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ABSTRACT In this paper, a new Multi-Objective Arithmetic Optimization Algorithm (MOAOA) is 

proposed for solving Real-World constrained Multi-objective Optimization Problems (RWMOPs). Such 

problems can be found in different areas, including mechanical engineering, chemical engineering, process 

and synthesis, and power electronics systems. MOAOA is inspired by the distribution behavior of the main 

arithmetic operators in mathematics. The proposed multi-objective version is formulated and developed from 

the recently introduced single-objective Arithmetic Optimization Algorithm (AOA) through an elitist non-

dominance sorting and crowding distance-based mechanism. For the performance evaluation of MOAOA, a 

set of 35 constrained RWMOPs and five ZDT unconstrained problems are considered. For the fitness and 

efficiency evaluation of the proposed MOAOA, the results obtained from the MOAOA are compared with 

four other state-of-the-art multi-objective algorithms. In addition, five performance indicators, such as Hyper-

Volume (HV), Spread (SP), Inverse Generalized Distance (IGD), Runtime (RT), and Generalized Distance 

(GD), are calculated for the rigorous evaluation of the performance and feasibility study of the MOAOA. The 

findings demonstrate the superiority of the MOAOA over other algorithms with high accuracy and coverage 

across all objectives. This paper also considers the Wilcoxon signed-rank test (WSRT) for the statistical 

investigation of the experimental study. The coverage, diversity, computational cost, and convergence 

behavior achieved by MOAOA show its high efficiency in solving ZDT and RWMOPs problems. 

INDEX TERMS Arithmetic Optimization Algorithm (AOA); CEC-2021 real-world problems; Constrained 

optimization; Multi-Objective Arithmetic Optimization Algorithm (MOAOA). 

I. INTRODUCTION 

Recently, computer technology advancements have 

increased the quality of addressing complex problems and 

decreased the time and cost of producing the optimal 

solution. However, human input is yet needed to determine 

the best of different solutions. Significant efforts can be seen 

in the literature to produce a system that optimally solves the 

given problem without any human effort [1]. One of the most 

reliable methods to accomplish this depends on optimization 

techniques. In many instances, most engineering problems, 

such as city programming, program management, 

investment decision, control system design, engineering 
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design, and university timetable, the objectives conflict by 

nature. Thus, one objective cannot be developed without the 

depravity of another objective. This kind of problem is called 

multi-objective optimization problems (MOPs), producing 

various optimal solutions identified as Pareto optimal 

solutions [2]. Hence, the multi-objective problem also varies 

from the single-objective. 

In multi-objective problems, different tasks are considered to 

solve the problem: a searching task whose aim is to obtain 

Pareto optimal solutions and the decision-making task, most 

of the selected solutions are taken from Pareto optimal 

solutions. In other words, the two main tasks in multi-

objective optimization are to get a set of non-dominated 

solutions as similarly as possible to the true Pareto optimal 

Front (PF) and keep a set of well-categorized solutions along 

with the Pareto optimal front [3]. Therefore, multi-objective 

methods intend to discover a set of reasonable trade-off 

solutions, and a decision-maker is required to choose one of 

them. There are several targets for multi-objective 

optimization problems, often in dispute, since they are 

difficult problems to solve because of their complex 

structure [4]. A selection of candidate solutions used 

progressively by the optimization technique to solve the 

given problem is the standard key to such optimization 

issues. It is called optimum solutions from Pareto. Due to 

MOPs, arithmetic operators do not apply to multiple 

optimized solutions [5]-[6]. The optimal dominance theory 

of Pareto helps to compare two solutions in a multi-objective 

space. The Pareto optimal solutions demonstrate the best 

state of equilibrium relating to the given objectives [7]. With 

generality in mind, the MOPs can be expressed as a 

minimization concept and expressed as follows. Minimize: 𝐹(�⃗�) = [𝑓1(�⃗�), 𝑓2(�⃗�), … , 𝑓𝑗(�⃗�),… , 𝑓𝑞(�⃗�)]Subjected to:ℎ𝑖(�⃗�) = 0,   𝑖 = 1, 2, … , 𝑝𝑔(�⃗�) ≥ 0,   𝑖 = 1, 2, … ,𝑚𝐿𝐵𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝐵𝑖 ,   𝑖 = 1, 2, … , 𝑛 }  
      (1) 

where q denotes a total number of objectives, m and p denote 

the number of inequality and equality constraints, 

respectively, LBi is the lower bound of the ith variable, and 

UBi is the upper bound of the ith variable.  

Recently, optimization algorithms have been successfully 

applied to solve MOPs [8]-[9]. Thanks to their ability to 

determine a Pareto optimal solution in a specific run, these 

optimization algorithms tend to be more beneficial than the 

traditional algorithms. Although optimization algorithms use 

a set of candidate solutions, they can be expanded to retain 

varied solutions in a given run. Many optimization 

algorithms solve MOPs using non-dominated ranking and 

Pareto strategy to provide different Pareto optimal solutions 

[10]. This paper explores the non-dominated approach to 

rank the solutions and crowding distance mechanism to 

maintain diversified Pareto optimal solutions. 

The literature indicates that many multi-objective 

evolutionary algorithms (MOEAs), such as the Non-

dominated Sorting Genetic Algorithm (NSGA-II) [9], 

Decomposition-based Multi-Objective Evolutionary 

Algorithm (MOEA/D) [11], multi-objective swarm 

algorithms, such as Multi-Objective Ant Lion Optimization 

(MOALO) [12], Multi-Objective Grey Wolf Optimizer 

(MOGWO) [13], and Multi-Objective Particle Swarm 

Optimization (MOPSO) [14] have been proposed that can 

successfully approximate the true Pareto-optimal solutions 

for many MOPs. Nevertheless, the baseline optimization 

techniques for such MOPs, such as the particle swarm 

optimization (PSO) for MOPSO, the genetic algorithm (GA) 

for NSGA-II, grey wolf optimizer (GWO) for MOGWO, and 

ant lion optimizer (ALO) for MOALO, are not considered to 

be sufficiently advanced and efficient.  

There are a variety of metaheuristics suggested in recent 

decades. Examples of the very newly enacted approaches of 

nature-inspired techniques include new techniques focused 

on grey wolf optimizer (GWO) [15], tunicate swarm 

optimizer [16], heap optimizer [17], gradient-based 

optimizer [18], jellyfish optimizer [19], Jaya algorithm [20], 

and red deer algorithm [21], among others. The readers 

should go through scientific studies for more details on many 

other optimization methods [22]. In general, such algorithms' 

regulating parameters are found to operate with the initial 

constant value. Such algorithms are indeed not versatile 

enough to turn their attention to either exploration or 

exploitation as required. 

The No-Free Lunch theorem [23] for the development of 

optimization allows researchers to improve or refine new 

optimization algorithms because it logically proves that no 

single algorithm can solve all optimization problems. This 

theory provides guidelines for researchers to implement new 

algorithms or improve existing algorithms to achieve 

enhanced efficiency. These are indeed the reasons behind the 

new research described in this paper, in which a Multi-

objective Arithmetic Optimization (MOAOA) focused on 

the newly published Arithmetic Optimization Algorithm 

(AOA) proposed by Abualigah et al. [24] in 2021 that 

employs the distribution of leading arithmetic operator's 

behavior in mathematics.  

When working with MOAOA, one of the most important 

questions is why this algorithm needs to be applied for a 

constraint optimization problem. The NFL theorem can 
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answer this question, which indicates that no metaheuristic 

exists to solve all types of practical applications. Due to 

many optimizers' insufficient accuracy in providing 

solutions for constraint optimization problems, MOAOA is 

achieved the best solutions in this work. This motivates us to 

propose a new metaheuristic multi-objective algorithm to 

handle the constrained multi-objective problems released by 

the CEC community. In this paper, MOAOA is proposed to 

solve various challenging Real-World constrained Multi-

Objective Problems (RWMOPs). The proposed MOAOA is 

formulated as similar to single-objective AOA, and it has 

been converted as a multi-objective algorithm by utilizing 

the elitist non-dominance-sorting mechanism. 

Comprehensive experiments have been conducted on 35 

CEC-2021 real-world constrained optimization problems. 

The results reported that the proposed MOAOA provides a 

promising performance compared with other multi-objective 

algorithms reported in the literature. Moreover, MOAOA 

results in an equilibrium between the exploration and 

exploitation search approach efficiently. Consequently, the 

contributions of this paper are as follows. 

 A new MOAOA is formulated by employing an elitist 

non-dominance sorting mechanism to maintain Pareto 

optimal dominance and a crowding distance 

mechanism to improve convergence and solution 

diversity. 

 A thorough and informative examination is provided 

on the performance of the MOAOA on various 

unconstrained ZDT benchmark test problems, and the 

performance of the MOAOA is compared with the 

other algorithms in terms of the Generational Distance 

(GD), Spread (SD), Hyper-Volume (HV), Runtime 

(RT), and Inverted Generational Distance (IGD). 

 The proposed MOAOA is provided with an updated 

epsilon constraint-handling mechanism and 

experimented with CEC-2021 35 challenging real-

world constrained MOPs, and the results are 

compared with other state-of-the-art algorithms.  

The rest of this paper is organized as follows. Section 2 

discusses the related works. Section 3 briefly explains the 

basic arithmetic optimization algorithm and explains the 

procedure to convert AOA into MOAOA. Section 4 provides 

the experimental results on all five ZDT test suites and 35 

RWMOPs. Also, the performance comparison with other 

state-of-the-art algorithms is discussed in Section 4. Section 

5 concludes the paper. 

II.  LITERATURE REVIEW 

This section first introduces the preliminary definitions of 

multiple-objective optimization, such as Pareto optimal 

front, Pareto optimal set, Pareto optimal dominance, and 

Pareto optimality. The definitions are as follows. 

Def. 1  Pareto optimal front (POF) [25]:  

A set that includes the value of objective functions for the 

Pareto solutions set.  𝑃𝑓 ≔ {𝐹(�⃗�)|�⃗� ∈ 𝑃𝑠}                                                                  (2) 
Def. 2 Pareto optimal set (POS) [25]:  

The set all Pareto-optimal solutions are called Pareto set as 

follows: 𝑃𝑠 ≔ {𝑥, 𝑦 ∈ 𝑋 | ∃𝐹(�⃗�) ≻ 𝐹(�⃗�)}                                           (3) 
 

Def. 3 Pareto Optimality [25]:  

A solution �⃗� ∈ 𝑋 is called Pareto-optimum if and only if: ∄ �⃗� ∈ 𝑋 | 𝐹(�⃗�) ≺ 𝐹(�⃗�)                                                            (4) 
Def. 4 Pareto Dominance [25]: 

Assume two vectors such as: �⃗� = (𝑥1, 𝑥2, … , 𝑥𝑘) and �⃗� =(𝑦1, 𝑦2, … , 𝑦𝑘). Vector x is said to dominate vector y (denote 

as 𝑥⃗⃗⃗  ≺ �⃗�) if and only if:  ∀𝑖 ∈ {1,2, … , 𝑘}: 𝑓𝑖(�⃗�) ≤ 𝑓𝑖(�⃗�)    ∧   ∃𝑖 ∈ {1,2, … , 𝑘}: 𝑓𝑖(�⃗�)< 𝑓𝑖(�⃗�)                                                        (5) 
As shown in Fig. 1, the objective space represents a set of 

non-dominated solutions called Pareto optimum solutions 

for maximization or a minimization problem, and the 

parametric space represents a set of dominated solutions. A 

relation between parametric spaces to the objective space is 

called optimum Pareto front (PF). 

