
Research Article

A New Arbiter PUF for Enhancing Unpredictability on FPGA

Takanori Machida,1 Dai Yamamoto,2 Mitsugu Iwamoto,1 and Kazuo Sakiyama1

1�e University of Electro-Communications, 1-5-1 Chofugaoka, Chofu-shi, Tokyo 182-8585, Japan
2Fujitsu Laboratories Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8588, Japan

Correspondence should be addressed to Takanori Machida; machida@uec.ac.jp

Received 24 April 2015; Revised 27 July 2015; Accepted 19 August 2015

Academic Editor: Israel Koren

Copyright © 2015 Takanori Machida et al. 	is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

In general, conventional Arbiter-based Physically Unclonable Functions (PUFs) generate responses with low unpredictability. 	e
�-XOR Arbiter PUF, proposed in 2007, is a well-known technique for improving this unpredictability. In this paper, we propose
a novel design for Arbiter PUF, called Double Arbiter PUF, to enhance the unpredictability on 
eld programmable gate arrays
(FPGAs), and we compare our design to conventional �-XOR Arbiter PUFs. One metric for judging the unpredictability of
responses is to measure their tolerance to machine-learning attacks. Although our previous work showed the superiority of Double
Arbiter PUFs regarding unpredictability, its details were not clari
ed. We evaluate the dependency on the number of training
samples for machine learning, and we discuss the reason why Double Arbiter PUFs are more tolerant than the �-XOR Arbiter
PUFs by evaluating intrachip variation. Further, the conventional Arbiter PUFs and proposed Double Arbiter PUFs are evaluated
according to other metrics, namely, their uniqueness, randomness, and steadiness. We demonstrate that 3-1 Double Arbiter PUF
archives the best performance overall.

1. Introduction

1.1. Background. Nowadays, many products related to our
daily life are being connected to the Internet and controlled by
computers. 	us, machine-to-machine communication is an
increasingly common phenomenon. Secure authentications
between these machines are needed for security, for exam-
ple, to avoid fake integrated circuits. Physically Unclonable
Functions (PUFs) [1, 2] have been proposed as a solution to
this problem [3]. Authentication utilizing PUFs can provide
the protection of an authentication chip on a device, and
intellectual property core protection for 
eld programmable
gate arrays (FPGAs) [4, 5].

PUFs are physical functions that output a unique value as
a response to an input known as a challenge. 	e response
re�ects the manufacturing variation of the physical unit. A
veri
er stores challenge-response pairs (CRPs) to test the
authenticity of the so-called prover. 	e stored responses in
the veri
er are compared with the responses provided by the
prover according to the same challenge. 	is comparison of
responses enables the veri
er to con
rm whether the prover

is genuine. 	is authentication mechanism is considered
secure insofar as it is di
cult to copy the manufacturing
variation of the PUF. Because PUFs can be implemented
with comparatively small circuits, they facilitate lightweight
authentication.

PUFs can be implemented not only on an application spe-
ci
c integrated circuit (ASIC) [6], but also on an FPGA [7].
FPGAs are embedded in various products that require both
customizability and security, because synthesizing FPGAs is
programmable. For low-volume manufacturing, it is rela-
tively less expensive to produce a product with an FPGA than
a product with an ASIC.

Many types of PUFs have been proposed. 	e authors
of [8] categorize them into two types: memory-based and
delay-based PUFs.We focus onArbiter-based PUFs, a variety
of delay-based PUFs. Delay-based PUFs use delay-time
information from the signal propagation in the circuit. 	e
basic concept of an Arbiter PUF was described in 2002 [9].
	ey are based on the delay-time di�erence between two
signals. Arbiter PUFs that consist of symmetrically located
wires and selectors were proposed in 2004 [10, 11], and

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2015, Article ID 864812, 13 pages
http://dx.doi.org/10.1155/2015/864812



2 	e Scienti
c World Journal

they were evaluated using various metrics. Other authors
categorize PUFs into strong PUFs and weak PUFs [5]. On the
one hand, the former PUFs have a relatively large challenge
space; that is, they can use many challenges, making them
suitable for the device identi
cation and authentication. 	e
relation between challenges and responses is too complex
to be accurately predicted. Previous work also suggests that
the responses from some of these PUFs can be predicted by
modeling attacks based on machine learning, which uses a
mathematical model established by authorized CRPs. Con-
sequently, the Arbiter PUF was once considered a candidate
for a strong PUF but has since been found to be vulnerable
to such modeling attacks [12, 13]. On the other hand, weak
PUFs have either no challenge space or one that is relatively
small. Weak PUFs can be used for key generation or for some
cryptographic protocols on a device because it o�en generates
stable responses in repeated measurements [14, 15].

In this paper, we discuss secureArbiter PUF implemented
on FPGA. (Parts of this paper are based on [16–18].	is paper
newly discusses optimal implementations for high tolerance
against machine-learning attack, along with high uniqueness
and steadiness.)

1.2. Motivation and Contribution. 	e authors of [19] pro-
posed the �-XOR Arbiter PUF that uses the XOR �
responses from the � Arbiter PUFs implemented on the
same chip to decrease the predictability of the responses.
In this paper, we introduce a novel Arbiter PUF, Double
Arbiter PUF, whichwas originally proposed as a technique for
generating highly unique responses [16]. We expect that our
Double Arbiter PUF will be a valid approach for enhancing
unpredictability even on FPGAs that have wiring problem
(see Section 3, below). 	e authors of [17] proposed 2-1
Double Arbiter PUF whose response is obtained by two
XORing responses from the Double Arbiter PUF. 3-1 Double
Arbiter PUF was also proposed in [17]. 	is PUF has a third
building block, and its response is generated by six XORing
responses from these building blocks. Although the authors
of [18] considered the tolerance of conventional Arbiter
PUF and Double Arbiter PUFs to machine-learning attacks,
they did not compare them with the �-XOR Arbiter PUF.
Further, there were no results that showed a dependency on
the number of training samples in [18]. We newly evaluate
�-XOR Arbiter PUFs and Double Arbiter PUFs according
to this tolerance, by using between 100 and 1,000 training
samples. In order to clarify the reasonwhy theDoubleArbiter
PUF is more e�ective than the conventional�-XOR Arbiter
PUF at XORing responses for adding the unpredictability,
we evaluate these PUFs according to intrachip variation,
a metric de
ned in this paper. Our experimental results
show that the intrachip variation of Double Arbiter PUFs
is much higher than that of the conventional Arbiter PUF
and that its tolerance against machine-learning attacks is also
relatively high, regardless of number of training samples.
In particular, it is di
cult to predict responses from the 3-
1 Double Arbiter PUF because the prediction rate of the
responses for randomly chosen challenges is approximately
57%, and this is close to 50%, random guess.

