently [8, 5, 25, 4, 10, 15]. We are able to employ
a generalization of dependent randomized rounding to near-optimally determine the
integrality gap of a well-studied LP relaxation. Also, Theorem 2.1 lets us generalize a
result of [14] on max-min fairness to the setting of equitable partitioning of the jobs;
see § 4.

Directions for the future: some potential connections and applications. Dis-
tributions on structured matchings in bipartite graphs is a topic that models many
scenarios in discrete optimization, and we view our work as a useful contribution to it.
We explore further applications and connections in § 6. A general question involving
“rounding well” is the lattice approximation problem [41]: given A ∈ {0, 1}m×n and
p ∈ [0, 1]n, we want a q ∈ {0, 1}n such that ‖A · (q − p)‖∞ is “small”; the linear
discrepancy of A is defined to be lindisc(A) = maxp∈[0,1]n minq∈{0,1}n ‖A · (q− p)‖∞.
The field of combinatorial discrepancy theory [13] has developed several classical re-
sults that bound lindisc(A) for various matrix families A; column-sparse matrices have
received much attention in this regard. Section 6 discusses a concrete approach to
use our method for the famous Beck-Fiala conjecture on the discrepancy of column-
sparse matrices [12], in the setting of random matrices. § 6 also suggests that there
may be deeper connections to iterated rounding, a fruitful approach in approximation
algorithms [32, 26, 44, 35, 51]. We view our approach as having broader connec-
tions/applications (e.g., to open problems including capacitated facility location [38]),
and are studying these directions.

2. Random Matchings with Linear Constraints, and GAP with Ca-
pacity Constraints. We develop an efficient scheme to generate random subgraphs
of bipartite graphs that satisfy hard degree-constraints and near-optimally satisfy a
collection of linear constraints:

Theorem 2.1. Let G = (J,M,E) be a bipartite graph with “jobs” J and “ma-
chines” M . Let F be the collection of edge-indexed vectors y (with yi,j denoting ye
where e = (i, j) ∈ E). Suppose we are given: (i) an integer requirement rj for each
j ∈ J and an integer capacity bi for each i ∈M ; (ii) for each i ∈M , a linear objective
function fi : F → < given by fi(y) =

∑
j: (i,j)∈E pi,jyi,j such that 0 ≤ pi,j ≤ `i for

each j, (iii) a global cost constraint
∑
i,j ci,jyi,j ≤ C, and (iv) a vector x ∈ F with

xe ∈ [0, 1] for each e. Then, we can efficiently construct a random subgraph of G
given by a binary vector X ∈ F , such that: (a) with probability one, each j ∈ J has
degree at least rj, each i ∈M has degree at most bi, and |fi(X)− fi(x)| < `i ∀i; and
(b) for all e ∈ E, E

[
Xe

]
= xe which implies E

[∑
i,j ceXe

]
=
∑
e cexe = C

We first prove an important special case of Theorem 2.1: GAP with individual
capacity constraints on each machine. This special case, handled by Theorem 2.2
captures much of the essence of Theorem 2.1; the full proof of Theorem 2.1 follows
after Theorem 2.2.
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The capacity constraint specifies the maximum number of jobs that can be sched-
uled on any machine, and is a hard constraint. Formally the problem is as follows,
where xi,j is the indicator variable for job j being scheduled on machine i. Given
m machines and n jobs, where job j requires a processing time of pi,j in machine
i and incurs a cost of ci,j if assigned to i, the goal is to minimize the makespan
T = maxi

∑
j xi,jpi,j , subject to the constraint that the total cost

∑
i,j xi,jci,j is at

most C and for each machine i,
∑
j xi,j ≤ bi. C is the given upper bound on total

cost and bi is the capacity of machine i, that must be obeyed.
Our main contribution here is an efficient algorithm Sched-Cap that has the

following guarantee, generalizing the GAP bounds of [43]:
Theorem 2.2. There is an efficient algorithm Sched-Cap that returns a sched-

ule maintaining all the capacity constraints, of cost at most C and makespan at most
2T , where T is the optimal makespan with cost C that satisfies the capacity con-
straints.

Algorithm Sched-Cap. Algorithm Sched-Cap proceeds as follows. First we
guess the optimum makespan T by binary search as in [36]. If pi,j > T , xi,j is set to
0. The solution to the following integer program gives the optimum schedule:∑

i,j

ci,jxi,j ≤ C (Cost)

∑
i,j

xi,j = 1 ∀j (Assign)

∑
j

pi,jxi,j ≤ T ∀i (Load)

∑
j

xi,j ≤ bi ∀i (Capacity)

xi,j ∈ {0, 1} ∀i, j
xi,j = 0 if pi,j > T

We relax the constraint “xi,j ∈ {0, 1} ∀(i, j)” to “xi,j ∈ [0, 1] ∀(i, j)” to obtain
an LP relaxation LP-Cap. We solve the LP to obtain an optimal LP solution x∗;
we next show how Sched-Cap rounds x∗ to obtain an integral solution within the
approximation guarantee.

Note that x∗i,j ∈ [0, 1] denotes the “fraction” of job j assigned to machine i.
Initialize X = x∗. The algorithm is composed of several iterations. The random value
of the assignment-vector X at the end of iteration h of the overall algorithm is denoted
by Xh. Each iteration h conducts a randomized update using the RandMove on the
polytope of a linear system constructed from a subset of the constraints of LP-Cap.
Therefore, by induction on h, we will have for all (i, j, h) that E

[
Xh
i,j

]
= x∗i,j ;we use

this property and drop the cost constraint since on expectation it is maintained.
Let J and M denote the set of jobs and machines, respectively. Suppose we are

at the beginning of some iteration (h + 1) of the overall algorithm: we are currently
looking at the values Xh

i,j . We will maintain four invariants.
Invariants across iterations:

(I1) Once a variable xi,j gets assigned to 0 or 1, it is never changed;
(I2) The constraints (Assign) always hold; and
(I3) Once a constraint in (Capacity) becomes tight, it remains tight, and
(I4) Once a constraint is dropped in some iteration, it is never reinstated.
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Iteration (h+ 1) of Sched-Cap consists of three main steps:

1. We first remove all Xh
i,j ∈ {0, 1}; i.e., we project Xh to those co-ordinates (i, j)

for which Xh
i,j ∈ (0, 1), to obtain the current vector Y of “floating” (to-be-rounded)

variables; let S ≡ (AhY = uh) denote the current linear system that represents
LP-Cap. (Ah is some matrix and uh is a vector; we avoid using “Sh” to simplify
notation.) In particular, the “capacity” of machine i in S is its residual capacity b′i,
i.e., bi minus the number of jobs that have been permanently assigned to i thus far.
Note that the cost constraint is not included in the constraint matrix AhY = uh,
which we continue to maintain exactly. Nevertheless since all the variables maintains
its initial assignment on expectation, the expected cost remains unaltered. The entire
process as we demonstrate at the end can be derandomized and hence the cost upper
bound of C is obeyed.

2. Let Y ∈ <v for some v; note that Y ∈ (0, 1)v. Let Mk denote the set of all machines
i for which exactly k of the values Yi,j are positive. We will now drop some of the
constraints in S:

(D1) for each i ∈M1, we drop its load and capacity constraints from S;
(D2) for each i ∈M2, we drop its load constraint and rewrite its capacity constraint

as xi,j1 + xi,j2 ≤ dXh
i,j1

+ Xh
i,j2
e, where j1, j2 are the two jobs fractionally

assigned to i.
(D3) for each i ∈M3 for which both its load and capacity constraints are tight in S,

we drop its load constraint from S.

3. Let P denote the polytope defined by this reduced system of constraints. A key
claim that is proven in Lemma 2.3 below is that Y is not a vertex of P. We now
invoke RandMove(Y,P); this is allowable if Y is indeed not a vertex of P.

The above three steps complete iteration (h+ 1).

Analysis. It is not hard to verify that the invariants (I1)-(I4) hold true (though
the fact that we drop the all-important capacity constraint for machines i ∈M1 may
look bothersome, a moment’s reflection shows that such a machine cannot have a
tight capacity-constraint since its sole relevant job j has value Yi,j ∈ (0, 1)). Since we
make at least one further constraint tight via RandMove in each iteration, invariant
(I4) shows that we terminate, and that the number of iterations is at most the initial
number of constraints. Let us next present Lemma 2.3, a key lemma:

Lemma 2.3. In no iteration is Y a vertex of the current polytope P.

Proof. Suppose that in a particular iteration, Y is a vertex of P. Fix the notation
v, Mk etc. w.r.t. this iteration; let mk = |Mk|, and let n′ denote the remaining number
of jobs that are yet to be assigned permanently to a machine. Let us lower- and upper-
bound the number of variables v. On the one hand, we have v =

∑
k≥1 k · mk, by

definition of the sets Mk; since each remaining job j contributes at least two variables
(co-ordinates for Y ), we also have v ≥ 2n′. Thus we get

v ≥ n′ +
∑
k≥1

(k/2) ·mk. (2.1)

On the other hand, since Y has been assumed to be a vertex of P, the number t of
constraints in P that are satisfied tightly by Y , must be at least v. How large can t
be? Each current job contributes one (Assign) constraint to t; by our “dropping con-
straints” steps (D1), (D2) and (D3) above, the number of tight constraints (“load”
and/or “capacity”) contributed by the machines is at most m2 + m3 +

∑
k≥4 2mk.
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Thus we have

v ≤ t ≤ n′ +m2 +m3 +
∑
k≥4

2mk. (2.2)

Comparison of (2.1) and (2.2) and a moment’s reflection shows that such a situ-
ation is possible only if: (i) m1 = m3 = 0 and m5 = m6 = · · · = 0; (ii) the capacity
constraints are tight for all machines in M2 ∪M4 – i.e., for all machines; and (iii)
t = v. However, in such a situation, the t constraints in P constitute the tight as-
signment constraints for the jobs and the tight capacity constraints for the machines,
and are hence linearly dependent (since the total assignment “emanating from” the
jobs must equal the total assignment “arriving into” the machines). Thus we reach a
contradiction, and hence Y is not a vertex of P.