 
FIGURE 1. Objective space and Parameter space in multi-objective 

optimization. 

The techniques for solving MOPs are primarily divided into 

a priori and posteriori methods [26]. Priori techniques 

usually focus on solving MOPs by transforming them to a 

single objective. Linear programming and weighted-sum 

methods, introduced in the 1950s, are in this category [3]. 

Surveys have shown that the priori method is faced with 
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various problems, such as local optimization, large 

processing time, etc., when handling the MOPs [27]. 

Posteriori techniques have been developed to establish 

multiple strategies, and it has significant benefits, such as 

low computational complexity and generating good results 

independently of the problem structure. While solving 

MOPs with multi-objective metaheuristic optimizers 

(MOMOs), each solution has a quality score dependent on 

its similarity to PF and spread (diversity). These metrics are 

used in the identification of parents and in the evaluation of 

solutions that survives. There are three main steps used to 

rank the solution [9]. 

(i) Pareto-based approach  

(ii) Indicator-based approach 

(iii) Decomposition-based approach 

Pareto-based approach - Goldberg [28] initially realized in 

1989 that the Pareto-dominance principle could be used to 

evaluate the optimal solution. Oriented by this theory, many 

MOMOs have proposed a variety of frameworks that use the 

Pareto-dominance rule to calculate the similarity of the 

optimal solution to PF. For instance, Deb et al. rank the 

optimum solutions using the non-dominated-ranking 

approach in the NSGA-II [9], and Zitzler et al. rank the 

optimum solutions in Strength Pareto Evolutionary 

Algorithm (SPEA2) [29]. In general, multiple methods, such 

as fitness-sharing, clustering [29], and crowding-distance 

[9], are used to calculate the Spread of optimal solution in 

PF. Most of the Pareto-based MOMOs are: MOPSO [14], 

Multi-Objective Multi-Verse Optimizer (MOMVO) [30], 

Multi-Objective Heat Transfer Search (MOHTS) [31], Non-

dominated Sorting MFO (NSMFO) [32], Non-dominated 

Sorting GWO (NSGWO) [33], Multi-Objective Slime 

Mould Optimizer (MOSMA) [34], MOALO [12], Non-

dominated Sorting WOA (NSWOA) [35], and Multi-

Objective Passing Vehicle Search (MOPVS) [31]. 

Indicator-based approach - Many performance indicators 

have been suggested in the literature to quantify the level to 

which the PF obtained by the MOMOs for a problem 

displays the complete PF in terms of diversity, coverage, and 

spread. The limited indicators only assess the convergence 

output (Epsilon [36], GD [37], etc.) or diversity (Spread [36], 

Spacing [38], etc.) of the PF collected, whereas others assess 

both diversity and convergence (HV [39], IGD [40], RT [41], 

etc.). Nowadays, researchers have been using these metrics 

as indicators to direct the discovery process in solving 

MOPs. Zitzler and Künzli suggested an indicator-based 

evolutionary algorithm (IBEA) that measures optimal 

solution output with quantitative performance indicators 

[42]. Performance metrics are used in indicator-based 

algorithms' environmental selection process. There are many 

metrics for checking the effectiveness of algorithms, which 

measure diversity and convergence, or both simultaneously. 

In specific, using the HV indicator [39] or performance 

metrics based on reference sets such as R2 [43], IGD [40], or 

Δp [44], a reasonably good PF depiction of a MOP can be 

accomplished. As previously stated, IBEAs based on 

reference sets rely on the reference set, which is often hard 

to determine before starting the quest. Nevertheless, 

numerous studies have discovered new strategies for 

constructing the reference set, as evidenced by the studies 

published for IGD/IGD+ [45], R2 [43], and the Δp indicator 

[44]. HV-based IBEAs, on the other hand, only need a single 

reference vector to calculate the hypervolume indicator. 

Nevertheless, such methods are restricted by the HV 

indicator's high computational cost, which rises as the 

number of objectives rises. 

Decomposition-based approach - The POS can be the ideal 

choice of the scalar function achieved by integrating all the 

fitness functions of the MOPs. The POF can therefore be 

decomposed into a variety of scalar optimization problems 

[46]. Decomposition-based strategies use this core principle 

to optimize the decomposition of the cost function produced 

by a certain weight vector. A variety of decomposition-based 

methods have been discussed and recommendations by 

researchers. Zhang and Li first introduce the MOEA/D 

algorithm in [11]. Some of these optimizers are MOEA/D 

with Uniform Design (MOEA/D-UD) [47], MOEA based on 

Hierarchical Decomposition (MOEA/HD) [48], MOEA/D 

with Adaptive Weight Vector Adjustment (MOEA/D-AWA 

[49], MOGWO/D [50], and MOPSO/D [51]. 

Works such as [9] and [11] on multi-objective optimization 

algorithms are suggested for further reading by interested 

readers. As per the No-Free-Lunch theory, it may now be 

likely to create a new algorithm that can solve an unsolved 

problem described in the literature or solve an existing solved 

problem with improved results. Furthermore, the basic AOA 

version is claimed to be an easy and straightforward algorithm 

based on the mathematics operator with very fewer tuning 

parameters. The AOA was shown to perform very well on 

constrained and unconstrained benchmark test suites and real-

world problems. The convergence and diversity of the 

solutions are balanced efficiently in AOA. Consequently, 

compared to several other traditional algorithms, it is very 

likely that the multi-objective variant of the basic AOA has the 

maximum performance. 
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III.  MULTI-OBJECTIVE ARITHMETIC OPTIMIZATION 
ALGORITHM (MOAOA) 

In this section, the single-objective version of AOA is first 

presented. Then, the multi-objective version is proposed. The 

computational complexity of MOAOA is discussed in the end. 

A.  BASIC VERSION OF ARITHMETIC OPTIMIZATION 
ALGORITHM (AOA) 

The principle of the basic model of the AOA is briefly 

discussed in this section. This algorithm was proposed in [24], 

which is motivated by the use of arithmetic operators to solve 

mathematical problems. The arithmetic operators, such as 

multiplication, division, subtraction, and addition, are utilized 

in scientific optimization to find the best solution subjected to 

specific criteria from some set of candidate solutions. The 

performance of the above-said operators and their impact on 

the algorithm are discussed in this section. The initialization 

of the AOA begins with ‘n’ quantities of initial random 
solutions where the solution has ‘m’ control variables. The 
solution group is then upgraded in each generation ‘g’ (g=1, 2, 

3, ..., gmax; gmax is the maximum number of generations) to 

support the four-phase arithmetic operator search process. The 

better functional value of the modified solution was found to 

result in greedy selection within the AOA. The best solutions 

replace the worst solution in the population, and the duplicate 

solution is replaced by randomly generated solutions 

following a greedy selection process. For further information 

on four-phase arithmetic operators, please refer to [24]. The 

pseudocode of the AOA can be detailed in Fig. 1, and the 

flowchart of AOA is illustrated in Fig. 2. Fig. 1 and Fig. 2 

explain the complete procedure of the AOA in detail. 

 

 
FIGURE 2. Pseudocode of the AOA
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B. MULTI-OBJECTIVE ARITHMETIC OPTIMIZATION 
ALGORITHM (MOAOA) 

The proposed MOAOA utilizes an elitist non-dominated 

sorting (NDS) approach and diversity maintenance by the 

crowding distance (CD) framework [9]. The NDS comprises 

the subsequent phases.  

 First, determining the non-dominated solution 

 Second, the application of the NDS approach 

 For all non-dominated solutions, non-dominated 

ranking (NDR) is calculated  

The ranking procedure occurs between two fronts. The first 

front solutions assign a ‘0’ index because the solutions are not 
dominated; simultaneously, the second front solutions are 

dominated by a minimum of one solution in the first front. The 

NDR process is illustrated in Fig. 4. Such a non-dominated 

ranking of the solutions is equal to the solutions that dominate 

others. The crowding-distance framework is illustrated in Fig. 

5, and it is utilized to maintain diversity between the generated 

solutions. 

 
FIGURE 3. Flowchart of the basic version of AOA
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Second frontFirst front

f1

f2

 
FIGURE 4. Schematic representation of NDS 

The crowding-distance framework is well-defined as 

follows. 

𝐶𝐷𝑗𝑖 = 𝑓𝑜𝑏𝑗𝑗𝑖+1−𝑓𝑜𝑏𝑗𝑗𝑖−1𝑓𝑜𝑏𝑗𝑗𝑚𝑎𝑥−𝑓𝑜𝑏𝑗𝑗𝑚𝑖𝑛        (6) 
where 𝑓𝑜𝑏𝑗𝑗𝑚𝑎𝑥 and 𝑓𝑜𝑏𝑗𝑗𝑚𝑖𝑛 are the maximum and 

minimum values of 𝑗thobjective function. The diagrammatic 

illustration of an NDS-based approach is illustrated in Fig. 6. 

Second frontFirst front

f1

f2

d2

d1

j-1

j

j+1

a

b

Cuboid of j

 
FIGURE 5. Schematic representation of CD mechanism 

 

 
FIGURE 6. Graphical illustration of NDS based algorithm

The pseudocode of the MOAOA is illustrated in Algorithm 

1. The initial phase of the algorithm is to define the required 

parameters, such as the maximum number of iteration 

(ITmax)/maximum number of generations, population size 
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(Np), and termination criteria. Then, parent population Po is 

randomly generated in the region of feasible search space, 

and each fitness function in the objective vector space F for 

Po is assessed. Apply the CD and NDS based on the elitist 

framework to Po. The new population of Pj is generated and 

combined with Po to obtain population Pi. Then, Pi is 

arranged based on the elitist non-dominated sorting approach 

and obtained the values of CD and NDR. The best Np 

solutions are reviewed to make an updated parent population. 

Lastly, this procedure is repetitive till the termination 

criteria. Fig. 7 shows the flowchart of MOAOA. 