XORing responses from multiple PUFs within the same
chip can be also expected to increase the interchip dif-
ference among chips that has been evaluated according to
uniqueness [20]. We introduce the results from [17] regarding
uniqueness and con
rm that the uniqueness of the Double
Arbiter PUFs is almost ideal and much higher than that of
conventional �-XOR Arbiter PUFs. In this paper, we newly
propose 4-1 Double Arbiter PUF that has a fourth building
block. 	e response from this PUF is generated by more
XORing responses than the 3-1 Double Arbiter PUF. From
our experimental results, we demonstrate the proposed PUF’s
tolerance to machine-learning attacks and its uniqueness,
both of which are comparable to the 3-1 Double Arbiter PUF.
A high level of stability in the responses is also needed when
repeating the same challenge for the device authentication
using PUFs, a metric referred to as steadiness [20]. Because
our results show low steadiness in the 4-1 Double Arbiter
PUF, we conclude that the 3-1 Double Arbiter PUF is themost
suitable PUF for device authentication.

Our contributions are summarized as follows:

(i) We show that the 3-1 Double Arbiter PUF has much
higher tolerance tomachine-learning attacks than the
conventional�-XOR Arbiter PUF.

(ii) We also conclude that the 3-1 Double Arbiter PUF
demonstrates the best performance from among the
introduced PUFs, in terms of tolerance, uniqueness,
and steadiness.

1.3. Organization of �is Paper. Section 2 shows the related
work: the structure of conventional Arbiter PUFs, the reason
why conventional Arbiter PUFs are vulnerable to machine-
learning attacks, and their countermeasures. In Section 3, we
introduce the Double Arbiter PUFs as an alternative coun-
termeasure. Our experimental environment and the metrics
for our evaluation, including the intrachip variation, are
described in Section 4. Section 5 compares the conventional
Arbiter PUF with the Double Arbiter PUF, in terms of their
tolerance to machine-learning attacks. Section 6 provides the
results from a performance evaluation based on [17] and
discusses the feasibility of the introduced PUFs for device
authentication. Finally, we conclude the paper in Section 7.

2. Related Work

2.1. Arbiter PUF. 	e Arbiter PUF, proposed in [10, 11],
consists of selector pairs connected in a series and an
Arbiter (an SR-Latch is used, as shown in Figure 1) that
determines its response, as shown in Figure 1. First, an input
signal is supplied to the 
rst le� and right selectors at the
same time. 	e genetic idea behind Arbiter PUFs is to race
the delay times between the two signals. 	e two signals
propagate through various routes depending on the value
of the challenges. 	ese routes are determined by an �-bit
challenge that is given as the selection input for the selector
pairs.	e (�+1)th challenge bit �� out from the �-bit challenge
corresponds to the selection inputs for the (� + 1)th selector
pair, where � = 0, 1, . . . , � − 1. When �� = 1, two output
signals from the �th selector pair are crossed and supplied to



	e Scienti
c World Journal 3

...

...
...

0 01

0 1

0 1

1

01

01

RS
Q Q

r

c0

c1

cn−1

Figure 1: Structure of the Arbiter PUF.

the selection inputs for the (�+1)th selector pair.When �� = 0,
the two signals are directly supplied to the selection inputs for
the (� + 1)th selector pair. A 1-bit response 1/0 is determined
by which signal reaches an Arbiter faster than the other. 	e
size of the challenge space is 2�, such that 2� patterns of the
propagation delay time can be organized. Physically, the wire
length of the two lines should be the same.

2.2. Machine-Learning Attacks for Arbiter PUFs. In this sec-
tion, a framework for machine-learning attacks with a delay
model is explained by referring to [12, 13], and we discuss
how responses from the Arbiter PUF can be predicted with
machine learning.

	e basic concept formachine learning is as follows. Each
route through which two signals traverse is determined by a
challenge for the Arbiter PUF, and a response is determined
by the delay-time di�erence of the signals. Let w be a model
of the delay times for an Arbiter PUF. Let � be a model
extracted from a challenge for this Arbiter PUF, and let � be a
response. Because a response is determined with a sign of the
delay-time di�erence between two signals, the response can
be expressed as

� = sgn (w��) , (1)

where sgn is a sign function and w
� denotes the transposed

w. Because it is di
cult to know the delay times w, the pair
for a response � and a model for the challenge � is given, and
a model for the delay times is constructed.

	e procedure for machine learning consists of two
phases, a training phase and a classi
cation phase, as shown
in Figure 2. During the training phase, several pairs of
challenges � and responses � from the target Arbiter PUF
are initially prepared. 	en, feature extraction is performed.
Challenge � is transformed in order to simplify the machine
learning process. 	e procedure of this challenge transfor-
mation from � to � is as follows. Let �� be the 	th bit of

Pair
c r

Training

Parameter
w

Classi�cation

�� Input

r� = sgn(wT �)

c�

r�

phase phase

Feature
extraction

Feature
extraction

�
�

Figure 2: Machine-learning attack against an Arbiter PUF.

a challenge, where 	 (= 1, 2, . . . , �) denotes the length of the
challenge. Let 
� be the �th bit of the transformed challenge,

where � ∈ {1, 0}�, � = 1, 2, . . . , � + 1, and � ∈ {1, −1}�−1. 	e
challenge model is � expressed as


� =
{{
{{
{

�
∏
�=�
(1 − 2��) (� = 1, 2, . . . , �)

1 (� = � + 1) .
(2)

A�er feature extraction, a model for the delay times w is
constructed, depending on the pair of the challenge model
� and the response �.

A di�erent challenge ��, whose response is unknown,
is provided during the classi
cation phase. A�er feature
extraction from �� to ��, the response �� is predicted by
using the model for the delay timesw constructed during the
training phase, as follows:

�� = sgn (w���) . (3)

	e response �� is the output from machine learning, and we
can evaluate whether �� is equivalent to the response obtained
from the Arbiter PUF, given ��.

Feature extraction must be more fully elaborated. First,
we explain the relationship between � and � by using the
example shown in Figure 3. Figure 3 shows one part of an
Arbiter PUF, including the selector pairs and wires to which a
challenge from the (�−3)th to the �th is given.	e dashed red
and solid black lines refer to an example of two paths when
the challenge �� from the (� − 3)th to the �th is “0110.” 	en,
we focus on the wire illustrated as a dashed line out of the
two wires. 	e value of the challenge model � shows which
signal is located in the right position between selector pairs.
Suppose that a signal through the wire (the dashed line) has
a long delay time at the output of the (�− 4)th selector pair. If
we use the challenge model �, we can easily recognize which
signal (whether the dashed or solid line) is located in the right
position at the output of the last selector pair.