We next show that the final makespan is at most 2T with probability one:

Lemma 2.4. Let X denote the final rounded vector. Algorithm Sched-Cap
returns a schedule, where with probability one: (i) all capacity-constraints on the ma-
chines are satisfied, and (ii) for all i,

∑
j∈J Xi.jpi,j <

∑
j x
∗
i,jpi,j+maxj∈J: x∗i,j∈(0,1)pi,j.

Proof. Part (i) essentially follows from the fact that we never drop any capacity
constraint; the only care to be taken is for machines i that end up inM1 and hence have
their capacity-constraint dropped. However, as argued soon after the description of
the three steps of an iteration, note that such a machine cannot have a tight capacity-
constraint when such a constraint was dropped; hence, even if the remaining job j
got assigned finally to i, its capacity constraint cannot be violated.

Let us now prove (ii). Fix a machine i. If at all its load-constraint was dropped,
it must be when i ended up in M1,M2 or M3. The case of M1 is argued as in the
previous paragraph. So suppose i ∈ M` for some ` ∈ {2, 3} when its load constraint
got dropped. Let us first consider the case ` = 2. Let the two jobs fractionally
assigned on i at that point have processing times (p1, p2) and fractional assignments
(y1, y2) on i, where 0 ≤ p1, p2 ≤ T , and 0 < y1, y2 < 1. If y1 + y2 ≤ 1, we know
that at the end, the assignment vector X will have at most one of X1 and X2 being
one. Simple algebra now shows that p1X1 + p2X2 < p1y1 + p2y2 + max{p1, p2} as
required. If 1 < y1 + y2 ≤ 2, then both X1 and X2 can be assigned and again,
p1X1 +p2X2 < p1y1 +p2y2 + max{p1, p2}. For the case ` = 3, we know from (I3) and
(D3) that its capacity-constraint must be tight at some integral value u at that point,
and that this capacity-constraint was preserved until the end. We must have c = 1 or
2 here. Let us just consider the case c = 2; the case of c = 1 is similar to the case of
` = 2 with y1 +y2 ≤ 1. Here again, simple algebra yields that if 0 ≤ p1, p2, p3 ≤ T and
0 < y1, y2, y3 < 1 with y1 +y2 +y3 = c = 2, then for any binary vector (X1, X2, X3) of
Hamming weight c = 2, p1X1 + p2X2 + p3X3 < p1y1 + p2y2 + p3y3 + max{p1, p2, p3}.

Finally we have the following lemma.

Lemma 2.5. Algorithm Sched-Cap can be derandomized to create a schedule of
cost at most C.

Proof. Let Xh
i,j denote the value of xi,j at iteration h. We know for all i, j, h,

E[Xh
i,j ] = x∗i,j , where x∗i,j is solution of LP-Cap. Therefore, at the end, we have that

the total expected cost incurred is C. The procedure can be derandomized directly
by the method of conditional expectation, giving an 1-approximation to the cost.

Lemmas 2.4 and 2.5 yield Theorem 2.2.
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Proof of Theorem 2.1. We now consider the full proof of Theorem 2.1. The
following integer program gives an optimal matching:

∑
i,j

ci,jxi,j ≤ C (Cost)

∑
i,j

xi,j ≥ rj ∀j (Assign)

∑
j

pi,jxi,j = fi ∀i (Load)

∑
j

xi,j ≤ bi ∀i (Capacity)

xi,j ∈ {0, 1} ∀i, j
xi,j = 0 if pi,j > li

The proof of Theorem 2.1 is quite similar to Theorem 2.2. We elaborate upon
the necessary modifications. First, while removing Xh

i,j ∈ {0, 1}, we update the
assignment requirements of the jobs as well as the capacity constraints of the machines
accordingly. The dropping rules (D1) and (D3) remain the same. However, (D2) is
modified as follows:

(Modified D2) For each i ∈ M2, we drop its load constraint and rewrite its
capacity constraint. Let j1, j2 be the two jobs assigned to machine i with fractional
assignment xi,j1 and xi,j2 . Then if xi,j1 + xi,j2 ≤ 1, set the capacity constraint to
xi,j1 +xi,j2 ≤ 1. Else if 1 < xi,j1 +xi,j2 < 2, set the capacity constraint to xi,j1 +xi,j2 ≥
1.

Lemma 2.3, Lemma 2.5 remain unchanged. We have a new Lemma 2.6 corre-
sponding to Lemma 2.4, which we prove next.

Lemma 2.6. Let X denote the final rounded vector. Then X satisfies with prob-
ability one: (i) all capacity-constraints on the machines are satisfied, and (ii) for all i,∑
j x
∗
i,jpi,j−maxj∈J: x∗i,j∈(0,1)pi,j <

∑
j∈J Xi,jpi,j <

∑
j x
∗
i,jpi,j+maxj∈J: x∗i,j∈(0,1)pi,j.

Proof. Part (i) is similar to Part (i) of Lemma 2.5 and follows from the facts that
the capacity constraints are never violated and machines in M1 cannot have tight
capacity constraints.

Let us now prove (ii). Note that in (Modified D2) the upper bound on capacity
constraint is maintained as in (D2). Hence from Lemma 2.4, we get

∑
j∈J Xi,jpi,j <∑

j x
∗
i,jpi,j + maxj∈J: x∗i,j∈(0,1)pi,j . So we only need to show the lower bound on

the load. Fix a machine i. If at all its load-constraint was dropped, it must be
when i ended up in M1 ∪M2 ∪M3. In the case of M1, at most one job fractionally
assigned to it may not be assigned in the final rounded vector. So suppose i ∈ Ml

for some l ∈ {2, 3} when i has its load constraint dropped. Let us first consider
the case of ` = 2. Let the two jobs fractionally assigned to i at that point have
processing times (p1, p2) and fractional assignments (y1, y2) on i, where 0 ≤ p1, p2 ≤ T ,
and 0 < y1, y2 < 1. If y1 + y2 ≤ 1, then at the end, none of the jobs may get
assigned. Simple algebra now shows that 0 > p1y1 +p2y2−max{p1, p2} as required. If
1 < y1+y2 ≤ 2, then at least one of the two jobs X1 and X2 get assigned to i and again,
p1X1 +p2X2 > p1y1 +p2y2−max{p1, p2}. For the case ` = 3, we know from (I3) and
(D3) that i’s capacity-constraint must be tight at some integral value u at that point,
and that this capacity-constraint was preserved until the end. We must have c = 1 or
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2 in this case. Let us just consider the case c = 2; the case of c = 1 is similar to the case
of ` = 2 with y1 + y2 ≤ 1. Here again, simple algebra yields that if 0 ≤ p1, p2, p3 ≤ T
and 0 < y1, y2, y3 < 1 with y1+y2+y3 = c = 2, then for any binary vector (X1, X2, X3)
of Hamming weight c = 2, p1X1 +p2X2 +p3X3 > p1y1 +p2y2 +p3y3−max{p1, p2, p3}.

Lemmas 2.6 and 2.5 yield Theorem 2.1.
This completes the description of this section. We have shown through our tech-

nique of rounding how a random subgraph of a bipartite graph with hard degree-
constraints can be obtained that near-optimally satisfies a collection of linear con-
straints and respects a given cost-budget. As a special case of this, we obtained a 2
approximation algorithm for the generalized assignment problem with hard capacity-
constraints on the machines.

3. Scheduling with Outliers. In this section, we consider GAP with outliers
and with a hard profit constraint [31]. Formally, the problem is as follows. Let xi,j
be the indicator variable for job j to be scheduled on machine i. Given m machines
and n jobs, where job j requires processing time of pi,j in machine i, incurs a cost of
ci,j if assigned to i and provides a profit of πj if scheduled, the goal is to minimize
the makespan, T = maxi

∑
j xi,jpi,j , subject to the constraint that the total cost∑

i,j xi,jci,j is at most C and total profit
∑
j πj

∑
i xi,j is at least Π. The problem

is motivated from improving the scheduling performance by dropping a few outliers
that may be costly to schedule.

Our main contribution here is the following:
Theorem 3.1. For any constant ε > 0, there is an efficient algorithm Sched-

Outlier that returns a schedule of profit at least Π, cost at most C(1+ε) and makespan
at most (2 + ε)T , where T is the optimal makespan among all schedules that simulta-
neously have cost C and profit Π.

This is an improvement over the work of Gupta, Krishnaswamy, Kumar and
Segev [31], where they constructed a schedule with makespan 3T , profit Π and cost
C(1 + ε). In addition, our approach also accommodates fairness, a basic requirement
in dealing with outliers, especially when problems have to be run repeatedly. We
formulate fairness via stochastic programs that specify for each job j, a lower-bound
rj on the probability that it gets scheduled. We adapt our approach to honor such
requirements:

Theorem 3.2. There is an efficient randomized algorithm that returns a schedule
of profit at least Π, expected cost at most 2C and makespan at most 3T and guarantees
that for each job j, it is scheduled with probability rj, where T is the optimal expected
makespan with expected cost C and expected profit Π. If the fairness guarantee on any
one job can be relaxed, then for every fixed ε > 0, there is an efficient algorithm to
construct a schedule that has profit at least Π, expected cost at most C(1 + 1/ε) and
makespan at most (2 + ε)T .