Algorithm 1: MOAOA-Pseudocode  

Step 1: Primarily generate random population (Po) in solution space (S) 

Step 2: Assess objective vector space (F) for the generated Po 

Step 3: Based on elitist NDS method, sort the solutions and calculate the NDR 

and fronts 

Step 4: Calculate CD for each front 

Step 5: Update solutions (Pj) using Fig. 2 

Step 6: Merge Po and Pj to create Pi=Po U Pj 

Step 7: For Pi perform Step 2 

Step 8: Based on NDR and CD sort Pi 

Step 9: Replace Po with Pi for Np first members of Pi 
 

 

FIGURE 7. Flowchart of the proposed MOAOA 

C. COMPUTATION COMPLEXITY OF MOAOA 

The computational complexity of the MOAOA algorithm is 

represented in terms of time and space complexity. As per 

the previous discussion, the suggested MOAOA utilizes the 

NSGA-II operators [9].  Subsequently, the concept of CD 

and NDS mechanisms is taken from NSGA-II. Therefore, the 

computational space complexity of MOAOA is similar to 
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MOMVO, NSGWO, MOALO, and MOSMA optimizers are 

O(MNp)2, where Np is the population size, and M is the total 

number of objective functions. 

IV.  SIMULATION RESULTS AND DISCUSSIONS 

In order to assess whether the suggested MOAOA is efficient 

in solving multi-objective optimization problems, several 

experiments are conducted on the unconstrained ZDT1-4, 

ZDT6 multi-objective problems with two objectives [52], 

and the CEC-2021 test problems with two, three, and five 

objectives [53] with different performance metrics. The 

proposed MOAOA results are compared with four state-of-

the-art optimizers, namely NSGWO [33], MOMVO [30], 

MOALO [12], and MOSMA [34]. In the following 

subsection, the test problems and performance metrics 

adopted are briefly introduced. Afterward, the parameter 

settings of all algorithms, constraint handling approach, and 

best-compromised solutions (BCS) approach are introduced. 

Finally, the experimental results, together with the analysis 

and the comparative results, are discussed comprehensively. 

A. MULTI-OBJECTIVE TEST SUITES 

Firstly, in experimentation, the suggested MOAOA is 

compared with ZDT1-4, ZDT6 from the ZDT test suite, and 

secondly, challenging Real-world constrained multi-

objective problems from the CEC-2021 test suite are selected 

as the test instances for empirical comparisons in this study 

for testing the efficiency of the proposed MOAOA on MOPs. 

The number of objectives M⊆{2, 3, 5}. These test suites are 

composed of optimization problems with linear, mixed, 

partially separable, concave, and disconnected Pareto 

optimal fronts characteristics of ZDT and CEC-2021 

problems, as shown in Fig. 5. 

B. PERFORMANCE METRICS 

The generational distance (GD), Spread (SD), hypervolume 

(HV), runtime (RT), and inverted generational distance 

(IGD) [54] metrics are selected to evaluate the performance 

of the proposed MOAOA. HV and IGD deliver joint 

statistics of the diversity of the obtained set of solutions and 

convergence. Simultaneously, spread (SD) and GD metrics 

are the diversity and convergence measure, and RT metric 

provides average CPU time called computational complexity 

of each algorithm, respectively. The usage and formulas to 

calculate all performance metrics are presented in Fig. 9. 

C. PARAMETER SETTINGS 

For statistical comparisons, all selected algorithms are run 30 

times independently on each test instance with the maximum 

number of function evaluations (MAXFES), for each problem 

is established [50] as follows. 𝑀𝐴𝑋𝐹𝐸𝑆
= {  
  2 × 104, if 𝐷 ≤ 10,𝑀 = 2 8 × 104, else if 𝐷 > 10,𝑀 = 22.6250 × 104, else if 𝐷 ≤ 10,𝑀 = 31.05 × 104, else if 𝐷 > 10,𝑀 = 3 5.3 ∗ 104, else

 (7) 
7 is applicable for all selected algorithms, such as MOAOA, 

NSGWO, MOMVO, MOALO, and MOSMA. Other specific 

parameter settings of each algorithm are the same as 

suggested in the references.  

D. CONSTRAINT HANDLING APPROACH 

An updated epsilon constraint-handling [55] to handle the 

constraints is applied to the proposed MOAOA. The formula 

to handle the constraint is given as follows. 

ɛ(𝑘) = {(1 − 𝜏)ɛ(𝑘 − 1), if 𝑟𝑓𝑘 < 𝛼ɛ(0) (1 − 𝑘𝑇𝑐)𝑐𝑝 , if 𝑟𝑓𝑘 ≥ 𝛼                                   (8) 
where τ ∈ [0, 1], τ denotes control parameter to reduce the 

constraints relaxation in the case of 𝑟𝑓𝑘 < 𝛼, 𝑟𝑓𝑘 is the ratio 

of feasible to infeasible solutions in the kth generation, α ∈ [0, 
1], α controls the searching priority between the infeasible 
and the feasible regions, cp control parameter to reduce the 

constraints relaxation in the case of 𝑟𝑓𝑘 ≥ 𝛼, and ɛ(k) is 

updated till the generation k achieves the control generation 

Tc. 

E. BEST COMPROMISE SOLUTION (BCS) BASED ON 
FUZZY DECISION 

After obtaining the Pareto-optimal package, a fuzzy 

membership strategy [56] is introduced in this paper to 

achieve a suitable and BCS over the compromise curve.  

𝜇𝑖𝑗 = {  
  1, 𝑓𝑖𝑗 ⩽ 𝑓min𝑗𝑓max𝑗 −𝑓𝑖𝑗𝑓max𝑗 −𝑓min𝑗 , 𝑓min𝑗 ⩽ 𝑓𝑖𝑗 ⩽ 𝑓max𝑗0,  𝑓𝑖𝑗 ⩾ 𝑓max𝑗                                         (9) 

The normalized membership function can be constructed at 

each non-dominated solution as follows. 

𝜇𝑖 = ∑  𝑁𝑜𝑏𝑗𝑗=1 𝜇𝑖𝑗∑  𝑀𝑖=1 ∑  𝑁𝑜𝑏𝑗𝑗=1 𝜇𝑖𝑗                                                  (10) 
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where M is the number of non-dominated solutions, 𝑁𝑜𝑏𝑗 is 

the number of the objective functions, and 𝑓max𝑗
 and 𝑓min𝑗  are 

the maximum and minimum values of the respective 

objective function. The BCS is the one with a high value of 𝜇𝑖. 

 
FIGURE 8. Characteristics of CEC-2021 Real-world constrained multi-objective problems [57]

 

FIGURE 9. Performance metrics of MOPs 
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 F. RESULTS ON ZDT TEST PROBLEMS 

Before discussing the performance of the various optimizers 

for CEC-2021 Real-World constrained optimization, it is 

interesting to compare them using the standard test suites, 

which are constrained multi-objective optimization 

problems, including ZDT1-4 and ZDT6 benchmark 

problems [52]. The comprehensive experiments are 

conducted to measure the performance when handling 

general-purpose multi-objective optimization. The 

MOAOA, MOMVO, MOALO, MOSMA, and the NSGWO 

algorithms are chosen to solve the test problems for 30 runs 

where the comparative results are based on GD, Spread, 

IGD, HV, and RT indicators are presented in Table 1.  

In this table, each cell on the table presents the mean 

(standard deviation) and the results of the Wilcoxon rank-

sum test (WSRT) values obtained from various optimizers. 

The bold font represents the best performance of all 

algorithms on the respective problem. From the results, the 

best GD, SD, IGD, HV, and RT mean values for MOAOA, 

i.e., 3/5, 4/5, 4/5, 3/5, and 4/5, NSGWO, i.e., 0/5, 0/5, 0/5, 

0/5, and 0/5, MOMVO, i.e., 0/5, 1/5, 1/5, 0/5, and 1/5, 

MOALO, i.e., 0/5, 0/5, 0/5, 1/5, and 0/5, and MOSMA, i.e., 

2/5, 0/5, 0/5, 1/5, and 0/5 best results for ZDT1-4, ZDT6 

problems. Overall, it was noticed that the proposed MOAOA 

could expose the best convergence, coverage, diversity, and 

computational complexity as compared to MOMVO, 

MOALO, MOSMA, and NSGWO algorithms for the 

standard multi-objective optimization problem. In the WSRT 

test, each cell in the last row with +/−/≈ of Table 1 presents 

the numbers of test instances for which the compared 

algorithms perform significantly better than, significantly 

worse than, and statistically similar to the proposed 

MOAOA, respectively. It can be seen in Table 1 that the 

MOAOA significantly outperforms the other four algorithms 

in terms of the GD, IGD, Spread, RT, and HV metrics. 

Additionally, in Fig. 10 for ZDT problems, evaluating the 

IGD values versus function evolutions (FEs). Fig. 10 shows 

that the MOAOA has shown successful convergence ability 

on ZDT problems. Nevertheless, as stated in the No-Free-

Lunch theory, it cannot be guaranteed that a meta-heuristic 

with good performance when solving a particular problem 

will be efficient for another one. Thus, the study of applied 

metaheuristics is always a challenging issue. For the studied 

CEC-2021 RWMOP, the GD, spread, IGD, HV, and RT 

comparison outcomes for all considered design problems are 

discussed in subsequent sections. 

TABLE I. 

GD/SPREAD/IGD/HV/RT-METRICS (MEAN AND STD VALUES) OF ALL ALGORITHMS ON THE ZDT BENCHMARK TEST SUITE 

Problem NSGWO MOMVO MOALO MOSMA MOAOA 

GD 

ZDT1 1.1164e-1 (2.17e-2) - 6.5495e-3 (8.86e-4) - 5.2746e-3 (2.07e-3) - 1.7064e-4 (1.32e-5) = 1.8394e-4 (2.00e-5) 

ZDT2 1.235e+0 (3.04e-1) - 8.9903e-3 (1.93e-3) - 4.8162e-3 (1.52e-3) - 1.9038e-4 (2.49e-5) = 1.5869e-4 (6.08e-5) 

ZDT3 1.1900e-1 (3.69e-2) - 6.4039e-3 (2.45e-3) - 1.0794e-2 (3.36e-3) - 1.3712e-4 (3.15e-5) = 1.1025e-4 (1.88e-5) 

ZDT4 8.564e+0 (7.56e+0) - 6.0155e-3 (1.69e-3) - 2.5584e-1 (2.41e-1) - 7.1331e-4 (1.17e-4) = 4.4424e-4 (8.40e-5) 

ZDT6 1.2526e-1 (1.96e-1) - 6.9421e-3 (2.00e-3) - 9.4918e-2 (2.03e-2) - 2.4914e-4 (9.49e-5) = 4.4362e-4 (3.90e-4) 

WSRT (+/-/=) 0/5/0 0/5/0 0/5/0 0/0/5   

SPREAD 

ZDT1 8.7416e-1 (2.75e-2) - 1.4169e-1 (8.32e-3) = 4.9308e-1 (6.24e-2) - 6.3166e-1 (1.14e-1) - 1.2752e-1 (1.38e-2) 

ZDT2 4.0675e-1 (7.78e-2) - 1.3692e-1 (9.73e-3) = 5.0675e-1 (9.78e-2) - 6.4653e-1 (1.16e-1) - 1.3684e-1 (1.54e-2) 