Suppose that there is a pair of challenges, where one
is chosen randomly and the other involves a 1-bit �ip of
this challenge. Although the Hamming distance between the
pair of challenges is small, that is, insofar as the challenges
are similar, the pair of responses related to the pair of



4 	e Scienti
c World Journal

k

...
...

...
...

i

n − 3

n − 3

n − 2

n − 2

n − 1

n − 1

n

1

1

1

1

1

1

−1

n

n + 1

Challenge: ck Model: �i

0

0

Figure 3: Relationship between the challenge and model.

challenges can have di�erent values, because the position of
the signal through the dashed or solid line at the output of
the last selector pair is exchanged. By contrast, when the
same pair of challenge model vectors � is given, namely, the
randomly chosen vector and the 1-bit �ipped vector, the pair
of responses can have the same value, because the position
of the signal is not exchanged. It is worth noting that the
signal through the dashed and solid line with the original
challenge has a total delay time similar to that of the signal
with the similar challenge.	is consideration is important to
Section 5.1 when discussing a challenge model for a Double
Arbiter PUFs.

2.3. �-XORArbiter PUFs forUnpredictability. Previouswork
[19] has proposed the�-XORArbiter PUFs as a countermea-
sure against machine-learning attacks. 	e authors of [19]
aimed to obfuscate the response by XORing � responses
obtained from � Arbiter PUFs on the same chip. Figures 4
and 5 show the structures for the 2- and 3-XOR Arbiter PUF,
respectively.

3. New Arbiter PUFs for Unpredictability

In this section, we introduce the Double Arbiter PUF [16]
as another approach to enhance the unpredictability of
responses. 	e Double Arbiter PUF was originally proposed
in [16] as a technique for increasing variety of responses
among chips.

In general, it is di
cult to implement two wires of exactly
the same length (so-called equal-length wiring), not only
on FPGAs but also on ASICs. With two wires of unequal
length, the two signals through these wires will have obvious
di�erences in delay times. Suppose that we compare two
signals through speci
c paths, where the length of the wires
is unequal in an Arbiter PUF. If this delay time is longer
than the delay time based solely on the physical variation of

c0 0 01 1

01

01

0 1

0 1

010 1

010 1

010 1cn−1 cn−1

S R

Q Q

S R

Q Q

...
...

...
...

...
...

c1

c0

c1

r

Figure 4: Structure of the 2-XOR Arbiter PUF.

the devices, the response from the chips will be the same.
	at is, there will be no di�erence in the responses of the
devices. Further, because it is easy to predict these responses,
this wiring problem is pertinent to the unpredictability of the
responses from PUFs.

Our approach to this problem involves duplicating
another selector chain for a di�erent reason than the 2-
XOR Arbiter PUF, as shown in Figure 6. 	e duplicated
selector chain is implemented in SLICEs that neighbor the
original selector chain. Each signal through the same route
in each selector chain competes with the other. 	e Double
Arbiter PUF generates 2-bit responses �1 and �2, as shown
in Figure 6. 	is duplication-based approach can escape the
wiring problem, because the length of the duplicated wire is
expected to be similar to that of the original wire, given the
symmetric layout implemented on neighboring SLICEs.

	e authors of [17] proposed a 2-1 Double Arbiter PUF,
whose 1-bit response is generated by XORing 2-bit responses
from a Double Arbiter PUF, as shown in Figure 7. 	e aim of
the �-XOR Arbiter PUFs is to improve the unpredictability
by XORing multiple responses. To render the response less
predictable, we can increase the number of XORed responses
fromDouble Arbiter PUFs.	e authors of [17] proposed a 3-1
Double Arbiter PUF (the main purpose of [17] is to increase
variety of responses among chips) that XORs six responses by
implementing a thirdArbiter PUFon the same chip, as shown
in Figure 8.We discuss the unpredictability of its responses in
Section 5, with evaluation results showing howdi�erent these
responses are among Double Arbiter PUFs in Section 6.

4. Preliminaries of Our Experiments

4.1. Experimental Environment. In our experiment, 64-bit
Arbiter PUFs (i.e., where 64-bit challenges are available) were
implemented on three Xilinx Virtex-5 FPGAs (XC5VLX30)
[21]: FPGA A, FPGA B, and FPGA C. 	ese FPGAs were
set up on a side-channel attack standard evaluation board
G-II (SASEBO G-II) [22], and we provided challenges and
obtained responses through aRS-232C cable connected to the
SASEBOG-II. Xilinx ISE 13.2 andXilinx PlanAhead 13.2 were



	e Scienti
c World Journal 5

Table 1: Placement of primitives on SLICEs for 3-1 Double Arbiter PUF. 	e value for the variable � can range from 0 to 63.

Descriptions Primitives SLICEs

(MUX 1L (�), MUX 1R (�))
F7BMUX

(SLICE X14Y(76−�), SLICE X15Y(76−�))
(MUX 2L (�), MUX 2R (�)) (SLICE X16Y(76−�), SLICE X17Y(76−�))
(MUX 3L (�), MUX 3R (�)) (SLICE X18Y(76−�), SLICE X19Y(76−�))
(MUX 4L (�), MUX 4R (�)) (SLICE X20Y(76−�), SLICE X21Y(76−�))

Pair of NAND in

SR-Latch 1

C6LUT

(SLICE X14Y12, SLICE X16Y12)

SR-Latch 2 (SLICE X16Y11, SLICE X18Y11)

SR-Latch 3 (SLICE X18Y10, SLICE X14Y10)

SR-Latch 4 (SLICE X15Y12, SLICE X17Y12)

SR-Latch 5 (SLICE X17Y11, SLICE X19Y11)

SR-Latch 6 (SLICE X19Y10, SLICE X15Y10)

r

S R

QQ

S R

QQ

S R

QQ

c0

c1

cn−1

0 1

0 1

0 01 1

01

01 0 1

0 1

0 01 1

01

01 0 1

0 1

0 01 1

01

01

...

c0

c1

cn−1

c0

c1

cn−1

...
...

...
...

...
...

...
...

Figure 5: Structure of the 3-XOR Arbiter PUF.

r1 r2

S R
QQ

S R
QQ

0 1

0 1

0 1

01

01

01

c0

c1

cn−1

0 1

0 1

0 1

01

01

01

c0

c1

cn−1

...
...

...
...

...
...