We start with Theorem 3.1 and describe the algorithm Sched-Outlier first.
Next, we prove Theorem 3.2.

Algorithm Sched-Outlier. The algorithm starts by guessing the optimal
makespan T by binary search as in [36]. If pi,j > T , then xi,j is set to 0. Next pick any

constant ε > 0. The running time of the algorithm depends on ε and is O(n
1
εc ), where

c is some constant. We guess all assignments (i, j) where ci,j > ε′C, with ε′ = ε2.
Any valid schedule can have at most 1/ε′ pairs with assignment costs higher than

ε′C; since ε′ is a constant, this guessing can be done in time O((mn)
1
ε′ ) = O(n

1
ε2 ).

For all (i, j) with ci,j > ε′C, let Gi,j ∈ {0, 1} be a correct guessed assignment. By
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enumeration, we know the optimal Gi,j . For any (i, j) with ci,j > ε′C and ci,j /∈ Gi,j ,
we set xi,j = 0. Similarly, if ci,j > ε′C and ci,j ∈ Gi,j , then we set xi,j = 1.

The solution to the following integer linear program then gives an optimal solu-
tion:

∑
i,j

ci,jxi,j ≤ C (Cost)

∑
i

xi,j = yj ,∀j (Assign)∑
j

pi,jxi,j ≤ T , ∀i (Load)

∑
j

πjyj ≥ Π (Profit)

xi,j ∈ {0, 1}, yj ∈ {0, 1} ,∀i, j
xi,j = 0 if pi,j > T

xi,j = Gi,j if ci,j > ε′C

We relax the constraint “xi,j ∈ {0, 1} and yj ∈ {0, 1}” to “xi,j ∈ [0, 1] and
yj ∈ [0, 1]” to obtain the LP relaxation LP-Out. We solve the LP to obtain an
optimal LP solution x∗, y∗; we next show how Sched-Outlier rounds x∗, y∗ to obtain
the claimed approximation. The rounding proceeds in stages as in Section 2, and as
before, each variable maintains its initial assignment in x∗ on expectation over the
course of rounding. Hence, there is no need to explicitly consider the cost constraint.
The cost constraint is dropped, yet the cost is maintained on expectation. The entire
process can be derandomized efficiently. Therefore, as long as we apply our general
recipe of rounding, RandMove, the cost is maintained exactly. Also note that if we
maintain all the assign-constraints, then the profit-constraint can be dropped and is
not violated. Therefore, we consider the profit constraint if and only if there are one
or more assign constraints that are dropped. Also, we only need to maintain the total
profit obtained from the jobs for which the assign constraints have been dropped. We
now proceed to describe the rounding on each stage formally.

Note that x∗i,j ∈ [0, 1] denotes the fraction of job j assigned to machine i in x∗.
Initially,

∑
i x
∗
i,j = y∗j . Initialize X = x∗. The algorithm is composed of several

iterations; the random values at the end of iteration h of the overall algorithm are
denoted by Xh. (Since yj is given by the equality

∑
i xi,j , X

h is effectively the set
of variables.) Each iteration h (except perhaps the last one) conducts a randomized
update using RandMove on a suitable polytope constructed from a subset of the
constraints of LP-Out. Therefore, for all h except perhaps the last, we have E

[
Xh
i,j

]
=

x∗i,j . A variable Xh
i,j is said to be floating if it lies in (0, 1), and a job is floating if it

is not yet finally assigned. The subgraph of (J,M,E) composed of the floating edges
(i, j), naturally suggests the following notation at any point of time: machines of
“degree” k in an iteration are those with exactly k floating jobs assigned fractionally,
and jobs of “degree” k are those assigned fractionally to exactly k machines in iteration
h. Note that since we allow yj < 1, there can exist singleton (i.e., degree-1) jobs which
are floating.

Suppose we are at the beginning of some iteration (h + 1) of the overall algo-
rithm; so we are currently looking at the values Xh

i,j . We will maintain the following
invariants:
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Invariants across iterations:
(I1’) Once a variable xi,j gets assigned to 0 or 1, it is never changed;
(I2’) If j is not a singleton, then

∑
i xi,j remains at its initial value;

(I3’) The constraint (Profit) always holds;
(I4’) Once a constraint is dropped, it is never reinstated.

Algorithm Sched-Outlier starts by initializing with LP-Out. Iteration (h+ 1)
consists of four major steps.

1. We remove all Xh
i,j ∈ {0, 1} as in Section 2 , i.e., we project Xh to those co-ordinates

(i, j) for which Xh
i,j ∈ (0, 1), to obtain the current vector Z of “floating” variables;

let S ≡ (AhZ = uh) denote the current linear system that represents LP-Out. (Ah
is some matrix and uh is a vector.)

2. Let Z ∈ <v for some v; note that Z ∈ (0, 1)v. Let Mk and Nk denote the set of
degree-k machines and degree-k jobs respectively, with mk = |Mk| and nk = |Nk|.
We will now drop/replace some of the constraints in S:
(D1’) for each i ∈M1, we drop its load constraint from S;
(D2’) for each i ∈ N1, we drop its assignment constraint from S; we add one profit

constraint (if already exists, we replace the old one) ,∑
j∈N1

Zi,jπj =
∑
j∈N1

Xh
i,jπj .

(Note that at this point, the values Xh
i,j are some known values.)

Thus, the assignment constraints of the singleton jobs are replaced by one profit
constraint. As we noted earlier, it is not required to maintain the contribution to
profit by the non-singleton jobs for which the assignment constraints are maintained
explicitly.

3. If Z is a vertex of S then define the fractional assignment of a machine i by
hi =

∑
j∈J Zi,j . Define a job j to be tight if

∑
i∈M Zi,j = 1. Drop all the assign-

ment constraints of the non-tight jobs (denoted by JN ) and maintain a single profit
constraint, ∑

j∈N1∪JN

Zi,jπj =
∑

j∈N1∪JN

Xh
i,jπj .

While there exists a machine i′ whose degree d satisfies hi′ ≥ (d − 1 − ε), drop the
load constraint on machine i′.

4. Let P denote the polytope defined by this reduced system of constraints. If Z is
not a vertex of P, invoke RandMove(Z,P). Else we proceed differently depending
on the configuration of machines and jobs in the system. If none of the following
configurations is achieved (which we will show never happens at a vertex), then we
report error and exit. There are five possible configurations.

• Config-1: Machine and job nodes form disjoint cycles.
Orient the edges in the bipartite graph to assign the remaining jobs in a way, so

that each machine gets at most one extra job. Note that such an orientation is easy
in disjoint cycles since they have even length.

• Config-2: Machine and job nodes form disjoint cycles and has exactly one
path with both end-points being job nodes. Thus there are two singleton jobs.

Discard one among the two singleton jobs that has less profit. Again orient the
edges in the remaining bipartite graph to assign the remaining jobs in a way, so that
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Config-1 Config-2 Config-3

Config-4 Config-5

JOB NODE

MACHINE NODE

Fig. 3.1. Different configurations of machine-job bipartite graph at step 4 of Sched-Outlier

each machine gets at most one extra job. Such an orientation is easy in disjoint cycles
(they have even length) and paths with equal number of machines and nodes.

• Config-3: There is exactly one job of degree-3 and one singleton job. Rest
of the jobs have degree 2 and all the machines have degree-2.

Assign the singleton job to the degree-2 machine it is fractionally attached to and
remove the other edge (but not the job) associated with that machine. We are left
with disjoint cycles. Orient the edges in the cycles of the bipartite graph to assign
the remaining jobs in a way, so that each machine gets at most one extra job.

• Config-4: There is only one degree-3 machine with one singleton job. Rest of
the machines have exactly two non-singleton jobs attached to it fractionally.
Each non-singleton job is attached fractionally to exactly two machines.

Assign the singleton job and the cheaper (less processing time) of the two non-
singleton jobs to the degree-3 machines. Rest of the jobs and the machines form
disjoints cycles in the machine-job bipartite graph or form disjoint paths each with
equal number of machines and jobs in it. Orient the edges in this remaining bipartite
graph in a way such that each machine gets one among the two jobs fractionally
attached to it.

• Config-5: Machine and job nodes form disjoint cycles. There is one extra
edge with one singleton job and one singleton machine.

Assign the singleton job to the singleton machine. Orient the edges in the cycles
of the bipartite graph to assign the remaining jobs in a way, so that each machine
gets at most one extra job.

The different configurations are shown pictorially in Figure 3.

Analysis. Analysis follows the following structure. First, we prove a key lemma,
Lemma 3.3, which shows that if Z is a vertex and the algorithm reaches step 4, then
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one of the five configurations as described above happens and also the number of
machines is less than 1

ε . Lemma 3.3 is followed by Lemma 3.4. Lemma 3.4 establishes
that the dropping and the modification of constraints in step 2 and 3, along with the
assignment of jobs in step 4 do not violate the load constraint by more than a factor
of (2 + ε) and maintain the profit constraint. Lemma 3.5 bounds the cost.

Recall that in the bipartite graph G = (J,M,E), we have in iteration (h+1) that
(i, j) ∈ E iff Xh

i,j ∈ (0, 1). Any job or machine having degree 0 is thus not part of G.
We prove Lemma 3.3 next.