ZDT3 8.8486e-1 (2.94e-2) - 1.6715e-1 (3.81e-2) = 4.9998e-1 (1.08e-1) - 8.6684e-1 (1.16e-1) - 1.6115e-1 (5.48e-3) 

ZDT4 9.828e-1 (2.19e-2) = 1.464e-1 (1.99e-2) = 7.9300e-1 (1.73e-1) - 1.0673e+0 (3.60e-2) - 1.6418e-1 (2.41e-2) 

ZDT6 1.164e+0 (2.63e-1) - 1.4807e-1 (5.20e-2) = 4.3637e-1 (4.90e-2) - 5.6692e-1 (6.20e-2) - 1.4390e-1 (2.08e-2) 

+/-/= 0/3/1 0/0/5 0/5/0 0/5/0   

IGD 

ZDT1 1.154e+0 (1.56e-1) - 4.3795e-3 (4.47e-3) = 5.3472e-2 (2.15e-2) - 7.3136e-2 (1.28e-4) - 4.1437e-3 (8.17e-5) 

ZDT2 1.317e+0 (2.88e-1) - 4.4717e-3 (1.19e-2) = 5.7696e-2 (1.49e-2) - 1.7108e-2 (1.68e-4) - 4.6360e-3 (2.68e-4) 

ZDT3 7.7030e-1 (3.15e-1) - 5.2142e-3 (1.31e-2) = 1.0487e-1 (3.42e-2) - 5.1988e-2 (2.37e-4) - 5.0147e-3 (1.89e-4) 

ZDT4 2.796e+1 (2.58e+0) - 8.8661e-3 (1.71e-1) = 2.5180e-1 (5.22e-1) - 8.0786e-1 (1.46e-3) - 6.2557e-3 (7.17e-4) 

ZDT6 5.854e-3 (2.21e-2) = 5.2947e-3 (7.67e-3) = 3.4416e-2 (5.50e-4) - 4.7419e-3 (5.87e-4) - 3.2705e-3 (2.90e-3) 

+/-/= 0/4/1 0/0/5 0/5/0 0/5/0   

HV 

ZDT1 6.3320e-3 (1.27e-2) - 6.6097e-1 (6.48e-3) - 6.5377e-1 (2.61e-2) - 7.1875e-1 (2.52e-4) = 7.1863e-1 (1.85e-4) 

ZDT2 0.000e+0 (0(e-0)) - 3.7337e-1 (1.63e-2) - 3.8052e-1 (2.07e-2) - 4.4288e-1 (4.31e-4) = 4.4331e-1 (7.25e-4) 

ZDT3 4.9129e-2 (5.57e-2) - 5.5975e-1 (8.04e-3) - 5.3850e-1 (2.70e-2) - 5.9858e-1 (2.91e-4) = 5.9870e-1 (2.63e-4) 

ZDT4 0.000e+0 (0(e-0)) - 5.9421e-1 (1.10e-1) - 1.3824e-1 (1.67e-1) - 7.1127e-1 (2.24e-3) = 7.1489e-1 (1.30e-3) 

ZDT6 2.886e-1 (1.92e-1) = 3.3594e-1 (9.51e-3) - 3.8688e-1 (6.09e-4) = 3.8610e-1 (1.12e-3) = 3.8396e-1 (4.80e-3) 

+/-/= 0/4/1 0/5/0 0/4/1 0/0/5   
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RUNTIME 

ZDT1 4.73E+00 1.08E+00 5.70E+00 9.30E+00 1.09E+00 

ZDT2 4.07E+00 9.88E-01 5.69E+00 7.70E+00 8.18E-01 

ZDT3 4.39E+00 1.02E+00 5.48E+00 8.01E+00 1.00E+00 

ZDT4 3.09E+00 8.81E-01 6.06E+00 6.23E+00 8.30E-01 

ZDT6 3.28E+00 9.94E-01 5.78E+00 6.51E+00 8.47E-01 

Time 

Complexity 
3.91E+00 9.93E-01 5.74E+00 7.55E+00 9.18E-01 

 

 
FIGURE 10. Curves of the mean IGD values versus FEs on the ZDT1-4, ZDT6 test benchmarks

G. RESULTS ON CEC-2021 REAL-WORLD 
CONSTRAINED OPTIMIZATION PROBLEMS 

Recently, 35 CEC-2021 real-world constrained optimization 

problems are released by the optimization community to 

make a challenging test suite for evaluating the efficiency of 

various algorithms [57]. CEC-2021 RWMOPs are 

combinations of mechanical design (RWMOP1-

RWMOP21) problems, chemical engineering (RWMOP22-

RWMOP24) problems, process, synthesis, and design 

(RWMOP25-RWMOP29) problems, and power electronics 

(RWMOP30-RWMOP35) problems [57]. Basic descriptions 

of these problems, such as the number of objective functions 

(M), number of decision variables (D), number of equality 

constraints (nh), and inequality constraints (ng), are reported 

in Fig. 8. As illustrated in Fig. 8, M varies from 2 to 5, D 

varies from 2 to 34, ng varies from 0 to 29, and nh vary from 

0 to 26. Here, two algorithms, such as self-adaptive spherical 

search optimizer [58] and modified covariance matrix 

adaptation evolution strategy [59], are used to calculate the 

ideal and nadir points of all objectives of all problems of the 

test suite as these algorithms are the top-ranked algorithms 

of special session & competition on real-world constrained 

optimization organized at WCCI 2020 and GECCO 2020. 

The proposed MOAOA successfully solved a variety of 

ZDT1-4 and ZDT6 test suites. Therefore, it is appropriate to 

apply and evaluate its performance over challenging real-

world CEC-2021 problems. In all the selected problems, 

constraints are handled using the penalty function approach 

[55] and the Fuzzy-based [56] approach to locate the best 

compromise solution (BCS) in obtained PF for each 

problem. To further verify the effectiveness of the MOAOA 

in solving CEC-2021, the above cases are optimized using 

NSGWO, MOMVO, MOALO, and MOSMA, and the 

comparisons of the optimized results are discussed. In each 

case, all the five algorithms are run independently 30 times, 
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and the obtained results are shown and discussed in this 

section. 

G.1. RESULTS ON CEC-2021 MECHANICAL DESIGN 

PROBLEMS (RWMOP1-RWMOP21) 

The qualitative and quantitative results obtained by 

MOAOA, NSGWO, MOMVO, MOALO, and MOSMA 

while solving mechanical design problems are collectively 

described in Table 2-6. Fig. 11 shows the best PF and BCS 

of all the problems for visualizing the performance of the 

MOAOA. 
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RWMOP6 

 
RWMOP7 

 
RWMOP8 

 

FIGURE 11. PFs of all the algorithms on mechanical design (RWMOP1-RWMOP21) problems (the rest of the FIGUREs can be found in the appendix) 
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TABLE II.  

GD METRIC RESULTS OF VARIOUS OPTIMIZERS ON MECHANICAL DESIGN PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP1 20000 5.9671e+6 (1.26e+6) 3.5345e+6 (5.28e+4) 4.6138e+6 (2.67e+5) 3.4959e+6 (2.20e+4) 3.4094e+6 (5.18e+4) 

RWMOP2 20000 1.0535e+1 (8.16e-2) 2.6332e+1 (3.21e+1) 2.9037e+2 (4.23e+2) 6.4018e+0 (6.98e+0) 9.1620e+0 (1.57e+0) 

RWMOP3 20000 9.6759e+3 (5.27e+1) 1.0913e+4 (5.48e+3) 8.3295e+3 (1.25e+2) 7.7001e+3 (1.38e+2) 5.7943e+3 (8.79e+1) 

RWMOP4 20000 2.4710e+0 (8.65e-1) 2.6080e+0 (4.82e-2) 2.8529e+0 (5.98e-2) 2.6073e+0 (8.41e-2) 2.0188e+0 (4.44e-2) 

RWMOP5 20000 3.2927e-1 (4.79e-3) 3.1728e-1 (4.25e-4) 2.9704e-1 (1.69e-2) 3.1200e-1 (3.53e-3) 2.9310e-1 (1.62e-3) 

RWMOP6 20000 2.9101e+2 (2.77e+0) 2.4293e+2 (1.52e+0) 2.9408e+2 (1.10e+0) 2.5373e+2 (1.67e+1) 2.4138e+2 (5.22e+1) 

RWMOP7 20000 1.9792e+0 (1.12e-2) 1.9617e+0 (9.54e-4) 1.9584e+0 (1.07e-2) 1.9569e+0 (1.57e-2) 1.9695e+0 (1.32e-2) 

RWMOP8 26250 4.2462e+0 (2.20e-1) 4.1297e+0 (7.43e-2) 4.7562e+0 (7.09e-2) 4.1225e+0 (1.61e-1) 3.6860e+0 (7.12e-2) 

RWMOP9 20000 1.3101e+2 (5.43e+0) 1.0805e+2 (2.86e+0) 1.2820e+2 (2.66e+0) 1.1021e+2 (7.29e-1) 9.4923e+1 (3.23e-1) 

RWMOP10 20000 1.4653e+1 (1.49e-1) 1.2743e+1 (1.94e-1) 1.4562e+1 (1.21e-1) 1.2790e+1 (3.99e-2) 9.1378e+0 (6.52e-2) 

RWMOP11 53000 5.3046e+5 (9.23e+3) 4.7339e+5 (8.66e+3) 5.4132e+5 (8.10e+3) 4.8700e+5 (1.22e+4) 4.2443e+5 (2.51e+3) 

RWMOP12 20000 2.7771e+1 (1.60e+0) 2.4589e+1 (2.88e-1) 2.3257e+1 (1.64e+0) 2.4145e+1 (6.09e-1) 2.1495e+1 (2.19e-1) 

RWMOP13 26250 2.7968e+2 (8.05e-1) 2.5387e+2 (4.35e+0) 2.6692e+2 (4.60e+0) 2.5099e+2 (7.44e+0) 2.0187e+2 (3.35e+0) 

RWMOP14 20000 1.0775e-1 (3.45e-3) 8.5385e-2 (1.10e-3) 9.4933e-2 (4.39e-3) 8.4988e-2 (1.11e-3) 6.5349e-2 (9.46e-4) 

RWMOP15 20000 1.4954e+4 (8.39e+3) 8.9207e+3 (1.91e+2) 3.5864e+4 (1.44e+4) 9.0699e+3 (1.52e+2) 8.4701e+3 (3.34e+2) 

RWMOP16 20000 2.1899e-1 (3.03e-3) 1.9667e-1 (2.44e-3) 2.0713e-1 (4.99e-3) 1.9647e-1 (1.47e-3) 1.5060e-1 (1.83e-3) 

RWMOP17 26250 7.5967e+7 (1.52e+8) 1.7744e+7 (3.31e+7) 7.6574e+8 (8.65e+8) 3.6860e+7 (3.73e+7) 1.0370e+8 (1.82e+8) 

RWMOP18 20000 1.3804e-2 (2.47e-4) 1.4640e-2 (1.05e-4) 1.4293e-2 (3.00e-4) 1.4711e-2 (1.79e-4) 1.4175e-2 (1.17e-4) 

RWMOP19 26250 1.6336e+4 (5.83e+2) 1.5250e+4 (5.57e+2) 2.7503e+4 (1.43e+4) 1.4003e+4 (8.33e+2) 1.3903e+4 (7.37e+2) 

RWMOP20 20000 3.3715e+3 (1.83e+3) 1.3829e+3 (7.93e+2) 4.2546e+2 (1.30e+2) 3.9614e+2 (8.53e+1) 7.0704e+2 (2.53e+2) 

RWMOP21 20000 4.6959e-1 (3.12e-2) 4.1156e-1 (5.20e-3) 4.5520e-1 (2.32e-2) 4.0392e-1 (4.45e-3) 3.9555e-1 (6.27e-3) 

TABLE III. 