Figure 6: Structure of the Double Arbiter PUF.

used for the logic synthesis and for the �oorplanning, respec-
tively. Part of �oorplanning design for the 3-1 Double Arbiter
PUF is illustrated in Figure 9. In addition, Table 1 details the
placement of primitives on SLICEs for our experiments. 	e
notations for the PUF components in the 
rst column of
Table 1 are de
ned in Figure 8.

4.2. Intrachip Variation. 	e main goal of this paper is to
evaluate the e
ciency of XORing responses from Arbiter
PUFs on the same chip. If several pairs of XORed responses
have the same value, most of XORed responses become

r

S R
QQ

S R
QQ

0 1

0 1

0 1

01

01

01

c0

c1

cn−1

0 1

0 1

0 1

01

01

01

c0

c1

cn−1

...
...

...
...

...
...

Figure 7: Structure of the 2-1 Double Arbiter PUF.

0s. Because it is easy to predict the XORed responses in
this situation, the pairs of responses should be completely
di�erent. 	e intrachip variation metrics is calculated with
the following procedure. First, we implement two Arbiter
PUFs that generate two responses on the same chip. Second,
we provide the PUFs with � randomly chosen challenges,
and the pair of �-bit responses is generated. 	ird, we
calculate the Hamming distance (HD) between the pair of
responses. 	e intrachip variation is de
ned as the HD



6 	e Scienti
c World Journal

r

S R

QQ

S R

QQ

S R

QQ

S R

QQ

S R

QQ

S R

QQ

c0

c1

c0

c1

c0

c1

cn−1 cn−1 cn−1

...
...

...
...

...
...

...
...

0 1

0 1

0 1

01 0 1 01

0 1 01

0 1 01

0 1 01

0 1 01

0 1 01

01

01

...

MUX_1L_0 MUX_1R_0

MUX_1L_1 MUX_1R_1

MUX_1L_(n) MUX_1R_(n) MUX_2R_(n)

MUX_2R_0

MUX_2R_1

MUX_3L_(n)

MUX_3L_0

MUX_3L_1

MUX_3R_(n)

MUX_3R_0

MUX_3R_1

SR-Latch_1 SR-Latch_2SR-Latch_3

SR-Latch_4 SR-Latch_5SR-Latch_6

MUX_2L_0

MUX_2L_1

MUX_2L_(n)

Figure 8: Structure of the 3-1 Double Arbiter PUF.

divided by the response bit length, �. Ideally, the intrachip
variation is 50%. In our experiment,� = 5, 000.

In order to con
rm the potential of our duplication-
based approach in terms of unpredictability, the intrachip
variation for a Double Arbiter PUF was compared to that
of a conventional Arbiter PUF. As the preliminary to this
evaluation, we de
ne �1 and �2 as two responses from two
conventional Arbiter PUFs implemented on the same chip.
As shown in the second column of Table 2, the intrachip
variation of the conventional Arbiter PUF between �1 and
�2 was approximately 5%, which is quite low. 	ese results
imply that two Arbiter PUFs on the same chip will generate
the same responses with the probability of 95%. 	at is, 95%
of the responses from 2-XOR Arbiter PUF will become 0s,
because pairs with the same value are XORed. It is easy to
predict such responses, even without machine learning. 	e
intrachip variation of the Double Arbiter PUF was evaluated
by calculating the HD between two responses �1 and �2 from
a Double Arbiter PUF, as shown in Figure 6. Because the
intrachip variation of the Double Arbiter PUF ismuch higher
than that of the conventional Arbiter PUF, as shown in the
third column of Table 2, we can see potential of 2-1 Double
Arbiter PUF to enhance the unpredictability.

4.3. Machine-Learning Environment. 	e authors of [23]
reported the results of a machine-learning attack based on a
support vector machine (SVM). We used an implementation

of SVM called SVMlight [24] as machine-learning so�ware.
Between 100 and 1,000 CRPs were obtained from the Arbiter
PUFs on each FPGA, and they were used by the SVM as
training samples. For test samples, 10,000 challenges were

Table 2: Intrachip variation [%] of Arbiter PUF and Double Arbiter
PUF.

FPGA Arbiter PUF Double Arbiter PUF

A 5.34 55.62

B 4.82 32.66

C 4.92 50.60

provided to the SVM, and its responses were evaluated
according to the prediction rate. 	e training and test sam-
ples were chosen randomly. With each number of training
samples, the prediction rate of the machine-learning attack
was calculated as the average of 
ve trials.

5. Evaluation of Tolerance to
Machine-Learning Attacks

First, the machine-learning results from [18] are introduced
in Table 3. Note that these values are the average of the results
shown in Table 4.	ey evaluated conventional Arbiter PUFs,
2-1 Double Arbiter PUFs, and 3-1 Double Arbiter PUFs using
1,000 training samples and 10,000 test samples. As shown
in Table 3, the prediction rate for the responses from the
3-1 Double Arbiter PUF was 57%, and this approximates a
random guess (i.e., 50%).

However, there are no results from�-XOR Arbiter PUFs
designed as countermeasures to machine-learning attacks
(the results from the �-XOR Arbiter PUFs are shown in
Figures 11 and 12). In this section, we compare the 2-XOR



	e Scienti
c World Journal 7

1st selector chain 2nd selector chain 3rd selector chain

Selector

Arbiters

F7BMUX

C6LUT

chains

SLICE SLICE SLICE SLICE SLICE SLICE

SLICE SLICE SLICE SLICE SLICE SLICE

SLICE SLICE SLICE SLICE SLICE SLICE

SLICE SLICE SLICE SLICE SLICE SLICE

SLICE SLICE SLICE SLICE SLICE SLICE

SLICE SLICE SLICE SLICE SLICE SLICE

Figure 9: Design of the 3-1 Double Arbiter PUF on Xilinx Virtex-5 FPGA. SR-Latches as Arbiters are fabricated by pairing the NAND with
LookUp Table (LUT).

Table 3: Evaluation results of Arbiter PUF, 2-1 Double Arbiter PUF, and 3-1 Double Arbiter PUF.

Indicators Arbiter PUF 2-1 Double Arbiter PUF 3-1 Double Arbiter PUF Ideal

Pred. rate [%] 86.3† 69.0† 57.0† 50

Cost (ratio) 1 2 3 —
†	ese values are introduced from [18].