Lemma 3.3. Let m denote the number of machine-nodes in G. If m ≥ 1
ε , then

Z is not a vertex of the polytope at the beginning of step 4.
Proof. Let us consider the different possible configurations of G, when Z becomes

a vertex of the polytope P at the beginning of step 3. There are several cases to
consider depending on the number of singleton floating jobs in G in that iteration.

Case 1: There is no singleton job: We have n1 = 0. Then, the number of
constraints in S is

EQ =
∑
k≥2

mk +
∑
k≥2

nk.

Remember, since there is no singleton job, we do not consider the profit constraint
explicitly. Also the number of floating variables is v =

∑
k≥2 knk. Alternatively,

v =
∑
k≥1 kmk. Therefore,

v =
∑
k≥2

k

2
(mk + nk) +

m1

2
.

Z being a vertex of P, v ≤ EQ. Thus, we must have, nk,mk = 0, ∀k ≥ 3 and
m1 = 0. Hence, every floating machine has exactly two floating jobs assigned to it
and every floating job is assigned exactly to two floating machines. This is handled
by Config-1.

Case 2: There are at least 3 singleton jobs: We have n1 ≥ 3. Then the number
of linear constraints is EQ =

∑
k≥2mk +

∑
k≥2 nk + 1. The last “1” comes from con-

sidering one profit constraint for the singleton jobs. The number of floating variables
v again by the averaging argument as above is

v =
n1

2
+
∑
k≥2

k

2
(mk + nk) +

m1

2
≥ 3

2
+
∑
k≥2

k

2
(mk + nk) +

m1

2
.

Hence, the system is always underdetermined and Z cannot be a vertex of P.
Case 3: There are exactly 2 singleton jobs: We have n1 = 2. Then the number

of linear constraints is

EQ =
∑
k≥2

mk +
∑
k≥2

nk + 1.

Again the last “1” comes from considering one profit constraint for the singleton jobs.
The number of floating variables v by the averaging argument is

v =
n1

2
+
∑
k≥2

k

2
(mk + nk) +

m1

2
≥ 1 +

∑
k≥2

k

2
(mk + nk) +

m1

2
.
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Thus, we must have, nk = 0,mk = 0,∀k ≥ 3 and m1 = 0. Hence every floating
machine has exactly two floating jobs assigned to it and each job except two is assigned
to exactly two machines fractionally This is handled by Config-2.

Case 4: There is exactly 1 singleton job: We have n1 = 1. Then the number of
linear constraints is

EQ =
∑
k≥2

mk +
∑
k≥2

nk + 1.

The number of floating variables is,

v ≥ 1

2
+ n2 +

3

2
n3 +

m1

2
+m2 +

3

2
m3 +

∑
k≥4

k

2
(mk + nk).

If Z is a vertex of P, then v ≤ EQ. There are only three possible configurations that
might arise in this case.

(i) Only one job of degree 3 and one job of degree 1. All the other jobs have
degree 2 and all the machines have degree 2. This is handled by Config-3.

(ii) Only one machine of degree 3 and one job of degree 1. The rest of the jobs
and machines have degree 2. This is handled by Config-4.

(iii) Only one machine of degree 1 and one job of degree 1. The rest of the jobs
and machines have degree 2. This is handled by Config-5.

Each configuration can have an arbitrary number of vertex disjoint cycles. In all
these configurations, it is easy to check that for Z to be a vertex, v = EQ. Thus if
just one constraint can be dropped, then the system becomes underdetermined.

Since we have reached a vertex at the beginning of step 3, we drop,
• All the assignment constraints for the non-tight jobs.
• Any machine i′ that has degree d (where d > 0 is a positive integer) and the

total fractional assignment from all the jobs fractionally assigned to it is at
least d− 1− ε loses its load-constraint.

• If the profit constraint is not already considered and some non-tight job loses
its assignment constraint; we add the profit constraint.

Now we have v = EQ at the beginning of step 3 and at the beginning of step 4
as well. Hence it implies either we have not been able to drop any constraint, or we
have dropped one assignment constraint for a non-tight job and have added one profit
constraint. We will now show that when m ≥ 1

ε , we always drop more constraints
than we add. This will give a contradiction.

In any configuration, if there is a cycle with all tight jobs, then there always exists
a machine with total fractional assignment 1 and hence its load constraint can always
be dropped to make the system underdetermined. So we assume there is no such
cycle in any configurations. Now suppose the algorithm reaches Config-1. If there
are two non-tight jobs, then we drop two assignment constraints and only add one
profit constraint. Thus the system becomes underdetermined. Therefore, there can
be at most one non-tight job and only one cycle (say C) with that non-tight job. Let
C have m machines and thus m jobs. Therefore,

∑
i,j∈C xi,j ≥ m − 1. Thus there

exists a machine, such that the total fractional assignment of jobs on that machine
is ≥ m−1

m = 1 − 1/m. If m ≥ 1
ε , then there exists a machine with degree 2 and with

total fractional assignment ≥ (1− ε). Thus the load-constraint on that machine gets
dropped making the system underdetermined.

If the algorithm reaches Config-2, then all the non-singleton jobs must be tight
for Z to be a vertex. If there are m machines, then the number of non-singleton jobs
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is m− 1. Let the two singleton jobs be j1 and j2. Let the two machines to which jobs
j1 and j2 are fractionally attached with be i1 and i2 respectively. If xi1,j1 +xi2,j2 ≥ 1,
then the total fractional assignment from all the jobs in the system is m. Thus the
machine with maximum fractional assignment must have an assignment at least 1.
Since the same machine has degree 2, its load constraint gets dropped. Otherwise, the
total fractional assignment from all the jobs in the system is at least m−1. Thus there
exists a machine, such that the total fractional assignment of jobs on that machine
is ≥ m−1

m = 1 − 1/m. If m ≥ 1
ε , then there exists a machine with degree 2 and with

total fractional assignment ≥ (1− ε). Thus the load- constraint on that machine gets
dropped making the system underdetermined.

For Config-3 and 5, if Z is a vertex of P, then all the jobs must be tight and using
essentially the same argument, there exists a machine with fractional assignment at
least (1−ε) if the algorithm reaches Config-3 and there exists a machine with fractional
assignment 1, if the algorithm reaches Config-5.

If the algorithm reaches Config-4, then again all the jobs must be tight. If the
degree-3 machine has fractional assignment at least 2− ε, then its load constraint can
be dropped to make the system underdetermined. Otherwise, the total assignment to
the degree-2 machines from all the jobs in the cycle is at least m− 2 + ε. Therefore,
there exists at least one degree-2 machine with fractional assignment at least m−2+ε

m−1 =

1 − 1−ε
m−1 ≥ 1 − ε, if m ≥ 1

ε . The load-constraint on that machine can be dropped
making the system underdetermined. This completes the proof of Lemma 3.3.

We next show that the final profit is at least Π and the final makespan is at most
(2 + ε)T :

Lemma 3.4. Let X denote the final rounded vector. Algorithm Sched-Outlier
returns a schedule, where with probability one, (i) the profit is at least Π, (ii) for all
i,
∑
j∈J Xi,jpi,j <

∑
j x
∗
i,jpi,j + (1 + ε)maxj∈J: x∗i,j∈{0,1}pi,j.

Proof. (i) This essentially follows from the fact that whenever assignment con-
straint on any job is dropped, its profit constraint is included in the global profit
constraint of the system. At step 4 except for one configuration (Config-2), all the
jobs are always assigned. Thus the profit can not decrease in those configurations. In
Config-2, since we are at a vertex the total fractional assignment from the two single-
ton jobs is less than 1. Otherwise the system remains underdetermined from Lemma
3.3. Thus a singleton job (say j1) is dropped, only when G has two singleton jobs j1, j2
fractionally assigned to i1 and i2 respectively, with total assignment xi1,j1 +xi2,j2 < 1.
Since the job with the higher profit is retained, πj1xi1,j1 + πj2xi2,j2 ≤ max{πj1 , πj2}.

(ii) From Lemma 3.3 and (D1’), load constraints are dropped from machines
i ∈ M1 and might be dropped from machine i ∈ M2 ∪M3. For i ∈ M1, only the
remaining job j with Xh

i,j > 0, can get fully assigned to it. Hence for i ∈M1, its total
load is bounded by

∑
j x
∗
i,jpi,j + maxj∈J:x∗i,j∈{0,1}pi,j . For any machine i ∈M2 ∪M3,

if their degree d (2 or 3) is such that, its fractional assignment is at least d−1−ε, then
by simple algebra, it can be shown that for any such machine i, its total load is at most∑
j x
∗
i,jpi,j+(1+ε)maxj∈J:x∗i,j∈{0,1}pi,j at the end of the algorithm. For the remaining

machines consider what happens at step 4. Since this is the last iteration, if we can
show that the load does not increase by too much in this last iteration, we are done.
Except when Config-4 is reached, any remaining machine i gets at most one extra
job, and thus its total load is bounded by

∑
j x
∗
i,jpi,j + maxj∈J: x∗i,j∈{0,1}pi,j . When

Config-4 is reached at step 4, if the degree-3 machine has a fractional assignment at
most 1 from the two jobs in the cycle, then for any value of m, there will exist a
degree-2 machine whose fractional assignment is 1, giving a contradiction. Hence, let
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j1, j2, j3 be the three jobs assigned fractionally to the degree-3 machine i and let j3
be the singleton job, and xi,j1 + xi,j2 > 1. If pi,j1 ≤ pi,j2 , then the degree-3 machine
gets j1, j3. Else the degree-3 machine gets j2, j3. The degree-3 machine gets 2 jobs,
but its fractional assignment from j1 and j2 is already at least 1. Since the job with
less processing time among j1 and j2 is assigned to i, its increase in load can be at
most

∑
j x
∗
i,jpi,j + maxj∈J: x∗i,j∈{0,1}pi,j . This completes the proof of Lemma 3.4

Finally we have the following lemma.
Lemma 3.5. Algorithm Sched-Outlier can be derandomized to output a schedule

of cost at most C(1 + ε).
Proof. In all iterations h, except the last one, for all i, j, E[Xh

i,j ] = x∗i,j , where
x∗i,j is solution of LP-Out. Therefore, before the last iteration, we have that the
total expected cost incurred is C. The procedure can be derandomized directly by
the method of conditional expectation, giving an 1-approximation to cost, just before
the last iteration. Now at the last iteration, since at most 1

ε jobs are assigned and
each assignment requires at most ε′C = ε2C in cost, the total increase in cost is at
most εC, giving the required approximation.