 SD METRIC RESULTS OF VARIOUS OPTIMIZERS ON MECHANICAL DESIGN PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP1 20000 3.6042e+5 (1.07e+3) 3.6191e+5 (2.11e+3) 3.6259e+5 (5.48e+3) 3.5996e+5 (7.50e+2) 3.9525e+5 (4.39e+4) 

RWMOP2 20000 8.3127e+1 (1.54e+1) 9.7874e+1 (2.00e+1) 2.9956e+2 (4.18e+2) 6.5762e+1 (4.31e+1) 3.2343e+1 (2.50e+1) 

RWMOP3 20000 5.7138e+2 (4.54e+2) 4.0598e+3 (4.85e+3) 2.1311e+3 (1.69e+3) 1.1680e+2 (1.59e+2) 6.4856e+4 (3.09e+4) 

RWMOP4 20000 1.3117e+0 (4.12e-2) 1.3393e+0 (3.12e-2) 2.6754e-1 (1.71e-1) 1.2656e+0 (9.05e-2) 1.1704e+0 (1.10e+0) 

RWMOP5 20000 1.8881e+0 (1.59e-4) 1.8873e+0 (1.43e-3) 1.8884e+0 (4.77e-4) 1.8884e+0 (2.02e-4) 1.8830e+0 (5.26e-3) 

RWMOP6 20000 1.4156e+3 (9.47e+2) 6.0545e+2 (1.77e-1) 2.6232e+3 (2.83e+2) 8.6452e+2 (5.15e+2) 1.9221e+3 (7.10e+2) 

RWMOP7 20000 1.4717e+1 (7.68e-1) 1.2137e+1 (5.81e+0) 1.4068e+1 (6.02e-1) 1.3857e+1 (2.94e+0) 1.5326e+1 (2.81e-1) 

RWMOP8 26250 2.1298e+0 (9.20e-5) 2.1299e+0 (0(e-0)) 1.9357e+0 (3.66e-1) 2.1288e+0 (1.98e-3) 2.1142e+0 (3.12e-2) 

RWMOP9 20000 3.7239e-2 (0(e-0)) 3.7239e-2 (0(e-0)) 2.3151e+2 (5.16e+1) 3.723e-2 (1.91e-10) 1.7305e+1 (2.64e+1) 

RWMOP10 20000 4.0912e-3 (4.80e-3) 2.2411e-2 (2.70e-2) 1.1286e+1 (6.57e+0) 3.9048e-3 (3.14e-3) 1.2710e+1 (8.25e+0) 

RWMOP11 53000 2.3913e+6 (5.84e+4) 2.3982e+6 (3.09e+4) 2.4934e+6 (2.32e+4) 2.4669e+6 (1.90e+4) 2.5334e+6 (3.77e+4) 

RWMOP12 20000 2.0780e+0 (2.29e+0) 1.6201e+0 (1.17e+0) 2.1023e+1 (3.33e+1) 1.9430e+0 (2.54e+0) 1.3371e+1 (3.84e+0) 

RWMOP13 26250 3.4776e+2 (8.41e+0) 4.7863e+2 (6.75e+1) 6.2192e+2 (3.33e+2) 4.2371e+2 (1.16e+2) 6.4315e+2 (1.42e+1) 

RWMOP14 20000 1.2137e-2 (0(e-0)) 1.2137e-2 (0(e-0)) 2.6082e-1 (2.92e-1) 1.2137e-2 (6.91e-9) 1.2710e-1 (1.69e-1) 

RWMOP15 20000 3.0086e+3 (3.98e+3) 5.7037e+2 (3.53e+2) 2.1326e+4 (1.91e+4) 2.7765e+3 (4.04e+3) 1.8136e+4 (8.79e+3) 

RWMOP16 20000 1.9989e-3 (0(e-0)) 1.9989e-3 (0(e-0)) 1.9989e-3 (0(e-0)) 1.9989e-3 (0(e-0)) 1.9989e-3 (0(e-0)) 

RWMOP17 26250 4.9943e+3 (7.64e+2) 6.2638e+3 (3.24e+3) 1.1592e+4 (8.90e+3) 4.8889e+3 (3.42e+2) 1.5132e+4 (2.38e+4) 

RWMOP18 20000 9.4534e-2 (4.53e-5) 9.4473e-2 (7.32e-5) 9.4196e-2 (1.73e-4) 9.4312e-2 (1.54e-4) 9.4426e-2 (2.49e-4) 

RWMOP19 26250 1.1433e+5 (1.15e+4) 6.7975e+4 (2.47e+4) 1.4073e+5 (2.10e+4) 8.1388e+4 (2.23e+4) 5.5351e+4 (2.42e+4) 
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TABLE IV. 

IGD METRIC RESULTS OF VARIOUS OPTIMIZERS ON MECHANICAL DESIGN PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP1 20000 3.6042e+5 (1.07e+3) 3.6191e+5 (2.11e+3) 3.6259e+5 (5.48e+3) 3.5996e+5 (7.50e+2) 3.9525e+5 (4.39e+4) 

RWMOP2 20000 8.3127e+1 (1.54e+1) 9.7874e+1 (2.00e+1) 2.9956e+2 (4.18e+2) 3.2343e+1 (2.50e+1) 6.5762e+1 (4.31e+1) 

RWMOP3 20000 5.7138e+2 (4.54e+2) 4.0598e+3 (4.85e+3) 2.1311e+3 (1.69e+3) 1.1680e+2 (1.59e+2) 6.4856e+4 (3.09e+4) 

RWMOP4 20000 1.3117e+0 (4.12e-2) 1.3393e+0 (3.12e-2) 2.6754e-1 (1.71e-1) 1.2656e+0 (9.05e-2) 1.1704e+0 (1.10e+0) 

RWMOP5 20000 1.8881e+0 (1.59e-4) 1.8873e+0 (1.43e-3) 1.8884e+0 (4.77e-4) 1.8884e+0 (2.02e-4) 1.8830e+0 (5.26e-3) 

RWMOP6 20000 1.4156e+3 (9.47e+2) 6.0545e+2 (1.77e-1) 2.6232e+3 (2.83e+2) 8.6452e+2 (5.15e+2) 1.9221e+3 (7.10e+2) 

RWMOP7 20000 1.4717e+1 (7.68e-1) 1.2137e+1 (5.81e+0) 1.4068e+1 (6.02e-1) 1.3857e+1 (2.94e+0) 1.5326e+1 (2.81e-1) 

RWMOP8 26250 2.1298e+0 (9.20e-5) 2.1299e+0 (0(e-0)) 1.9357e+0 (3.66e-1) 2.1288e+0 (1.98e-3) 2.1142e+0 (3.12e-2) 

RWMOP9 20000 3.7239e-2 (0(e-0)) 3.7239e-2 (0(e-0)) 2.3151e+2 (5.16e+1) 3.7239e-2 (1.91e-10) 1.7305e+1 (2.64e+1) 

RWMOP10 20000 4.0912e-3 (4.80e-3) 2.2411e-2 (2.70e-2) 1.1286e+1 (6.57e+0) 1.2710e+1 (8.25e+0) 3.9048e-3 (3.14e-3) 

RWMOP11 53000 2.3913e+6 (5.84e+4) 2.3982e+6 (3.09e+4) 2.4934e+6 (2.32e+4) 2.4669e+6 (1.90e+4) 2.5334e+6 (3.77e+4) 

RWMOP12 20000 2.0780e+0 (2.29e+0) 1.6201e+0 (1.17e+0) 2.1023e+1 (3.33e+1) 1.9430e+0 (2.54e+0) 1.3371e+1 (3.84e+0) 

RWMOP13 26250 3.4776e+2 (8.41e+0) 4.7863e+2 (6.75e+1) 6.2192e+2 (3.33e+2) 4.2371e+2 (1.16e+2) 6.4315e+2 (1.42e+1) 

RWMOP14 20000 1.2137e-2 (0(e-0)) 1.2137e-2 (0(e-0)) 2.6082e-1 (2.92e-1) 1.2137e-2 (6.91e-9) 1.2710e-1 (1.69e-1) 

RWMOP15 20000 3.0086e+3 (3.98e+3) 5.7037e+2 (3.53e+2) 2.1326e+4 (1.91e+4) 2.7765e+3 (4.04e+3) 1.8136e+4 (8.79e+3) 

RWMOP16 20000 1.9989e-3 (0(e-0)) 1.9989e-3 (0(e-0)) 1.9989e-3 (0(e-0)) 1.9989e-3 (0(e-0)) 1.9989e-3 (0(e-0)) 

RWMOP17 26250 4.9943e+3 (7.64e+2) 6.2638e+3 (3.24e+3) 1.1592e+4 (8.90e+3) 4.8889e+3 (3.42e+2) 1.5132e+4 (2.38e+4) 

RWMOP18 20000 9.4534e-2 (4.53e-5) 9.4473e-2 (7.32e-5) 9.4196e-2 (1.73e-4) 9.4312e-2 (1.54e-4) 9.4426e-2 (2.49e-4) 

RWMOP19 26250 1.1433e+5 (1.15e+4) 6.7975e+4 (2.47e+4) 1.4073e+5 (2.10e+4) 8.1388e+4 (2.23e+4) 5.5351e+4 (2.42e+4) 

RWMOP20 20000 3.1697e+3 (1.24e+3) 2.6368e+3 (1.04e+3) 2.4816e+3 (1.07e+2) 2.0068e+3 (2.64e+2) 4.2110e+3 (1.26e+3) 

RWMOP21 20000 1.8529e-1 (2.57e-1) 1.6050e-2 (0(e-0)) 7.1704e-1 (3.59e-1) 1.6050e-2 (6.78e-7) 1.6050e-2 (0(e-0)) 

TABLE V. 