Arbiter PUF with the 2-1 Double Arbiter PUF and the 3-XOR
Arbiter PUF with the 3-1 Double Arbiter PUF. 	at is, each
pair of PUFs has the same hardware cost. Further, because
there are no results regarding a dependency on the number
of training samples in [18], we evaluate the four PUFs,
using between 100 and 1,000 training samples. According to

the results from this evaluation and the intrachip variation
(see Section 4.2), we can conclude that the Double Arbiter
PUFs have more potential in terms of unpredictability. To
con
rm the e�ectiveness of XORing responses with the
Double Arbiter PUFs, we developed and evaluated a 4-1
Double Arbiter PUF.



8 	e Scienti
c World Journal

Table 4: Results of the overall evaluation.

Metrics FPGA
Conventional
Arbiter PUF

2-XOR
Arbiter PUF

2-1 Double
Arbiter PUF

3-XOR
Arbiter PUF

3-1 Double
Arbiter PUF

4-1 Double
Arbiter PUF

Ideal

Prediction rate
[%] (with 1000
training data)

A 86.32
†

93.50 80.72† 85.82 56.47† 56.11

50B 86.36† 95.28 69.52† 85.95 57.45† 55.60

C 86.30† 95.41 56.64† 85.25 56.75† 54.73

Uniqueness [%]

A with B 4.72‡ 4.96‡ 41.36‡ 5.96‡ 50.60‡ 50.46

50B with C 4.96
‡

5.62‡ 49.70‡ 6.76‡ 51.34‡ 49.86

C with A 4.44‡ 5.58‡ 48.06‡ 6.32‡ 48.78‡ 49.76

Randomness
[%]

A 53.81‡ 6.32‡ 55.19‡ 54.88‡ 55.68‡ 55.67

50B 56.53‡ 4.72‡ 31.40‡ 55.05‡ 52.54‡ 54.76

C 54.00‡ 4.93‡ 50.63‡ 54.96‡ 53.59‡ 54.59

Steadiness [%]

A 0.76‡ 1.43‡ 7.79‡ 1.43‡ 14.11‡ 34.96

0B 0.83‡ 1.36‡ 11.22‡ 1.36‡ 10.93‡ 18.99

C 0.45‡ 0.52‡ 10.05‡ 0.74‡ 10.35‡ 25.85

Cost (# of
SLICEs)

— 177∗ 299 303∗ 426 436∗ 577 —

†	ese values are introduced from [17].
‡	e results of [18] shown in Table 3 are the averages of these values.
∗	ese values are introduced from [18].

5.1. Challenge Model for Double Arbiter PUFs. 	is paper
aims at increasing tolerance tomachine-learning attacks with
the general delay model described in [12] and introduced
in Section 2.2. 	is section discusses the validity of such a
model for Double Arbiter PUFs. To do so, we return to the
delay model for conventional Arbiter PUFs outlined brie�y
in Section 2. Figure 10 shows part of the Double Arbiter PUF,
which has the same signal condition as Figure 3. Consider
a pair of challenges, where one is randomly chosen and the
other is 1-bit �ipped. In the case of a Double Arbiter PUF,
when a 1-bit �ipped challenge is provided, it is exchanged
through whichever signal is supplied to right or le� SR-Latch,
whether the dashed or solid line. Certainly, the in�uence
of the 1-bit �ipped challenge is not equivalent to that of
a conventional Arbiter PUF. However, when the same pair
is converted into model vectors, that is, an original vector
and a 1-bit �ipped vector, the pair of signals through the
dashed or solid line with the original vector has a total delay
time similar to that of the pair of signals with the 1-bit
�ipped vector. 	erefore, we believe that this model is also
valid for Double Arbiter PUFs. Further, our complementary
experiments show that the prediction rate using this model
is higher than the prediction rate from using unconverted
challenges.

It seems that themodel for aDouble Arbiter PUF requires
twice as many parameters as there are additional selector
chains. 	ere is, however, no reason to introduce new delay
parameters additionally to the conventional model since
it is natural to assume that the delay parameters for two
duplicated selector chains have identical properties.

5.2. 2-XOR Arbiter PUF versus 2-1 Double Arbiter PUF.
	e results from the machine-learning attack are shown in
Figure 11. Only 100 training samples were needed to predict

k

...
...

...
...

i

n − 3

n − 3

n − 2

n − 2

n − 1

n − 1

n

1

1

1

1

1

1

−1

n

n + 1

Challenge: ck Model: �i

0

0

SR SR

Figure 10: 	e challenge model for the Double Arbiter PUF.

10,000 responses from the 2-XORArbiter PUFs on all FPGAs,
with approximately 95% probability. 	is is because 95% of
the responses were 0s, as explained in Section 4.2 and Table 2.

Although the prediction rate for the 2-1 Double Arbiter
PUF with few training samples appears to be low, 80% of
the responses from the 2-1 Double Arbiter PUF on FPGA
A with 1,000 training samples could be predicted, as shown
in Figure 11(a). We cannot exclude the possibility that an
attacker might predict the responses with even higher prob-
ability. According to the intrachip variation of the Double
Arbiter PUF on FPGA B shown in the third column of
Table 2, approximately 70% of the responses were 0s. 	us,



	e Scienti
c World Journal 9

P
re

d
ic

ti
o

n
 r

at
e 

(%
)

Number of training samples

100

95

90

85

80

75

70

65

60

55

50

2-XOR Arbiter PUF

2-1 Double Arbiter PUF

100 200 300 400 500 600 700 800 900 1000

(a) FPGA A

2-XOR Arbiter PUF

2-1 Double Arbiter PUF

P
re

d
ic

ti
o

n
 r

at
e 

(%
)

Number of training samples

100

95

90

85

80

75

70

65

60

55

50
100 200 300 400 500 600 700 800 900 1000

(b) FPGA B

2-XOR Arbiter PUF

2-1 Double Arbiter PUF

P
re

d
ic

ti
o

n
 r

at
e 

(%
)

Number of training samples

100

95

90

85

80

75

70

65

60

55

50
100 200 300 400 500 600 700 800 900 1000

(c) FPGA C

Figure 11: Prediction rates of 2-XOR Arbiter PUF and 2-1 Double Arbiter PUF.

approximately 70% of these responses could be predicted on
FPGAB, regardless of the number of training samples, as seen
in Figure 11(b). As implied by these results, the general delay
model proposed in [12] can predict most of the responses
fromDouble Arbiter PUFs. However, we can see the potential
of the 2-1 Double Arbiter PUF in terms of unpredictability,
because the prediction rate on FPGA C with 1,000 training
data was approximately 57%, as shown in Figure 11(c), and
because the tbl2-chip variation with the Double Arbiter PUF
was high, as described in Section 4.2 with Table 2.