Lemmas 3.4 and 3.5 yield Theorem 3.1.
We now consider Theorem 3.2 that maintains fairness in the allocation of jobs

while handling outliers.
Proof of Theorem 3.2
Proof. In order to maintain the scheduling probabilities of the jobs, we do not

guess the assignment of jobs with high cost (cost higher than ε′C as in Theorem
3.1). For Part (i), we consider the first two steps of Algorithm Sched-Outlier. If
P denote the polytope defined by the reduced system of constraints and the current
vector Z is not a vertex of P, then we invoke RandMove(Z,P ) and proceed. Else
from Lemma 3.3, Z is a vertex of P only if one of the configurations, Config-1 to
Config-5, as described in step 4 of Algorithm Sched-Outlier is achieved and m < 1

ε .
For any singleton job, we assign the singleton job to the corresponding machine with
probability equal to its fractional assignment. Thus Theorem 3.2 remains valid for
these singleton jobs. For each non-singleton job, we consider the machines to which it
is fractionally assigned and allocate it to the machine which has cheaper assignment
cost for it. If the algorithm reached Config-1, 2, 3 or 5, each machine can get at most
two extra jobs and the expected cost is maintained. However if the algorithm reached
Config-4 and the three jobs associated with the degree-3 machine were all assigned
to it, then we remove one non-singleton job from the degree-3 machine. This job
is assigned to the degree-2 machine in the cycle on which it had non-zero fractional
assignment. This may increase the expected cost by a factor of 2 but ensures that
each machine gets at most 2 additional jobs.

For Part (ii), note that the cost is maintained until the last iteration. In the last
iteration, since at most 1

ε jobs are assigned and each assignment requires at most C
cost, we get the desired result.

4. Max-Min Fair Allocation. In this section we consider another application
of our proposed rounding method, the max-min fair allocation problem [14, 15, 5, 4, 8].
In this problem there are m goods that need to be distributed indivisibly among k
persons. Each person i has a non-negative integer valuation ui,j for good j. The
valuation functions are linear, i.e., ui,C =

∑
j∈C ui,j for any set of C goods. The goal

is to allocate each good to a person such that the “least happy person is as happy
as possible”: i.e., mini ui,C is maximized. Our main contribution in this regard is to
near-optimally pin-point the integrality gap of a configuration LP previously proposed
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and analyzed in [8, 5]. Our algorithm uses bipartite dependent rounding [28] and its
generalization to weighted graphs. Bipartite dependent rounding can be viewed as a
specific type of RandMove on bipartite graphs. A crucial ingredient of our analysis
is to show certain random variables satisfy the property of negative correlation and
hence the Chernoff type concentration bounds can be applied to guarantee small
deviation from the expected value of their sum.

Configuration LP for Max-Min Fair Allocation. The configuration LP
formulation for the max-min fair allocation problem was first considered in [8]. A
configuration is a subset of items and in the LP there is a variable for each valid
configuration. Using binary search, first the optimum solution value T is guessed and
then we define valid configurations based on the approximation factor λ sought for.
We call a configuration C valid for person i if either of the following two conditions
hold:

• ui,C ≥ T and all the items in C have value at most T
λ . These are called small

items.
• C contains only one item j and ui,j ≥ T

λ . We call such an item j to be a big
item for person i.

We define a variable xi,C for assigning a valid configuration C to person i. Let
C(i, T ) denote the set of all valid configurations corresponding to person i with respect
to T . The configuration LP relaxation of the problem is as follows:

∀j :
∑
C3j

∑
i

xi,C ≤ 1 (4.1)

∀i :
∑

C∈C(i,T )

xi,C = 1

∀i, C : xi,C ≥ 0

The above LP formulation may have exponential number of variables, yet if the
LP is feasible, then a fractional allocation where each person receives either a big
item or at least a utility of T (1 − ε) can be computed in polynomial time [8]. Here
ε is any constant greater than zero. In the subsequent discussion and analysis, we
ignore the multiplicative 1 + ε factor; it is hidden in the Θ notation of the ultimate
approximation ratio.

The integrality gap of the above configuration LP is Ω( 1√
k

) and again follows

from [8]. In [5], Asadpour and Saberi gave a rounding procedure for the configuration

LP that achieved an approximation factor of O
(

1√
k(ln k)3

)
. Here we further lower the

gap and prove the following theorem.
Theorem 4.1. Given any feasible solution to the configuration LP, it can be

rounded to a feasible integer solution such that every person gets at least Θ
(

1√
k ln k

)
fraction of the optimal utility with probability at least 1−Θ( 1

k ) in polynomial time.
Our proof is also significantly simpler than the one in [5].
Note that the recent work of Chakrabarty, Chuzhoy and Khanna [20] has an

improved approximation factor of mε (also note that m ≥ k) but that does not use
the configuration LP.

In the context of fair allocation, an additional important criterion can be an
equitable partitioning of goods: we may impose an upper bound on the number of
items a person might receive. For example, we may want each person to receive at
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most dmk e goods. Theorem 2.1 leads to the following:
Theorem 4.2. Suppose, in max-min allocation, we are given upper bounds ci on

the number of items that each person i can receive, in addition to the utility values
ui,j. Let T be the optimal max-min allocation value that satisfies ci for all i. Then,
we can efficiently construct an allocation in which for each person i the bound ci holds
and he receives a total utility of at least T −maxj ui,j.

This generalizes the result of [14], which yields the “T − maxj ui,j” value when
no bounds such as the ci are given. To our knowledge, the results of [15, 5, 4, 8] do
not carry over to the setting of such “fairness bounds” ci.

4.1. Algorithm for Max-Min Fair Allocation. We now describe the algo-
rithm and the proof of Theorem 4.1.

4.1.1. Algorithm. We define a weighted bipartite graph G with the vertex set
A
⋃
B corresponding to the persons and the items respectively. There is an edge

between a vertex corresponding to person i ∈ A and item j ∈ B, if a configuration C
containing j is fractionally assigned to i. Define

wi,j =
∑
C3j

xi,C ,

i.e., wi,j is the fraction of item j that is allocated to person i by the fractional solution
of the LP. An edge (i, j) is called a matching edge, if the item j is big for person i.
Otherwise it is called a flow edge.

Let M and F represent the set of matching and flow edges respectively. For each
vertex v ∈ A

⋃
B, let mv be the total fraction of the matching edges incident to it.

Also define fv = 1−mv. The main steps of the algorithm are as follows,

1. Guess the value of the optimum solution T by doing a binary search. Solve
LP (4.1). Obtain the set M and mv, fv for each vertex v in G constructed
from the LP (4.1) solution.

2 Allocating Big Items : Select a random matching from edges in M using
bipartite dependent rounding (Section 4.1.2) such that for every v ∈ A

⋃
B,

the probability that v is saturated by the matching is mv = 1− fv.

3 Allocating Small Items :

(a) Discard any item j, with mj ≥ (1− ε1), ε1 =
√

ln k
k , and also discard all

the persons and the items saturated by the matching.
(b) (Scaling) In the remaining graph containing only flow edges for unsatu-

rated persons and items, set for each person i, w′i,j =
wi,j
fi
, ∀j.

(c) Further discard any item j with
∑
i w
′
i,j ≥ 3 ln k

ln ln k .
(d) (weighted bipartite dependent rounding) Scale down the weights on all

the remaining edges by a factor of 3 ln k
ln ln k and do a weighted bipartite

dependent rounding to assign items to persons.

We now analyze each step. The main proof idea is in showing that there remains
enough left-over utility in the flow graph for each person not saturated by the match-
ing. This is obtained through proving a new negative correlation property among the
random variables defined on a collection of vertices. Previously, the negative correla-
tion property due to bipartite dependent rounding has only been proven for variables
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defined on edges incident on any particular vertex. Such “local” negative correlation
property is not sufficient for our case.

4.1.2. Allocating Big Items. Consider the edges in M in the person-item
bipartite graph. Remove all the edges (i, j) that have already been rounded to 0 or
1. Additionally, if an edge is rounded to 1, remove both its endpoints i and j. We
initialize for each (i, j) ∈ M , yi,j = wi,j , and modify the yi,j values probabilistically
in rounds using bipartite dependent rounding.