 HV METRIC RESULTS OF VARIOUS OPTIMIZERS ON MECHANICAL DESIGN PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP1 20000 6.0546e-1 (9.45e-4) 4.6638e-1 (5.87e-2) 5.5263e-1 (1.66e-2) 6.0516e-1 (4.14e-4) 6.0787e-1 (4.61e-4) 

RWMOP2 20000 2.9329e-1 (1.96e-1) 3.9056e-1 (1.53e-3) 2.6234e-2 (5.25e-2) 2.2138e-1 (9.08e-2) 2.9469e-1 (1.96e-1) 

RWMOP3 20000 8.9868e-1 (6.09e-4) 8.2941e-1 (1.46e-2) 9.0146e-1 (9.63e-5) 9.0200e-1 (1.69e-4) 6.3605e-1 (3.02e-1) 

RWMOP4 20000 8.5550e-1 (3.43e-3) 8.1688e-1 (5.99e-2) 8.5623e-1 (1.30e-3) 8.5929e-1 (3.45e-3) 8.6183e-1 (4.32e-4) 

RWMOP5 20000 4.3378e-1 (4.67e-4) 4.3313e-1 (2.98e-4) 4.2431e-1 (7.17e-3) 4.3304e-1 (1.09e-3) 4.3447e-1 (1.93e-4) 

RWMOP6 20000 2.7594e-1 (1.65e-3) 2.7647e-1 (3.38e-4) 2.7668e-1 (2.30e-4) 2.7716e-1 (2.89e-5) 2.7677e-1 (1.16e-4) 

RWMOP7 20000 4.8433e-1 (6.68e-5) 4.8337e-1 (1.26e-4) 4.8354e-1 (1.74e-4) 4.8396e-1 (6.66e-5) 4.8436e-1 (1.04e-4) 

RWMOP8 26250 2.5946e-2 (6.91e-5) 2.3449e-2 (4.86e-4) 2.5837e-2 (1.40e-4) 2.5862e-2 (1.20e-4) 2.5704e-2 (1.06e-4) 

RWMOP9 20000 4.0937e-1 (2.36e-4) 3.9108e-1 (5.50e-3) 3.8809e-1 (1.03e-3) 4.0909e-1 (7.43e-5) 4.0942e-1 (4.47e-5) 

RWMOP10 20000 8.4151e-1 (1.46e-3) 8.4696e-1 (4.57e-5) 8.4709e-1 (1.85e-4) 8.4721e-1 (2.83e-4) 8.4741e-1 (3.94e-5) 

RWMOP11 53000 9.4649e-2 (9.37e-4) 9.7566e-2 (4.33e-4) 9.7961e-2 (6.05e-4) 9.4178e-2 (1.45e-3) 8.7709e-2 (3.21e-4) 

RWMOP12 20000 5.5357e-1 (5.69e-3) 5.3356e-1 (1.20e-2) 5.4476e-1 (1.12e-2) 5.5980e-1 (1.80e-4) 5.6046e-1 (5.98e-5) 

RWMOP13 26250 8.8826e-2 (2.32e-4) 8.9488e-2 (9.01e-5) 9.0187e-2 (1.08e-4) 8.9462e-2 (2.01e-4) 8.9300e-2 (2.79e-4) 

RWMOP14 20000 6.1465e-1 (2.85e-3) 5.7878e-1 (1.94e-2) 6.1188e-1 (3.88e-3) 6.1782e-1 (1.23e-3) 6.1763e-1 (1.81e-4) 

RWMOP15 20000 5.3807e-1 (2.17e-3) 5.0063e-1 (5.91e-2) 3.9907e-1 (6.87e-2) 5.4222e-1 (2.17e-4) 5.4310e-1 (5.94e-5) 

RWMOP16 20000 7.6242e-1 (2.95e-4) 7.6134e-1 (1.12e-3) 7.5290e-1 (7.44e-3) 7.6380e-1 (1.03e-4) 7.6381e-1 (6.18e-5) 

RWMOP17 26250 3.2139e-1 (6.20e-2) 2.4320e-1 (4.33e-2) 2.5307e-1 (5.03e-2) 2.5987e-1 (1.26e-2) 2.2196e-1 (8.71e-2) 

RWMOP18 20000 4.0515e-2 (2.62e-6) 4.0468e-2 (2.16e-5) 4.0481e-2 (2.45e-5) 4.0490e-2 (6.77e-6) 4.0493e-2 (6.36e-6) 

RWMOP20 20000 3.1697e+3 (1.24e+3) 2.6368e+3 (1.04e+3) 2.4816e+3 (1.07e+2) 2.0068e+3 (2.64e+2) 4.2110e+3 (1.26e+3) 

RWMOP21 20000 1.8529e-1 (2.57e-1) 1.6050e-2 (0(e-0)) 7.1704e-1 (3.59e-1) 1.6050e-2 (6.78e-7) 1.6050e-2 (0(e-0)) 
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RWMOP19 26250 3.1132e-1 (1.40e-2) 3.1610e-1 (1.54e-2) 2.6711e-1 (3.67e-2) 3.3280e-1 (4.48e-3) 3.5393e-1 (7.74e-3) 

RWMOP20 20000 00(e-0) (0(e-0)) 00(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 

RWMOP21 20000 3.1742e-2 (2.25e-5) 3.1639e-2 (3.03e-5) 3.1594e-2 (5.20e-5) 3.1753e-2 (1.63e-6) 3.1756e-2 (6.43e-7) 

TABLE VI. 

 RT METRIC RESULTS OF VARIOUS OPTIMIZERS ON MECHANICAL DESIGN (RWMOP1-RWMOP21) PROBLEMS 

Problem M D FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP1 2 4 20000 6.28E+00 1.34E+01 1.62E+00 2.72E+01 1.62E+00 

RWMOP2 2 5 20000 6.07E+00 1.07E+01 2.67E+00 2.77E+01 1.22E+00 

RWMOP3 2 3 20000 5.71E+00 1.53E+01 4.55E+00 2.63E+01 1.19E+00 

RWMOP4 2 4 20000 5.93E+00 1.47E+01 1.33E+00 2.51E+01 1.11E+00 

RWMOP5 2 4 20000 6.05E+00 1.36E+01 1.42E+00 2.56E+01 1.08E+00 

RWMOP6 2 7 20000 6.01E+00 1.04E+01 1.68E+00 2.32E+01 1.15E+00 

RWMOP7 2 4 20000 6.08E+00 1.05E+01 1.49E+00 3.12E+01 1.03E+00 

RWMOP8 3 7 26250 8.25E+00 2.83E+01 1.94E+00 3.27E+01 1.47E+00 

RWMOP9 2 4 20000 6.20E+00 1.35E+01 9.09E-01 3.21E+01 6.55E-01 

RWMOP10 2 2 20000 6.06E+00 2.02E+01 8.50E-01 2.88E+01 6.49E-01 

RWMOP11 5 3 53000 1.64E+01 6.72E+01 3.95E+00 8.36E+01 3.03E+00 

RWMOP12 2 4 20000 6.23E+00 2.13E+01 1.55E+00 2.19E+01 1.08E+00 

RWMOP13 3 7 26250 8.16E+00 1.96E+01 2.47E+00 3.91E+01 1.62E+00 

RWMOP14 2 5 20000 7.28E+00 1.40E+01 1.41E+00 2.57E+01 1.10E+00 

RWMOP15 2 3 20000 6.76E+00 1.17E+01 1.56E+00 3.20E+01 1.12E+00 

RWMOP16 2 2 20000 6.21E+00 2.68E+01 1.44E+00 2.68E+01 1.06E+00 

RWMOP17 3 6 26250 7.88E+00 1.42E+01 3.40E+00 3.21E+01 1.65E+00 

RWMOP18 2 3 20000 6.01E+00 2.10E+01 1.36E+00 2.93E+01 1.05E+00 

RWMOP19 3 10 26250 8.39E+00 9.28E+00 1.56E+00 3.13E+01 1.06E+00 

RWMOP20 2 4 20000 6.20E+00 5.77E+00 3.95E+00 2.30E+01 8.88E-01 

RWMOP21 2 6 20000 6.24E+00 2.16E+01 1.31E+00 3.14E+01 1.05E+00 

CEC-20221 mechanical design problems are discrete and 

continuous problems, and it is more complicated than the 

ZDT benchmark suite. Test problems from RWMOP8, 

RWMOP13, RWMOP19, and RWMOP20 are multimodal in 

design and offer difficulty for convergence to true PF. 

However, the MOAOA has provided greater convergence 

and divergence of the solutions than other optimizers. 

RWMOP1-RWMOP7, RWMOP13-RWMOP18 have 

degenerate PF, making it simpler to converge than SD, the 

NDS, along with the whole PF. NSGWO and MOSMA could 

not search the lower part of the true PF on RWMOP15, 

RWMOP17, and RWMOP20 problems. However, MOAOA 

has covered the entire PF along with the end solutions. In 

other words, MOAOA is successful in achieving 

convergence and diversity on RWMOP9, RWMOP10, and 

RWMOP 21. The test problem, RWMOP20, has 

disconnected PF, which is a combination of the convex and 

concave types of PFs. It also has a disconnected search space. 

For this problem, NSGWO, MOSMA, and MOMVO 

performed poorly; however, MOAOA performed 

exceedingly better by solving RWMOP11 with five 

objective functions. Therefore, it is claimed that the 

complexity level of these cases is considerably low, as other 

optimizers, except NSGWO, quickly access the feasible 

solutions of the constrained PF of mechanical design 

problems. 

G.2. RESULTS ON CEC-2021 CHEMICAL ENGINEERING 

PROBLEMS (RWMOP22-RWMOP24) 

The qualitative and quantitative results obtained by 

MOAOA, NSGWO, MOMVO, MOALO, and MOSMA 

optimizers while solving chemical engineering problems are 

described in Table 7, Table 8, Table 9, Table 10, and Table 

11, collectively. Fig. 12 shows the best PF and BCS of all the 

chemical engineering problems for visualizing the 

performance of the proposed MOAOA. 
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FIGURE 12. PFs of all the algorithms on chemical engineering (RWMOP22-RWMOP24) problems 
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TABLE 7.   

GD METRIC RESULTS OF VARIOUS OPTIMIZERS ON CHEMICAL ENGINEERING PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP22 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.1169e+3 (4.23e+2) 

RWMOP23 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 8.5366e-1 (0(e-0)) 7.1196e-1 (3.79e-1) 

RWMOP24 26250 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.4959e+3 (2.01e+3) 

 

TABLE VIII. 

SPREAD METRIC RESULTS OF VARIOUS OPTIMIZERS ON CHEMICAL ENGINEERING PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP22 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.0028e+3 (8.97e-5) 

RWMOP23 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.2586e+0 (0(e-0)) 3.6062e+0 (6.87e-1) 

RWMOP24 26250 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 3.3652e+0 (2.32e+0) 

TABLE IX. 

 IGD METRIC RESULTS OF VARIOUS OPTIMIZERS ON CHEMICAL ENGINEERING PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP22 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.0028e+3 (8.97e-5) 

RWMOP23 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.2586e+0 (0(e-0)) 3.6062e+0 (6.87e-1) 

RWMOP24 26250 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 3.3652e+0 (2.32e+0) 

TABLE X.  