5.3. 3-XOR Arbiter PUF versus 3-1 Double Arbiter PUF. In
order to enhance the e�ectiveness of XORing responses with
our duplication-based approach, we can increase the number
of XORed responses. 	e machine-learning attack results
from the 3-XOR Arbiter PUF and the 3-1 Double Arbiter
PUF are shown in Figure 12. 	e prediction rate of responses
from the 3-XOR Arbiter PUF on all FPGAs increased with
more training samples. Approximately 85% of the responses
could still be predicted on all FPGAs. By contrast, even

if an attacker obtained 1,000 training samples, it would be
di
cult to predict the responses from the 3-1 Double Arbiter
PUF, because its prediction rate comes close to 50% (i.e.,
randomguess).	eunpredictability of the 3-1DoubleArbiter
PUF improved drastically, when compared to the 2-1 Double
Arbiter PUF. It is true that the large number of PUF instances
is preferable for determining the general properties of PUFs.
However, considering the purpose of this paper, which is to
enhance unpredictability, could be con
rmed to some extent
even with three FPGAs since the machine-learning attack for
measuring the unpredictability is performed on each FPGA
in our experiments.

5.4. 4-1 Double Arbiter PUF. In order to judge the e�ect of
increasing the number of XORed responses, we developed
a 4-1 Double Arbiter PUF with a fourth selector chain, as
shown in Figure 13. Figure 12 includes the machine-learning
attack results for this 4-1 Double Arbiter PUF. As shown in
Figure 12, the tolerance of the 4-1 Double Arbiter PUF did
not increase, and its resultswere comparable to the 3-1Double



10 	e Scienti
c World Journal

P
re

d
ic

ti
o

n
 r

at
e 

(%
)

Number of training samples

100

95

90

85

80

75

70

65

60

55

50

3-XOR Arbiter PUF

3-1 Double Arbiter PUF

4-1 Double Arbiter PUF

100 200 300 400 500 600 700 800 900 1000

(a) FPGA A

100

95

90

85

80

75

70

65

60

55

50

3-XOR Arbiter PUF

3-1 Double Arbiter PUF

4-1 Double Arbiter PUF

Number of training samples

100 200 300 400 500 600 700 800 900 1000

P
re

d
ic

ti
o

n
 r

at
e 

(%
)

(b) FPGA B

100

95

90

85

80

75

70

65

60

55

50

Number of training samples

100 200 300 400 500 600 700 800 900 1000

3-XOR Arbiter PUF

3-1 Double Arbiter PUF

4-1 Double Arbiter PUF

P
re

d
ic

ti
o

n
 r

at
e 

(%
)

(c) FPGA C

Figure 12: Prediction rates of 3-XOR Arbiter PUF and 3-1 and 4-1 Double Arbiter PUF.

(i)(i) (i)

(i)

(ii) (ii) (ii)

(ii)

(iii) (iii) (iii)

(iii)

(iv) (iv)(iv)

(iv)

r

c0

c1

cn−1

0 1

0 1 01

0 1 01

01 0 1

0 1 01

0 1 01

01 0 1

0 1 01

0 1 01

01 0 1

0 1 01

0 1 01

01

...
...

...

c0

c1

cn−1

...
...

...

c0

c1

cn−1

...
...

...

c0

c1

cn−1

...
...

...

S R
QQ

S R
QQ

S R
QQ

S R
QQ

S R
QQ

S R
QQ

S R
QQ

S R
QQ

S R
QQ

S R
QQ

S R
QQ

S R
QQ

Figure 13: Structure of the 4-1 Double Arbiter PUF.



	e Scienti
c World Journal 11

Arbiter PUF. In Section 6, we compare the 3-1 Double Arbiter
PUFwith the 4-1 Double Arbiter PUF, using othermetrics (as
discussed in Section 5.1, it is easy to predict that most of the
responses from the 4-XORArbiter PUF will be 0, because the
number of XORed responses is an even number).

6. Overall Evaluation of the Conventional
�-XOR Arbiter PUF and the�-1 Double
Arbiter PUF

Previous work reported in [25, 26] suggests that the con-
ventional Arbiter PUF on a Xilinx Virtex-5/Kintex-7/Artix-7
FPGA generates responses that are not particularly unique.
	e �-XOR Arbiter PUF [19] was designed not only
to improve the unpredictability, but also to increase this
uniqueness. Further, the Double Arbiter PUFs introduced
in Section 3 were originally proposed as a technique for
improving the uniqueness [16]. 	is section provides an
overall evaluation of these PUFs that includes an evaluation
of the uniqueness [17]. 	at is, our evaluation establishes
which PUF performs best in terms of device authentication.
	e same FPGAs mentioned in Section 4.1 were used for this
experiment: namely, FPGA A, FPGA B, and FPGA C. First,
we provide a summary of themachine-learning attack results,
using 1,000 training samples and 10,000 test samples (see
Table 4). 	e additional metrics are de
ned in the following
section.

6.1. Other Metrics for the Overall Evaluation

6.1.1. Uniqueness. When the same challenge is given to the
PUFs on di�erent chips, their responses should be completely
di�erent. We evaluated this requirement by using the metric
of uniqueness, which is calculated as follows. When we
provide� randomly chosen challenges to PUFs on two chips,
the pair of�-bit responses is generated, and we calculate the
HDbetween the pairs of responses.	e uniqueness is de
ned
as the HD divided by the response bit length, �. Ideally, the
uniqueness is 50%. In our experiment,� = 5, 000.

6.1.2. Randomness. One metric to measure the randomness
of the responses is to analyze the proportion of 1s to 0s
in the responses from a PUF, which should almost be the
same when randomly chosen challenges are provided. In our
experiment, we counted the number of 1s in the responses
that were generated from a PUF when 216 randomly chosen
challenges were provided. 	e randomness is de
ned as this

number divided by the response bit length, 216. Again, the
ideal randomness is 50% (the authors of [25] refer to this
metric as uniformity).

6.1.3. Steadiness. When the same challenges are provided to
the samePUFon the same chip, the responses should have the
same value. We evaluated this requirement by using a metric
for steadiness, calculated as follows. 	e same � challenges
are repeatedly given to the same PUF � times, and the
average HD between two arbitrary �-bit responses out of
� �-bit responses is calculated. 	e steadiness is de
ned as

this average divided by response bit length, �. Ideally, the
steadiness is 0%. In our experiment, � = 128 and� = 128
(the authors of [25] refer to this metric as reliability).