Bipartite Dependent Rounding. The bipartite dependent rounding selects
an even cycle C or a maximal path P in G, and partitions the edges in C or P into two
matchings M1 and M2. Then, two positive scalars α and β are chosen as follows:

α = min{η > 0 : ((∃(i, j) ∈M1 : yi,j + η = 1)
⋃

(∃(i, j) ∈M2 : yi,j − η = 0))};

β = min{η > 0 : ((∃(i, j) ∈M1 : yi,j − η = 0)
⋃

(∃(i, j) ∈M2 : yi,j + η = 1))};

Now with probability β
α+β , set

y′i,j = yi,j + α for all (i, j) ∈M1

and y′i,j = yi,j − α for all (i, j) ∈M2;

with complementary probability of α
α+β , set

y′i,j = yi,j − β for all (i, j) ∈M1

and y′i,j = yi,j + β for all (i, j) ∈M2;

The above rounding scheme satisfies the following two properties, which are easy
to verify:

∀ i, j, E
[
y′i,j
]

= yi,j (4.2)

∃ i, j, y′i,j ∈ {0, 1} (4.3)

Thus, if Yi,j denotes the final rounded values then Property (4.2) guarantees for
every edge (i, j), E

[
Yi,j
]

= wi,j . This gives the following corollary.

Corollary 4.3. The probability that a vertex v ∈ A
⋃
B is saturated in the

matching generated by the algorithm is mv.

Proof. Let there be l ≥ 0 edges e1, e2, ..el ∈M that are incident on v. Then,

Pr
[
v is saturated

]
= Pr

[
∃ ei, i ∈ [1, l] s.t v is matched with ei

]
=

l∑
i=1

Pr
[
v is matched with ei

]
=

l∑
i=1

wi = mv

Here the second equality follows by replacing the union bound by sum since the
events are mutually exclusive.
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Now we prove two additional properties of this rounding, which will be used
crucially for the analysis of the next step.

Definition 4.4 (Negative Correlation for Indicator Random Variables). A col-
lection of indicator random variables {zi}, i ∈ [1, n] are said to be negatively corre-
lated, if for any subset of t variables, t ∈ [1, n], and any b ∈ {0, 1}, Pr

[∧t
j=1 zij =

b
]
≤
∏t
j=1 Pr

[
zij = b

]
.

Theorem 4.5. Define an indicator random variable zj for each item j ∈ B with
mj < 1, such that zj = 1 if item j is saturated by the matching. Then, the indicator
random variables {zj} are negatively correlated.

Proof. Consider any collection of items j1, j2, . . . , jt. Let b = 1 (the proof for the
case b = 0 is identical). Let yi,j,k denote the value of yi,j at the beginning of the k-th
iteration of bipartite dependent rounding. Define, zj,k =

∑
i,(i,j)∈M yi,j,k. Clearly,

zj =
∑
i,(i,j)∈M yi,j,|M |+1. We will show that

∀k,E
[ t∏
i=1

zji,k
]
≤ E

[ t∏
i=1

zji,k−1

]
(4.4)

Thus, we will have

Pr
[ t∧
i=1

zji = 1
]

= E
[ t∏
i=1

zji,|M |+1

]
≤ E

[ t∏
i=1

zji,1
]

=

t∏
i=1

∑
v

yv,ji,1 =

t∏
i=1

mji =

t∏
i=1

Pr
[
zji = 1

]
We now prove (4.4) for a fixed k. Note that any vertex that is not the end point of

the maximal path or the cycle on which dependent rounding is applied on the k−1-th
round retains their previous z value. There are three cases to consider:

Case 1: Two vertices among j1, j2, . . . , jt have their values modified. Let these
vertices be say j1 and j2. Therefore, these two vertices must be the end points of the
maximal path on which dependent rounding is applied on the k − 1-th round. The
path length must be even. Let B(j1, j2, α, β) denote the event that the jobs {j1, j2}
have their values modified in the following probabilistic way:

(zj1,k, zj2,k) =

{
(zj1,k−1 + α, zj2,k−1 − α) with probability β

α+β

(zj1,k−1 − β, zj2,k−1 + β) with probability α
α+β

Thus

E
[ t∏
i=1

zji,k|∀i ∈ [1, t], zji,k−1 = aji ∧B(j1, j2, α, β)
]

= E
[
zj1,kzj2,k|∀i ∈ [1, t], zji,k−1 = aji ∧B(j1, j2, α, β)

] t∏
i=3

aji

The above expectation can be written as (ψ + φ)Πt
i=3aji , where

ψ = (β/(α+ β))(af1 + α)(af2 − α), and
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φ = (α/(α+ β))(af1 + β)(af2 + β).

Now, it can be easily seen that ψ + φ ≤ aj1aj2 . Thus for any fixed j1, j2 and for
any fixed (α, β), and for fixed values af the following holds:

E
[ t∏
i=1

zji,k|∀i ∈ [1, t], zji,k−1 = aj ∧B(j1, j2, α, β)
]
≤

t∏
i=1

aj .

Hence, E
[∏t

i=1 zji,k|Case 1
]
≤ E

[∏t
i=1 zji,k−1|Case 1

]
.

Case 2: One vertex among j1, j2, . . . , jt has its value modified. Let the vertex be
j1 say. Therefore, this vertex must be the end point of the maximal path on which
dependent rounding is applied on the (k−1)-th round. The path length must be odd.
Let B(j1, α, β) denote the event that the job j1 has its value modified in the following
probabilistic way:

zj1,k =

{
zj1,k−1 + α with probability β

α+β

zj1,k−1 − β with probability α
α+β

Thus,

E
[
zj1,k|∀i ∈ [1, t], zji,k−1 = aj ∧B(j1, α, β)

]
= aj1 .

Since the values of zji , i ∈ [2, t] remains unchanged and the above equation holds for

any j1, α, β, we have E
[∏t

i=1 zji,k|Case 2
]
≤ E

[∏t
i=1 zji,k−1|Case 2

]
.

Case 3: None among j1, j2, . . . , jt has its value modified.

In this case, the value of zji,k’s, i ∈ [1, t], do not change. Hence,

E
[∏t

i=1 zji,k|Case 3
]
≤ E

[∏t
i=1 zji,k−1)

]
.

This establishes the claim.

As a corollary of the above theorem, Theorem 4.5, we get the following claim.

Corollary 4.6. Define an indicator random variable zi for each person i ∈ A,
such that zi = 1 if person i is saturated by the matching. Then, the indicator random
variables {zi} are negatively correlated.

Proof. Do the same analysis as in Theorem 4.5 with items replaced by persons.

4.1.3. Allocating small items. We now prove in Lemma 4.7 that after the
matching phase, each unsaturated person has available items with utility at least√

ln k
k

T
5 in the flow graph. Additionally we prove in Lemma 4.8 that each item is not

claimed more than 3 ln k/ ln ln k). Both the results are probabilistic and hold with
high probability. We use the following form of the well-known Chernoff-Hoeffding
Bound.

The Chernoff-Hoeffding Bound[39]: Suppose X =
∑
iXi where Xi are inde-

pendent/negatively correlated random variables taking values in [0, 1] with E
[
X
]

= µ,
then for δ > 0 we have

1. Pr
[
X ≥ µ(1 + δ)

]
≤ e−µδ2/3

2. Pr
[
X ≤ µ(1− δ)

]
≤ e−µδ2/2

3. For δ ≥ 1, Pr
[
X ≥ µ(1 + δ)

]
≤ e−µ(δ+1) ln δ+1[1− δ

(1+δ) ln (1+δ)
].
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Lemma 4.7. After Allocation of Big Items by bipartite dependent rounding,

each unsatisfied person has a total utility of at least
√

ln k
k

T
5 from the unsaturated

items with probability at least 1− 1
k .

Proof. Consider a person v who is not saturated by the matching. In step (a) of
Allocation of Small Items, all items j with mj at least (1− ε1) are discarded. We

will set ε1 =
√

ln k
k later. Since the total sum of mj can be at most k (the number

of persons), there can be at most k
1−ε1 items with mj at least 1 − ε1. Therefore, for

the remaining items, we have fj ≥ ε1. Each person is connected only to small items
in the flow graph. After removing the items with mj at least 1 − ε1, the remaining
utility in the flow graph for person v is at leastT − ∑

j:fj≤ε1 and j is unsaturated

uv,jfj

 ≥ (T − ε1k

1− ε1
T

λ

)
. (4.5)

Define w′v,j =
wv,j
fv

and select a λ1 ≤ λ. Now consider random variables Yv,j for each
of these unsaturated items:

Yv,j =

{
w′v,juv,j
T/λ1

: if item j is not saturated

0 : otherwise
(4.6)

Since each uv,j ≤ T/λ ≤ T/λ1 and wv,j ≤ fv, Yv,j are random variables bounded
in [0, 1]. Person v is not saturated by the matching with probability 1 − mv = fv.
Each such person v gets a fractional utility of w′v,juv,j from the small (with respect
to the person) item j in the flow graph, if item j is not saturated by the matching.
The later happens with probability fj .

Define Gv =
∑
j Yv,j . Then T

λ1
Gv is the total fractional utility after step (b). It

follows from Equation 4.5

E
[
Gv
]

=
∑
j

w′v,juv,jfj

T/λ1
≥ ε1λ1

(
1− ε1k

(1− ε1)λ

)

Set ε1 =
√

ln k
k , λ1 = 25

√
k ln k and we have λ ≥ λ1.