 HV METRIC RESULTS OF VARIOUS OPTIMIZERS ON CHEMICAL ENGINEERING PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP22 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.0000e+0 (0(e-0)) 

RWMOP23 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 6.0228e-1 (0(e-0)) 9.9108e-1 (1.97e-1) 

RWMOP24 26250 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 5.9444e-1 (3.82e-1) 

TABLE XI. 

 RT METRIC RESULTS OF VARIOUS OPTIMIZERS ON CHEMICAL ENGINEERING PROBLEMS 

Problem M D FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP22 2 9 20000 5.70E+00 4.89E+00 4.32E+00 2.07E+01 2.28E+00 

RWMOP23 2 6 20000 5.64E+00 7.07E+00 4.15E+00 2.64E+01 2.21E+00 

RWMOP24 3 9 26250 7.73E+00 9.93E+00 5.69E+00 2.67E+01 3.14E+00 

Multimodality of CEC-2021 chemical engineering benchmark 

functions is a concern for the convergence of solutions. 

RWMOP22 has provided a convergence difficulty as it 

includes a variety of local optima. Even so, the MOAOA 

method is not trapped at the local PF for any problems with 

the CEC-2021 chemical engineering problems. This 

performance is due to its explorative potential. Equally, 

RWMOP23 and RWMOP24 provided the convergence task 

and the distribution of solutions for NSGWO, MOMVO, and 

MOALO. RWMOP24 has found it hard to maintain final 

solutions for all optimizers except the MOAOA. RWMOP23 

is structured to have a solution distribution challenge. 

MOSMA has not been capable of achieving a 

whole distribution of solutions across the entire PF. In 

addition, the search for accurate end solutions on RWMOP22 

proved to be difficult for competitive optimizers. It can be 

stated that the level of complexity of such issues is 

significantly higher compared to ZDT and CEC-2021 

mechanical design problems, as the state-of-the-art optimizers 

cannot find a single, realistic solution to two out of three cases. 

In RWMOP23, MOSMA optimizers identify feasible 

solutions in several runs, but these possible solutions are not 

restricted to PF. 

G.3. RESULTS ON CEC-2021 PROCESS, SYNTHESIS, 

AND DESIGN PROBLEMS (RWMOP25-RWMOP29) 

The qualitative and quantitative results obtained by 

MOAOA, NSGWO, MOMVO, MOALO, and MOSMA 

optimizers while solving process, synthesis, and design 

problems are described in Table 12, Table 13, Table 14, 

Table 15, and Table 16, collectively. Fig. 13 shows the best 

PF and BCS of all the process, synthesis, and design 

problems for visualizing the performance of the proposed 

MOAOA. 
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FIGURE 13. PFs of all the algorithms on process, design, and synthesis (RWMOP25-RWMOP29) problems 

TABLE XII. 

 GD METRIC RESULTS OF VARIOUS OPTIMIZERS ON PROCESS, DESIGN, AND SYNTHESIS PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP25 20000 9.5236e-2 (8.39e-4) 9.5953e-2 (8.99e-5) 9.5490e-2 (7.23e-4) 9.5258e-2 (1.48e-3) 9.5086e-2 (5.09e-4) 

RWMOP26 20000 3.4427e-2 (4.57e-4) 2.9059e-2 (2.97e-3) 3.2134e-1 (6.49e-2) 3.0594e-2 (3.77e-3) 3.0752e-2 (2.74e-3) 

RWMOP27 20000 1.2013e-1 (3.78e-4) 1.1951e-1 (6.72e-4) 1.1929e-1 (3.68e-4) 1.1972e-1 (2.84e-4) 1.1963e-1 (3.02e-4) 

RWMOP28 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.0243e+1 (3.33e+0) 

RWMOP29 20000 3.0103e+0 (2.50e-1) 6.1811e+0 (8.09e-1) 5.5464e+0 (3.43e+0) 5.3355e+0 (3.09e+0) 5.2707e+0 (6.35e-1) 

TABLE XIII. 

 SPREAD METRIC RESULTS OF VARIOUS OPTIMIZERS ON THE PROCESS, DESIGN, AND SYNTHESIS PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP25 20000 7.4391e-1 (1.38e-5) 7.4389e-1 (1.97e-5) 7.4393e-1 (5.56e-5) 7.4387e-1 (1.11e-5) 7.4392e-1 (4.25e-5) 

RWMOP26 20000 2.8162e-1 (2.38e-2) 2.5844e-1 (2.05e-2) 3.6909e-1 (1.95e-2) 2.7214e-1 (3.96e-2) 2.4813e-1 (1.55e-3) 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3085529, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

RWMOP27 20000 9.8999e-1 (9.80e-6) 9.9001e-1 (8.00e-5) 9.9010e-1 (2.87e-4) 9.8999e-1 (1.01e-5) 9.8993e-1 (1.33e-4) 

RWMOP28 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.8807e+1 (4.66e+0) 

RWMOP29 20000 9.1974e+0 (6.28e-2) 9.6236e+0 (9.39e-1) 8.6623e+0 (6.27e-1) 1.0519e+1 (8.59e-1) 9.2363e+0 (2.53e-2) 

TABLE XIV. 

IGD METRIC RESULTS OF VARIOUS OPTIMIZERS ON PROCESS, DESIGN, AND SYNTHESIS PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP25 20000 7.4391e-1 (1.38e-5) 7.4389e-1 (1.97e-5) 7.4393e-1 (5.56e-5) 7.4387e-1 (1.11e-5) 7.4392e-1 (4.25e-5) 

RWMOP26 20000 2.8162e-1 (2.38e-2) 2.5844e-1 (2.05e-2) 3.6909e-1 (1.95e-2) 2.7214e-1 (3.96e-2) 2.4813e-1 (1.55e-3) 

RWMOP27 20000 9.8999e-1 (9.80e-6) 9.9001e-1 (8.00e-5) 9.9010e-1 (2.87e-4) 9.8999e-1 (1.01e-5) 9.8993e-1 (1.33e-4) 

RWMOP28 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.8807e+1 (4.66e+0) 

RWMOP29 20000 9.1974e+0 (6.28e-2) 9.6236e+0 (9.39e-1) 8.6623e+0 (6.27e-1) 1.0519e+1 (8.59e-1) 9.2363e+0 (2.53e-2) 

TABLE XV. 

 HV METRIC RESULTS OF VARIOUS OPTIMIZERS ON PROCESS, DESIGN, AND SYNTHESIS PROBLEMS 
Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP25 20000 2.4154e-1 (4.70e-6) 2.4121e-1 (7.90e-5) 2.4129e-1 (7.99e-5) 2.4102e-1 (2.62e-5) 2.4120e-1 (4.24e-5) 

RWMOP26 20000 1.6145e-1 (3.33e-2) 1.5338e-1 (2.60e-2) 9.6129e-2 (4.22e-3) 1.5821e-1 (2.70e-2) 1.4316e-1 (1.33e-3) 

RWMOP27 20000 1.01e+10 (1.63e+10) 5.8879e+7 (6.48e+7) 3.1787e+7 (3.80e+7) 9.47e+10 (9.08e+10) 2.5892e+8 (5.07e+8) 

RWMOP28 20000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 7.1843e-3 (1.24e-2) 

RWMOP29 20000 7.6489e-1 (1.14e-2) 6.8829e-1 (9.19e-2) 6.7184e-1 (1.28e-1) 7.5545e-1 (6.68e-3) 7.7859e-1 (1.12e-2) 

TABLE XVI. 

 RT METRIC RESULTS OF VARIOUS OPTIMIZERS ON PROCESS, DESIGN, AND SYNTHESIS PROBLEMS 

Problem M D FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP25 2 2 20000 5.88E+00 2.22E+01 8.24E-01 2.89E+01 5.84E-01 

RWMOP26 2 3 20000 5.74E+00 7.61E+00 4.13E+00 2.12E+01 7.02E-01 

RWMOP27 2 3 20000 5.92E+00 1.96E+01 9.51E-01 2.87E+01 6.39E-01 

RWMOP28 2 7 20000 5.93E+00 6.22E+00 4.30E+00 2.74E+01 1.55E+00 

RWMOP29 2 7 20000 5.79E+00 3.92E+00 4.18E+00 2.22E+01 1.06E+00 

The challenges presented by the process, design, and synthesis 

test suites in terms of different features, such as non-

separability, multimodality, bias, deceptiveness, many-to-one 

mappings, a combination of PF shapes, specific search 

domains, etc. makes the optimization process complex. 

RWMOP28-RWMOP29 gives a greater stiffness to the 

convergence of solutions on the true PF. All competitive 

optimizers were trapped at the local PF except MOAOA. 

RWMOP27 is relatively simple, and the MOAOA has 

obtained well-distributed solutions and final solutions 

compared to most optimizers. For RWMOP26, all optimizers 

(except MOAOA) could not obtain well-converged solutions 

until the stopping criterion was met. Even so, it is clear from 

Table 12 – Table 16 that the MOAOA has obtained greater 

convergence and diversity compared to other approaches. 

G.4. RESULTS ON CEC-2021 POWER ELECTRONICS 

PROBLEMS (RWMOP30-RWMOP35) 

The qualitative and quantitative results obtained by MOAOA, 

NSGWO, MOMVO, MOALO, and MOSMA optimizers 

while solving power electronics problems are described in 

Table 17, Table 18, Table 19, Table 20, and Table 21, 

collectively. Fig. 14 shows the best PF and BCS of all the 

power electronics problems for visualizing the performance of 

the proposed MOAOA. 

TABLE XVII.  

GD METRIC RESULTS OF VARIOUS OPTIMIZERS ON POWER ELECTRONICS PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP30 80000 1.8856e-2 (2.59e-3) 0(e-0) (0(e-0)) 1.3111e-2 (0(e-0)) 1.9560e-2 (0(e-0)) 3.0041e-2 (0(e-0)) 

RWMOP31 80000 8.9802e-2 (7.68e-2) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 4.4475e-2 (2.91e-3) 7.4820e-2 (7.28e-2) 

RWMOP32 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 3.4253e-2 (0(e-0)) 1.3685e-1 (1.38e-1) 3.9861e-2 (3.28e-3) 

RWMOP33 80000 3.5776e-1 (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.0379e-1 (0(e-0)) 5.3870e-2 (1.80e-2) 

RWMOP34 80000 3.4590e-1 (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.0385e-1 (0(e-0)) 

RWMOP35 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 6.5411e-1 (0(e-0)) 1.3837e+0 (0(e-0)) 
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TABLE XVIII. 