6.1.4. Cost. It is also important to evaluate the hardware cost
of the PUFs. We evaluated the number of occupied SLICEs
during �oorplanning. A lower cost is obviously better.

	e uniqueness, randomness, and steadiness of the con-
ventional Arbiter PUF, the 2-XOR Arbiter PUF, the 2-1
Double Arbiter PUF, the 3-XOR Arbiter PUF, and the 3-1
Double Arbiter PUF were introduced from [17] to the third,
the fourth, and the 
�h rows in Table 4, respectively. Note
that the eighth column in Table 4 is newly introduced and
provides the evaluation results for the 4-1 Double Arbiter
PUF.

6.2. 2-XOR Arbiter PUF versus 2-1 Double Arbiter PUF. 	e
uniqueness of the 2-XOR Arbiter PUF was slightly improved
from that of the conventional Arbiter PUF, as shown in the
third and fourth columns of Table 4. However, because the
conventional Arbiter PUF has relatively low uniqueness, the
2-XOR Arbiter PUF whose 1-bit response is obtained by two
XORing responses from two conventional Arbiter PUFs also
generates responses with low uniqueness. By contrast, the
uniqueness of the 2-1 Double Arbiter PUF was higher than
that of the 2-XOR Arbiter PUF, as shown in the fourth and

�h columns of Table 4. It is clear that XORing responses
from the Double Arbiter PUF are more e�ective than that
from the conventional Arbiter PUF.

	e randomness of the 2-XOR Arbiter PUF was consid-
erably low, as shown in the fourth column of Table 4. 	is
is because the intrachip variation was also low, since 1-bit
responses generated by the twoXORing responses become 0s,
as discussed in Section 5.1.	e randomness of the 2-1 Double
Arbiter PUFwasmuch higher than that of the 2-XORArbiter
PUF, as shown in the fourth and 
�h columns of Table 4.

	e steadiness of the 2-XOR Arbiter PUF is approxi-
mately 1%, as shown in the fourth column of Table 4. We
might say that the ideal steadiness is correlated with the low
uniqueness of the 2-XORArbiter PUF that there is a trade-o�
between these two metrics. 	e steadiness of the 2-1 Double
Arbiter PUF was around 10%, and this means that it is less
stable than the 2-XOR Arbiter PUF, as shown in the fourth
and 
�h columns of Table 4. However, the steadiness of the
2-1 Double Arbiter PUF was comparable to that of the SRAM
PUF and the Ring Oscillator PUF reported in [14].

6.3. 3-XOR Arbiter PUF versus 3-1 Double Arbiter PUF. 	e
uniqueness of the 3-XORArbiter PUFwas approximately 6%,
as shown in the sixth column of Table 4, whichmeans that the
responses were almost as unique as those from the 2-XOR
Arbiter PUF. By contrast, the uniqueness of the 3-1 Double
Arbiter PUFwas approximately 50%, as shown in the seventh
column of Table 4, and this is an ideal result.We can conclude
that the 3-1 Double Arbiter PUF utilizes XORing responses
e�ectively.

	e randomness of the 3-XOR Arbiter PUF was close to
the ideal result, as shown in the sixth column of Table 4. 	is



12 	e Scienti
c World Journal

is because three responses (an odd number) were XORed
with the conventional Arbiter PUF.	e randomness of the 3-1
DoubleArbiter PUFwas almost ideal, as shown in the seventh
column of Table 4, and this represented an improvement over
the 2-1 Double Arbiter PUF.

	e steadiness of the 3-XOR Arbiter PUF was approxi-
mately 1%, as shown in the sixth columnof Table 4.	is result
is identical to that of the 2-XOR Arbiter PUF. 	e steadiness
of the 3-1 Double Arbiter PUF was less than 15%, as shown in
the seventh column of Table 4. 	e meaning of this result is
discussed in next section.

6.4. 4-1 Double Arbiter PUF. We evaluated the 4-1 Double
Arbiter PUF described in Section 5.3 using the above three
metrics. 	e uniqueness and the randomness of the 4-1
Double Arbiter PUFwere almost ideal, and these results were
comparable to those of the 3-1 Double Arbiter PUF, as shown
in the seventh and eighth columns of Table 4. However, the
responses from the 4-1 Double Arbiter PUF were less stable
than those from the 3-1 Double Arbiter PUF. 	e authors of
[27] demonstrated that when the bit-error probability (i.e.,
the steadiness) of a response is less than 15%, the response
can be corrected using error-correcting code with a high
level of probability. Because the steadiness of the 3-1 Double
Arbiter PUF was less than 15%, we conclude that the 3-
1 Double Arbiter PUF outperformed all other PUF-based
authentication.

7. Conclusion

	is paper introduced a new Arbiter PUF, called the Dou-
ble Arbiter PUF, for enhancing the unpredictability of its
responses. First, we evaluated the tolerance of the Double
Arbiter PUFs to machine-learning attacks and compared it
with the�-XOR Arbiter PUF, a well-known countermeasure
against such machine-learning attacks. Our results showed
that 85% of the responses from the conventional 3-XOR
Arbiter PUF could be predicted with machine learning. By
contrast, a 3-1 Double Arbiter PUF resulted in a prediction
rate of 57%, which is close to 50% (a random guess).
Second, we provided an overall evaluation of�-XORArbiter
PUFs and �-1 Double Arbiter PUFs. We evaluated these
approaches using metrics for the uniqueness, randomness,
and steadiness, and we provided a comprehensive discussion
of the results. 	e uniqueness of the 3-1 Double Arbiter PUF
was almost ideal (50%), whereas that of the conventional
3-XOR Arbiter PUFs was approximately 6%. Further, we
designed a 4-1 Double Arbiter PUF and evaluated it using
the same metrics. Although its tolerance and uniqueness
were almost the same as the 3-1 Double Arbiter PUF, the 4-
1 Double Arbiter PUF was less stable than the 3-1 Double
Arbiter PUF. Consequently, the 3-1 Double Arbiter PUF
archived the best performance overall. However, the best
parameter� for the�-1 Double Arbiter PUF might depend
on the implementation platform or the PUF method. 	e
PUF designer must carefully select optimal parameters in
order to ensure the best performance.

Conflict of Interests

	e authors declare that there is no con�ict of interests
regarding the publication of this paper.

References

[1] R. S. Pappu, Physical one-way functions [Ph.D. thesis], Mas-
sachusetts Institute of Technology, Cambridge, Mass, USA,
2001.

[2] R. Pappu, B. Recht, J. Taylor, andN. Gershenfeld, “Physical one-
way functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[3] P. Tuyls, B. Skoric, andT.Kevenaar, Security withNoisyData: On
Private Biometrics, Secure Key Storage and Anti-Counterfeiting,
Springer, New York, NY, USA, 2007.