Thus for sufficiently large k,

E
[
Gv
]
≥ ε1λ1

(
1− ε1k

(1− ε1)λ1

)
≥ 24 ln k

That Yv,j ’s are negatively correlated follows from Theorem 4.5. Therefore, ap-
plying the standard Chernoff-Hoeffding bound for the negatively-correlated random
variables, we get for any δ ∈ (0, 1)

Pr
[
Gv ≤ (1− δ)E

[
Gv
]]
≤ e−E[Gv]δ2/3

≤ e−24 ln k/12 for δ ≥ 1

2

=
1

k2
.
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Thus we get

Pr
[ T
λ1
Gv ≤

1

2

T

λ1
E
[
Gv
]]
≤ 1

k2

Hence,

∃v, Pr
[ T
λ1
Gv ≤

1

2

T

λ1
E
[
Gv
]]
≤ 1

k

Therefore the net fractional utility that remains for each person in the flow graph

after scaling is at least 1
2
T
λ1
E
[
Gv
]

= 1
2

T
25
√
k ln k

12 ln k ≥ T
5

√
ln k
k , with probability at

least 1− 1
k .

Lemma 4.8. After the matching and the scaling (step (b)), each unsaturated item
has a total fractional incident edge-weight to be at most 3 ln k

ln ln k from the unsaturated
persons with probability at least 1− 1

k3 .
Proof. Note that for any person v and for any job j that is small for v, wv,j ≤ fv,

hence w′v,j =
wv,j
fv
≤ 1. Fix an item j, and define a random variable Zv,j for each

person such that

Zv,j =

{
w′v,j : if person i is not saturated

0 : otherwise
(4.7)

Let Xj =
∑
v Zv,j . Then Xj is the total weight of all the edges incident on

item j in the flow graph after scaling and removal of all saturated persons. We
have E

[
Xj

]
=
∑
v w
′
v,jfv =

∑
v wv,j ≤ 1. Now that the variables Zv,j are negatively

correlated follows from Corollary 4.6, and thus applying the Chernoff-Hoeffding bound
for the negatively correlated variables we get

Pr
[
Xj ≥

3 ln k

ln ln k

]
≤ 1

k3

This completes the proof.
Recall the third step, step (c), of Allocating Small Bundles. Any job in the

remaining flow graph with total weight of incident edges more than 3 ln k
ln ln k is discarded

in this step. We now calculate the utility that remains for each person in the flow
graph after step (c).

Lemma 4.9. After removing all the items that have total degree more than 3 ln k
ln ln k

in the flow graph, that is after step (c) of Allocating Small Items, the remaining

utility of each unsaturated person in the flow graph is at least
√

ln k
k

T
6 with probability

at least 1− 2
k .

Proof. Fix a person v and consider the utility that v obtains from the fractional

assignments in the flow graph before step (c). It is at least
√

1
klnk

T
4 from Lemma 4.7.

Define a random variable for each item that v claims with nonzero value in the flow
graph at step (b):

Z ′v,j =

{
uv,j : if item j has total weighted degree at least 3 ln k

ln ln k

0 : otherwise
(4.8)
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We have Pr
[
Z ′v,j = uv,j

]
≤ 1

k3 from Lemma 4.8. Therefore, the expected utility

from all the items in the flow graph that have total incident weight more than 3 ln k
ln ln k

is at most T
k3 . Hence by Markov’s inequality, the utility from the discarded items is

more than T
k is at most 1

k2 . Now, by union bound, the utility from the discarded

items is more than T
k for at least one unsaturated person is at most 1

k . The initial

utility before step (c) was at least
√

ln k
k

T
5 with probability 1− 1

k . Thus after step (c),

the remaining utility is at least
√

ln k
k

T
5 −

T
k with probability at least 1 − 2

k . Hence,

the result follows.
The next and the final step (d) of allocations is to do a weighted dependent

rounding on a scaled down flow graph. The weight on the remaining edges is scaled
down by a factor of 3 ln k

ln ln k and hence for every item node that survives step (c), the
total edge-weight incident on it is at most one. Let us denote by Wi,j the fractional
weight on the edge (i, j) in this graph. Hence after scaling down the utility of any

person v in the flow graph is
∑
j uv,jWv,j ≥ ln ln k

ln k

√
ln k
k

T
6 = ln ln k√

k ln k
T
6 .

Weighted Dependent Rounding. We remove all (i, j) that have already been
rounded to 0 or 1. Let F ′ be the current graph consisting of those Wi,j that lie in
(0, 1). Choose any maximal path P = (v0, v1, .., vs) or a cycle C = (v0, v1, .., vs = v0).
The current W value of an edge et = (vt−1, vt) is denoted by yt, that is yt = Wt−1,t.

We next choose the values z1, z2, .., zs such that any unsaturated person retains
the utility it started with after scaling down, as long as there are at least two edges
incident to it. We update the W value of each edge et = (vt−1, vt) to yt + zt.

Suppose we have initialized some value for z1 and that we have chosen the incre-
ments z1, z2, . . . , zt for some t ≥ 1. Then the value zt+1 corresponding to the edge
et+1 = (vt, vt+1) is chosen as follows:

(PI) vt is an item, then vt+1 = −vt. (Each item is not assigned more than once.)
(PII) vt is a person. Then choose zt+1 so that the utility of wt remains unchanged.

Set zt+1 = zt
−uvt,vt−1

uvt,vt+1
.

The vector z = (z1, z2, ..zs) is completely determined by z1. We denote this by
f(z).

Now let µ be the smallest positive value such that if we set z1 = µ, then all the
W values (after incrementing by the vector z as specified above) stay in [0, 1], and at
least one of them becomes 0 or 1. Similarly, let γ be the smallest value such that if
we set z1 = −γ, then this rounding progress property holds.

When considering a cycle, assume v0 is a person. The assignment of zi values
ensure all the objects in the cycle are assigned exactly once and utility of all the
persons except v0 remains unaffected. Now the change in the value of zs is

−z1
uv2,v1uv4,v3 ...uvs−1,vs−2

uv2,v3uv4,v5 ...uvs−1,vs

.

If

uv2,v1uv4,v3 ...uvs−1,vs−2

uv2,v3uv4,v5 ...uvs−1,vs

> 1,

we set z1 = −γ, else we set z1 = µ. Therefore the utility of the person v0 can only
increase.
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When we are considering a maximal path we choose the vector z as either f(µ)
or f(−γ) arbitrarily.

Lemma 4.10. Each person unsaturated by the matching receives a utility of at
least Θ( ln ln k√

k ln k
T ) after step (d).

Proof. While the weighted dependent rounding scheme is applied on a cycle, all
persons in the remaining graph maintains their utility. Only when the rounding is
applied on a maximal path, the two persons at two ends might lose one item.

Hence, the net utility received by any person after step (d) is at most T
λ less

than what it was just before starting the weighted dependent rounding step. Thus
each person receives a utility of ln ln k√

k ln k
T
6 −

T
λ . From Lemma 4.7, λ ≥ 25

√
k ln k.

Substituting λ = 25
√
k ln k, we get the desired result.

We have thus established Theorem 4.1. The approximation ratio is Θ( 1√
k ln k

).

This provides an upper bound of
√
k ln k on the integrality gap of the configuration

LP for the max-min fair allocation problem. In contrast, the lower bound is Ω(
√
k)

[8]. Theorem 4.2 that incorporates fairness in allocation by providing a limit on the
cardinality of items each person can receive is a direct corollary of Theorem 2.1. Such
fairness results in the context of the max-min fair allocation problem was not know
earlier.

5. Designing Overlay Multicast Networks For Streaming. The work of
[2] studies approximation algorithms for designing a multicast overlay network. We
first describe the problem and state the results in [2] (Lemma 5.1 and Lemma 5.2).
Next, we show our main improvement in Lemma 5.3.

The background text here is largely borrowed from [2]. An overlay network can
be represented as a tripartite digraph N = (V,E). The nodes V are partitioned
into sets of entry points called sources (S), reflectors (R), and edge-servers or sinks
(D). There are multiple commodities or streams, that must be routed from sources,
via reflectors, to the sinks that are designated to serve that stream to end-users.
Without loss of generality, we can assume that each source holds a single stream.
Now given a set of streams and their respective edge-server destinations, a cheapest
possible overlay network must be constructed subject to certain capacity, quality,
and reliability requirements. There is a cost associated with usage of every link and
reflector. There are capacity constraints, especially on the reflectors, that dictate the
maximum total bandwidth (in bits/sec) that the reflector is allowed to send. The
quality of a stream is directely related to whether or not an edge-server is able to
reconstruct the stream without significant loss of accuracy. Therefore even though
there is some loss threshold associated with each stream, at each edge-server only a
maximum possible reconstruction-loss is allowed. To ensure reliability, multiple copies
of each stream may be sent to the designated edge-servers.

All these requirements can be captured by an integer program. Let us use indi-
cator variable zi for building reflector i, yi,k for delivery of k-th stream to the i-th
reflector and xi,j,k for delivering k-th stream to the j-th sink through the i-th re-
flector. Fi denotes the fanout constraint for each reflector i ∈ R. Let px,y denote
the failure probability on any edge (source-reflector or reflector-sink). We transform
the probabilities into weights: wi,j,k = − log (pk,i + pi,j − pk,ipi,j). Therefore, wi,j,k
is the negative log of the probability of a commodity k failing to reach sink j via
reflector i. On the other hand, if φj,k is the minimum required success probability
for commodity k to reach sink j, we instead use Wj,k = − log (1− φj,k). Thus Wj,k

denotes the negative log of maximum allowed failure. ri is the cost for opening the
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min
∑
i∈R

rizi +
∑
i∈R

∑
k∈S

ck,i,kyi,k +
∑
i∈R

∑
k∈S

∑
j∈D

ci,j,kxi,j,k

s.t. (5.1)

yk,i ≤ zi ∀i ∈ R, ∀k ∈ S (5.2)

xi,j,k ≤ yi,k ∀i ∈ R, ∀j ∈ D, ∀k ∈ S (5.3)∑
k∈S

∑
j∈D

xi,j,k ≤ Fizi ∀i ∈ R (5.4)

∑
i∈R

xi,j,kwi,j,k ≥Wj,k ∀j ∈ D,∀k ∈ S (5.5)

xi,j,k ∈ {0, 1}, yi,k ∈ {0, 1}, zi ∈ {0, 1} (5.6)

Table 5.1
Integer Program for Overlay Multicast Network Design

reflector i and cx,y,k is the cost for using the link (x, y) to send commodity k. Thus
we have the IP (see Table 5.1).