SPREAD METRIC RESULTS OF VARIOUS OPTIMIZERS ON POWER ELECTRONICS PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP30 80000 1.0332e-1 (0(e-0)) 0(e-0) (0(e-0)) 8.9486e-2 (0(e-0)) 1.9533e-1 (0(e-0)) 1.0566e-1 (2.40e-3) 

RWMOP31 80000 1.3456e-1 (1.15e-1) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.3277e-1 (1.51e-1) 3.2832e-1 (4.08e-1) 

RWMOP32 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.6855e-1 (0(e-0)) 2.9756e-1 (1.36e-1) 1.4294e-1 (1.39e-2) 

RWMOP33 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.3364e-1 (9.95e-2) 1.7185e+0 (0(e-0)) 1.9971e+0 (0(e-0)) 

RWMOP34 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.0121e+0 (0(e-0)) 2.0836e+0 (0(e-0)) 

RWMOP35 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 5.8240e+0 (0(e-0)) 5.6247e+0 (0(e-0)) 

TABLE XIX. 

 IGD METRIC RESULTS OF VARIOUS OPTIMIZERS ON POWER ELECTRONICS PROBLEMS. 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP30 80000 1.0332e-1 (0(e-0)) 0(e-0) (0(e-0)) 8.9486e-2 (0(e-0)) 1.9533e-1 (0(e-0)) 1.0566e-1 (2.40e-3) 

RWMOP31 80000 1.3456e-1 (1.15e-1) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.3277e-1 (1.51e-1) 3.2832e-1 (4.08e-1) 

RWMOP32 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.6855e-1 (0(e-0)) 2.9756e-1 (1.36e-1) 1.4294e-1 (1.39e-2) 

RWMOP33 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 2.3364e-1 (9.95e-2) 1.7185e+0 (0(e-0)) 1.9971e+0 (0(e-0)) 

RWMOP34 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 1.0121e+0 (0(e-0)) 2.0836e+0 (0(e-0)) 

RWMOP35 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 5.8240e+0 (0(e-0)) 5.6247e+0 (0(e-0)) 

TABLE XX. 

 HV METRIC RESULTS OF VARIOUS OPTIMIZERS ON POWER ELECTRONICS PROBLEMS 

Problem FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP30 80000 3.9123e-1 (0(e-0)) 0(e-0) (0(e-0)) 4.8422e-1 (0(e-0)) 6.2937e-1 (0(e-0)) 6.6027e-1 (1.37e-1) 

RWMOP31 80000 1.5577e-1 (1.35e-1) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 3.5104e-1 (4.96e-1) 1.6044e-1 (2.78e-1) 

RWMOP32 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 7.1079e-1 (0(e-0)) 3.2454e-1 (4.59e-1) 7.2921e-1 (7.84e-2) 

RWMOP33 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 

RWMOP34 80000 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 

RWMOP35 80000 5.4220e-1 (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 0(e-0) (0(e-0)) 5.8022e-1 (0(e-0)) 
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FIGURE 14. PFs of all the algorithms on power electronics (RWMOP30-RWMOP35) problems 

TABLE XXI. 

 RT METRIC RESULTS OF VARIOUS OPTIMIZERS ON POWER ELECTRONICS PROBLEMS 

Problem M D FEs NSGWO MOMVO MOALO MOSMA MOAOA 

RWMOP30 2 25 80000 3.45E+01 2.42E+01 2.83E+01 1.10E+02 1.65E+01 

RWMOP31 2 25 80000 3.38E+01 2.61E+01 2.70E+01 1.08E+02 1.57E+01 

RWMOP32 2 25 80000 3.34E+01 3.28E+01 2.75E+01 1.09E+02 1.82E+01 

RWMOP33 2 30 80000 3.48E+01 3.18E+01 2.92E+01 1.08E+02 2.02E+01 

RWMOP34 2 30 80000 3.51E+01 2.55E+01 2.94E+01 1.05E+02 1.80E+01 

RWMOP35 2 30 80000 3.65E+01 2.61E+01 2.92E+01 1.04E+02 1.70E+01 

CEC-2021 power electronics is one of the most challenging 

test suites on a global scale. RWMOP30-

RWMOP35 problems are distinguished by a non-linear 

solution space (multimodal). All problems are a challenge to 

the convergence, distribution, and diversity of the NDS 

across the entire PF. Popular optimizers NSGWO, 

MOMVO, MOALO, MOSMA, etc., are explicitly developed 

to solve large-scale problems. Even so, the solution could not 

be identified within a small number of FEs, and the NDS 

could not be obtained. Most of the algorithms show 

premature convergence in these case studies. MOAOA has 
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performed higher than other competitive algorithms on all 

efficiency metrics. 

G.5. CONVERGENCE TOWARDS PF ANALYSIS  

Table 2, Table 7, Table 12, and Table 17 show the mean 

(STD) GD metric, which evaluates the similarity of the 

solutions to the actual PF; the obtained PF using MOAOA 

optimizer for different cases are discussed. These statistical 

results demonstrate that MOAOA shows a promising 

efficiency in handling unconstrained and CEC-2021 

problems, as it is best on 26 out of 40 cases on the GD metric. 

By contrast, NSGWO, MOMVO, MOALO, and MOSMA 

are respectively best on 2, 2, 3, and 7 cases for GD. All the 

tables mentioned above show that the MOAOA's efficiency 

outperforms NSGWO, MOMVO, MOALO, and MOSMA; 

it leads to better convergence toward PF than NSGWO, 

MOMVO, MOALO, and MOSMA.  

G.6. COVERAGE/DIVERSITY ANALYSIS  

It is observed from Table 3, Table 8, Table 13, and Table 18 

the mean (STD) Spread metric, which evaluates the 

distribution of solutions in the search space, the obtained PF 

using MOAOA for different cases are discussed. These 

statistical results present that MOAOA has a promising 

efficiency in handling unconstrained and CEC-2021 

problems, as it is best on 16 out of 40 cases on the Spread 

metric. By contrast, NSGWO, MOMVO, MOALO, and 

MOSMA are respectively best on 4, 5, 6, and 9 cases for 

Spread. All the tables mentioned above show that the 

MOAOA's efficiency outperforms NSGWO, MOMVO, 

MOALO, and MOSMA; it leads to a better ND solution 

distribution PF than NSGWO, MOMVO, MOALO, and 

MOSMA.  

G.7. BALANCE ANALYSIS BETWEEN CONVERGENCE 

AND DIVERSITY  

It is seen from Table 4, Table 5, Table 9, Table 10, Table 14, 

Table 15, Table 19, and Table 20 the mean (STD) IGD and 

HV metrics, which evaluate the closer and diverse the 

corresponding results approach the PF, the obtained PF using 

MOAOA for different cases are discussed. These statistical 

results present that MOAOA has a promising efficiency in 

handling unconstrained and CEC-2021 problems, as it is best 

on 16 out of 40 cases on IGD and best on 24 out of 40 cases 

on HV metrics. By contrast, NSGWO, MOMVO, MOALO, 

and MOSMA are respectively best on 4, 5, 6, and 9 cases for 

IGD and best on 5, 2, 3, and 6 cases for HV metrics. All the 

tables mentioned above show that the MOAOA's efficiency 

outperforms NSGWO, MOMVO, MOALO, and MOSMA, 

leading to better convergence and diverse solutions toward 

PF than NSGWO, MOMVO, MOALO, and MOSMA.  

G.8. RUNTIME ANALYSIS  

Finally, it addresses five optimizers' computation time 

measured by the average running time of 30 separate trials. 

The CPU's average time is summarized in Table 6, Table 11, 

Table 16, and Table 21. These statical results present that 

MOAOA has a promising efficiency in handling 

unconstrained and CEC-2021 problems, as it is best on 38 

out of 40 cases on RT metric. These statistical results present 

that MOAOA has a promising efficiency in handling 

unconstrained and CEC-2021 problems, as it is best on 38 

out of 40 cases on RT metric. By contrast, NSGWO, 

MOMVO, MOALO, and MOSMA are respectively best on 

0, 1, 1, and 0 cases for RT. The above-mentioned tables show 

that the MOAOA's efficiency outperforms NSGWO, 

MOMVO, MOALO, and MOSMA; it leads to a better CPU 

time than NSGWO, MOMVO, MOALO, and MOSMA 

algorithms. Since our implemented optimizer could perform 

better than all the selected optimizers with better CPU time, 

MOAOA would help the decision-makers find better 

alternatives to solve their problems. 

Why does the proposed MOAOA perform best? Here’s a brief 

analysis of the reasons. Based on the proposed MOAOA, the 

models' CD, NDS, adds the historical information of 

individuals in previous iterations to the generation of 

offspring. The individuals selected in this model are chosen 

randomly or fixedly rather than the optimal individuals in the 

population, which leads to the individuals selected may be bad 

or good. To a certain level, it restricts the optimizer's 

convergence rate and prevents local optimization due to 

rapid convergence. Besides, this way of randomly choosing 

entities also increases the diversity of the optimizer, resulting 

in smaller HV, IGD values. As classical convergence-

diversity metrics, HV, IGD is closely related to the diversity 

and convergence of algorithms. The better the diversity and 

convergence, the smaller the IGD, HV values. In this paper, 

the proposed MOAOA contributes to improving the other 

state-of-art algorithms' diversity and convergence. From the 

above experimental results, it can be seen that the HV, IGD 

values of the MOAOA using the NDS and CD are better than 

that of the other selected algorithms. 

V. CONCLUSION 

The proposed MOAOA is formulated with AOA, non-

dominance sorting, and crowding distance-based mechanisms. 

The MOAOA outperformed comparative optimizers, such as 

NSGWO, MOMVO, MOALO, and MOSMA, in multiple 

benchmark test suites, including ZDT and CEC-2021 

RWMOP test suites. Various performance indicators, such as 

GD, Spread, IGD, HV, and RT, are used for quantitative 

performance evaluation. Even then, an exploratory analysis of 

performance indicators showed a clear statistical association 

between some metrics. The WSRT is a non-parametric test for 

the rating of all optimizers for each metric. In other terms, it 
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clearly showed the variations in the performance of the 

optimizers, which required more exploration and verification 

of the differences. In this way, the efficiency of the MOAOA 

is numerically examined and tested for coverage, 

convergence, diversity, and computational cost metrics. 

The effectiveness of the MOAOA in finding a significant 

number of NDS in several FEs is due to the different 

conceptual features implemented. They're a CD and an NDS 

process. These features enabled MOAOA to optimize 

acceptable balance among exploration and exploitation so as 

to address the crises and escape saturation. Such functions also 

help to stabilize exploration and exploitation at the FEs stage 

and navigate the search for a promising optimal solution. The 

excellent results of the proposed MOAOA over the ZDT and 

CEC-2021 constrained RWMOPs test suites led to its 

application to the real-world MOPs problems of CEC-2021. 

CEC-2021 Real-world constrained RWMOPS problems are 

overcome using MOAOA. The PF achieved by the MOAOA 

is much superior to the competitive NSGWO, MOMVO, 

MOALO, and MOSMA optimizers. The development of the 

CD criteria showed the reliability, efficiency, and 

effectiveness of the MOAOA, while its deployment across 

different test suites demonstrated its robustness in the 

achievement of non-dominated solutions. In conclusion, 

MOAOA is one of Pareto's robust non-dominant optimizers to 

achieving better convergence, coverage, diversity, and 

computational cost. 
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