[4] E. Simpson and P. Schaumont, “O�ine hardware/so�ware
authentication for recon
gurable platforms,” in Cryptographic
Hardware and Embedded Systems—CHES 2006: 8th Interna-
tional Workshop, Yokohama, Japan, October 10–13, 2006. Pro-
ceedings, vol. 4249 of Lecture Notes in Computer Science, pp. 311–
323, Springer, Berlin, Germany, 2006.

[5] J. Guajardo, S. S. Kumar, G. J. Schrijen, and P. Tuyls, “FPGA
intrinsic PUFs and their use for IP protection,” in Proceedings
of the 9th International Workshop on Cryptographic Hardware
and Embedded Systems (CHES ’07), pp. 63–80, Vienna, Austria,
2007.

[6] R. Maes, Physically Unclonable Functions: Constructions, Prop-
erties and Applications, Springer, New York, NY, USA, 2013.

[7] J. H. Anderson, “A PUF design for secure FPGA-based embed-
ded systems,” in Proceedings of the 15th Asia and South Paci
c
Design Automation Conference (ASP-DAC ’10), pp. 1–6, IEEE,
Taipei, Taiwan, January 2010.

[8] R. Maes and I. Verbauwhede, “Physically unclonable functions:
a study on the state of the art and future research directions,” in
Towards Hardware-Intrinsic Security, pp. 3–37, Springer, Berlin,
Germany, 2010.

[9] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon
physical random functions,” in Proceedings of the 9th ACM
Conference onComputer andCommunications Security, pp. 148–
160, Washington, DC, USA, November 2002.

[10] J. W. Lee, D. Lim, B. Gassend, G. E. Suh, M. Van Dijk, and
S. Devadas, “A technique to build a secret key in integrated
circuits for identi
cation and authentication applications,” in
Proceedings of the Symposium on VLSI Circuits (VLSI ’04), pp.
176–179, Honolulu, Hawaii, USA, June 2004.

[11] B. Gassend, D. Lim, D. Clarke, M. van Dijk, and S. Devadas,
“Identi
cation and authentication of integrated circuits,” Con-
currency Computation Practice and Experience, vol. 16, no. 11,
pp. 1077–1098, 2004.

[12] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and J.
Schmidhuber, “Modeling attacks on physical unclonable func-
tions,” in Proceedings of the 17th ACM Conference on Computer
and Communications Security (CCS ’10), pp. 237–249, Chicago,
Ill, USA, October 2010.

[13] U. Rührmair, J. Sölter, F. Sehnke et al., “PUFmodeling attacks on
simulated and silicon data,” IEEE Transactions on Information
Forensics and Security, vol. 8, no. 11, pp. 1876–1891, 2013.

[14] S. Katzenbeisser, Ü. Kocabaş, V. Rožić, A.-R. Sadeghi, I. Ver-
bauwhede, and C. Wachsmann, “PUFs: myth, fact or busted? A
security evaluation of physically unclonable functions (PUFs)
cast in silicon,” in Cryptographic Hardware and Embedded



	e Scienti
c World Journal 13

Systems—CHES 2012: 14th International Workshop, Leuven,
Belgium, September 9–12, 2012. Proceedings, vol. 7428 of Lecture
Notes in Computer Science, pp. 283–301, Springer, Berlin, Ger-
many, 2012.

[15] D. Yamamoto, K. Sakiyama, M. Iwamoto et al., “A new method
for enhancing variety and maintaining reliability of PUF
responses and its evaluation onASICs,” Journal of Cryptographic
Engineering, vol. 5, no. 3, pp. 187–199, 2015.

[16] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama, “A
study on uniqueness of arbiter PUF implemented on FPGA,”
in Proceedings of the 31st Symposium on Cryptography and
Information Security (SCIS ’14), 2014 (Japanese).

[17] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama, “A
new mode of operation for arbiter PUF to improve uniqueness
on FPGA,” in Proceedings of the Federated Conference on
Computer Science and Information Systems (FedCSIS ’14), pp.
871–878, Warsaw, Poland, September 2014.

[18] T. Machida, D. Yamamoto, M. Iwamoto, and K. Sakiyama,
“Implementation of double arbiter PUF and its performance
evaluation on FPGA,” in Proceedings of the 20th Asia and South
Paci
c Design Automation Conference (ASP-DAC ’15), pp. 6–7,
Chiba, Japan, January 2015.

[19] G. E. Suh and S. Devadas, “Physical unclonable functions for
device authentication and secret key generation,” in Proceedings
of the 44th ACM/IEEE Design Automation Conference (DAC
’07), pp. 9–14, San Diego, Calif, USA, June 2007.

[20] Y.Hori, T. Yoshida, T. Katashita, andA. Satoh, “Quantitative and
statistical performance evaluation of arbiter physical unclon-
able functions on FPGAs,” in Proceedings of the International
Conference on Recon
gurable Computing and FPGAs (ReConFig
’10), pp. 298–303, IEEE,Quintana Roo,Mexico, December 2010.

[21] XILINX, “Virtex-5 FPGA User Guide,” http://www.xilinx.com/
support/documentation/user guides/ug190.pdf.

[22] National Institute of Advanced Industrial Science and Tech-
nology, “Side-Channel Attack Standard Evaluation Board
(SASEBO),” http://www.risec.aist.go.jp/project/sasebo/.

[23] G. Hospodar, R. Maes, and I. Verbauwhede, “Machine learning
attacks on 65nm arbiter PUFs: accurate modeling poses strict
bounds on usability,” in Proceedings of the IEEE International
Workshop on Information Forensics and Security (WIFS ’12), pp.
37–42, Seattle, Wash, USA, December 2012.

[24] T. Joachims, “SVM light,” http://svmlight.joachims.org/.

[25] A.Maiti, V. Gunreddy, and P. Schaumont, “A systematicmethod
to evaluate and compare the performance of physical unclon-
able functions,” in Embedded Systems Design with FPGAs, pp.
245–267, Springer, New York, NY, USA, 2012.

[26] Y. Hori, H. Kang, T. Katashita, A. Satoh, S. Kawamura, and K.
Kobara, “Evaluation of physical unclonable functions for 28-nm
process 
eld-programmable gate arrays,” Journal of Information
Processing, vol. 22, no. 2, pp. 344–356, 2014.

[27] C. Bösch, J. Guajardo, A. Sadeghi, J. Shokrollahi, and P. Tuyls,
“E
cient helper data key extractor on FPGAs,” in Proceedings of
the 10th InternationalWorkshop onCryptographicHardware and
Embedded Systems (CHES ’08), pp. 181–197, Washington, DC,
USA, August 2008.



Submit your manuscripts at

http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