Constraints (5.2) and (5.3) are natural consistency requirements; constraint (5.4)
encodes the fanout restriction. Constraint (5.5), the weight constraint, ensures quality
and reliability. Constraint (5.6) is the standard integrality-constraint that will be
relaxed to construct the LP relaxation.

There is an important stability requirement that is referred as color constraint in
[2]. Reflectors are grouped into m color classes, R = R1 ∪ R2 ∪ . . . ∪ Rm. We want
each group of reflectors to deliver not more than one copy of a stream into a sink.
This constraint translates to∑

i∈Rl

xi,j,k ≤ 1 ∀j ∈ D, ∀k ∈ S, ∀l ∈ [m] (5.7)

Each group of reflectors can be thought to belong to the same ISP. Thus we
want to make sure that a client is served only with one – the best – stream possible
from a certain ISP. This diversifies the stream distribution over different ISPs and
provides stability. If an ISP goes down, still most of the sinks will be served. We
refer the LP-relaxation of integer program (Table 5.1) with the color constraint (5.7)
as LP-Color.

All of the above is from [2].

The work of [2] uses a two-step rounding procedure and obtains the following
guarantee.

First stage rounding: Rounds zi and yi,k for all i and k to decide which reflector
should be open and which streams should be sent to a reflector. The results from
rounding stage 1 can be summarized in the following lemma:

Lemma 5.1. ([2]) The first-stage rounding algorithm incurs a cost at most a
factor of 64 log |D| higher than the optimum cost, and with high probability violates
the weight constraints by at most a factor of 1

4 and the fanout constraints by at most
a factor of 2. Color constraints are all satisfied.

By incurring a factor of Θ(log n) in the cost, the constant factors loss in the
weights and fanouts can be improved as shown in [2].
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Second stage rounding: Rounds xi,j,k’s using the open reflectors and streams
that are sent to different reflectors in the first stage. The results in this stage can be
summarized as follows:

Lemma 5.2. ([2]) The second-stage rounding incurs a cost at most a factor of 14
higher than the optimum cost and violates each of fanout, color and weight constraint
by at most a factor of 7.

Our main contribution is an improvement of the second-stage rounding through
the use of repeated RandMove and by judicious choices of constraints to drop. Let
us call the linear program that remains just at the end of first stage LP-Color2:

min
∑
i∈R

∑
k∈S

∑
j∈D

ci,j,kxi,j,k

s.t.∑
k∈S

∑
j∈D

xi,j,k ≤ Fi ∀i ∈ R (Fanout)

∑
i∈R

xi,j,kwi,j,k ≥Wj,k ∀j ∈ D,∀k ∈ S (Weight)∑
i∈Rl

xi,j,k ≤ 1 ∀j ∈ D, ∀k ∈ S, ∀l ∈ [m] (Color)

xi,j,k ∈ {0, 1} ∀i ∈ R,∀j ∈ D,∀k ∈ S

We show:

Lemma 5.3. LP-Color2 can be efficiently rounded such that cost and weight
constraints are satisfied exactly, fanout constraints are violated at most by additive 1
and color constraints are violated at most by additive 3.

Proof. Let x∗i,j,k ∈ [0, 1] denote the fraction of stream generated from source
k ∈ S reaching destination j ∈ D routed through reflector i ∈ R after the first stage
of rounding. Initialize X = x∗. The algorithm consists of several iterations. the
random value at the end of iteration h is denoted by Xh. Each iteration h conducts a
randomized update using RandMove on the polytope of a linear system constructed
from a subset of constraints of LP-Color2. Therefore by induction on h, we will have
for all (i, j, h) that E

[
Xh
i,j

]
= x∗i,j . Thus the cost constraint is maintained exactly on

expectation. The entire procedure can be derandomized giving the required bounds
on the cost.

Let R and SD denote the set of reflectors and source, destination pairs respec-
tively. Suppose we are at the beginning of some iteration (h + 1) of the overall
algorithm and currently looking at the values Xh

i,j,k. We will maintain two invariants:

(I1”) Once a variable xi,j,k gets assigned to 0 or 1, it is never changed;
(I2”) Once a constraint is dropped in some iteration, it is never reinstated.

Iteration (h+ 1) of rounding consists of three main steps:

1. Since we aim to maintain (I1), let us remove all Xh
i,j,k ∈ {0, 1}; i.e., we project

Xh to those coordinates (i, j, k) for which Xh
i,j,k ∈ (0, 1), to obtain the current

vector Y of floating (yet to be rounded) variables; let S ≡ (AhY = uh)
denote the current linear system that represents LP-Color2. In particular,
the fanout constraint for a reflector in S is its residual fanout F ′i ; i.e., Fi
minus the number of streams that are routed through it.
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2. Let v denote the number of floating variables, i.e., Y ∈ (0, 1)v. We now drop
the following constraint:
(D1”) Drop fanout constraint for degree 1 reflector denoted R1, i.e, reflec-

tors with only one floating variable associated with it. For any degree
2 reflectors denoted R2, if it has a tight fanout of 1 drop its fanout
constraint.

(D2”) Drop color constraint for a group of reflectors Rl, if they have atmost
4 floating variable associated with them.

Let P denote the polytope defined by this reduced system of constraints. A key claim
is that Y is not a vertex of P and thus we can apply Rand-Move and make progress
either by rounding a new variable or by dropping a new constraint. We count the
number of variables v and the number of tight constraints t separately. We have,

t =
∑

i∈R\R1

1 +
∑
k∈S

∑
j∈D

(lk,j + 1),

where lj,k is the number of color constraints for the stream generated at source k
and to be delivered to the destination j. We have, v ≥

∑
i∈R Fi + 1. Also the num-

ber of variables v ≥
∑
k∈S,∈D,lk,j>0 4lk,j +

∑
k∈S,∈D,lk,j=0 2. Thus by an averaging

argument, the number of variables

v ≥
∑
i∈R Fi + 1

2
+

∑
k∈S,∈D,lk,j>0

2lk,j +
∑

k∈S,∈D,lk,j=0

1.

A moment’s reflection shows that the system can become underdetermined only if
there is no color constraint associated with a stream (j, k), each reflector i has two
floating variables associated with it with total contribution 1 towards fanout and each
stream (j, k) is routed fractionally through two reflectors. But in this situation all the
fanout constraints are dropped violating fanout at most by an additive one and making
the system underdetermined once again. Coloring constraints are dropped only when
there are less than 4 floating variable associated with that group of reflectors. Hence
the coloring constraint can be violated at most by an additive factor of 3. The fanout
constraint is dropped only for singleton reflectors or degree-2 reflectors with fanout
equalling 1. Hence fanout is violated only by an additive 1. Weight constraint is never
dropped and maintained exactly.

6. Future Directions. We discuss two speculative directions related to our
rounding approach that appear promising.

Recall the notions of discrepancy and linear discrepancy from the introduction.
A well-known result here, due to [12], is that if A is “t-bounded” (every column has at
most t nonzeroes), then lindisc(A) ≤ t; see [33] for a closely-related result. These re-
sults have also helped in the development of improved rounding-based approximation
algorithms [9, 49]. A major open question from [12] is whether lindisc(A) ≤ O(

√
t)

for any t-bounded matrix A; this, if true, would be best-possible. Ingenious meld-
ing of randomized rounding, entropy-based arguments and the pigeonhole principle
have helped show that lindisc(A) ≤ O(

√
t log n) [11, 46, 37], improved further to

O(
√
t log n) in [7]. However, the number of columns n may not be bounded as a func-

tion of t, and it would be very interesting to even get some o(t) bound on lindisc(A), to
start with. We have preliminary ideas about using the random-walks approach where
the subspace S (that is orthogonal to the set of tight constraints C in our random-
walks approach) has “large” – Θ(n) – dimension. In a little more detail, whereas the
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constraints for rows i of A are dropped in [12] when there are at most t to-be-rounded
variables corresponding to the nonzero entries of row i, we propose to do this dropping
at some function such as c0t to-be-rounded variables, for a large-enough constant c0
(instead of at t). This approach seems promising as a first step, at least for various
models of random t-bounded matrices.

Second, there appears to be a deeper connection between various forms of depen-
dent randomized rounding – such as ours – and iterated rounding [32, 26, 44, 35, 51].
In particular: (i) the result that we improve upon in § 2 is based on iterated rounding
[19]; (ii) certain “budgeted” assignment problems that arise in keyword auctions give
the same results under iterated rounding [16] and weighted dependent rounding [48];
and (iii) our ongoing work suggests that our random-walk approach improves upon
the iterated-rounding-based work of [30] on bipartite matchings that are simultane-
ously “good” w.r.t. multiple linear objectives (this is related to, but not implied by,
Theorem 2.1). We believe it would be very fruitful to understand possible deeper
links between these two rounding approaches, and to develop common generalizations
thereof using such insight.
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