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�is paper presents a novel inverse kinematics solution for robotic arm based on arti	cial neural network (ANN) architecture.�e
motion of robotic arm is controlled by the kinematics of ANN. A new arti	cial neural network approach for inverse kinematics is
proposed.�e novelty of the proposed ANN is the inclusion of the feedback of current joint angles con	guration of robotic arm as
well as the desired position and orientation in the input pattern of neural network, while the traditional ANN has only the desired
position and orientation of the end e
ector in the input pattern of neural network. In this paper, a six DOF Denso robotic arm
with a gripper is controlled by ANN. �e comprehensive experimental results proved the applicability and the e�ciency of the
proposed approach in robotic motion control.�e inclusion of current con	guration of joint angles in ANN signi	cantly increased
the accuracy of ANN estimation of the joint angles output. �e new controller design has advantages over the existing techniques
for minimizing the position error in unconventional tasks and increasing the accuracy of ANN in estimation of robot’s joint angles.

1. Introduction

Arti	cial intelligence has become the most modern technol-
ogy of robotic control. It hasmany advantages in performance
such as precise control and less computing time, in addition
to overcoming some mathematical problems in motion and
path generation. �e main problem of motion control in
robotic arm is to 	nd the accurate and reliable solution for
inverse kinematics. �e calculation of inverse kinematics
is necessary in real-time control; the solving of inverse
kinematics is computationally complex and requires a very
long processing time. Most applications of motion in robotic
manipulation require Cartesian space motion control. In
inverse kinematics, desired position and orientation of the
end e
ector in Cartesian space are given while the set of
robot’s joint angles in joint space is calculated.

In general, the solutions of inverse kinematics of a robotic
manipulator are geometric, iterative, analytic, or algebraic
approaches. Recently, a high focus has been applied on
arti	cial intelligence based methods for inverse kinematics
problem solution of general purpose robot. Many studies

were done on the implementation of arti	cial intelligence
on a robotic arm to overcome the singular con	guration
problem of robotic arm. �e inverse kinematics of three
DOF robotic armwas solved bymultilayer network inversion
method; the joint angles were estimated for given end e
ector
position in a simulation of three-link robotic arm.�e results
showed an approximation solution for inverse kinematics [1].
Singularities and uncertainties in arm con	gurations are the
main complications in the kinematics of robot control, in
order to have a realistic solution based on one of the heuristic
methods; arti	cial neural network (ANN) was suggested for
a nonsurgical robot. �e main idea of this approach was the
use of ANN to learn the robot system characteristics rather
than having to specify an explicit robot system model [2]. A
neural network and genetic algorithms were used together
to solve the inverse kinematics problem of the nonsurgical
robotic manipulator to minimize the error at the end e
ector
and improve the precision of the inverse kinematics solution
[3]. �e inverse kinematic of redundant manipulators was
presented by neural networks (NNs) to obtain the joint angles
of the robot using theCartesian coordinate of the end e
ector.
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Position errors of end e
ector and feasibility of the joint
angles were obtained [4]. An arti	cial neural network was
used for controlling 3DOF roboticmanipulator.�emethods
introduced a nonlinear relation between Cartesian and joint
coordinates using multilayer perceptron in arti	cial neural
network. A simulation test was implemented [5]. A neural
network architecture was introduced to solve the inverse
kinematics problem for robotics manipulators with two
degrees of freedom. �e neural networks were multilayered
perceptron (MLP)with a backpropagation training algorithm
for reducing the complexity of the algorithm and calculation
(matrix inversion) of inverse geometric of robotic arm. �e
result showed a mean squared error (MSE) in performance
near to 10−5 [6]. A high-order-logic theorem was used for
solving the kinematics analysis of six-axis revolute joint
robot. �e approach required an enormous amount of user
intervention to overcome the limitation of kinematic analysis
[7]. �e inverse kinematics problem of the 6 DOF robot
is solved by using curved-surface scanning to carry the
ultrasonic testing task. Many results for the joint angles were
acquired; the method of the shortest distance was assumed
to solve the inverse problem of the robot system. A 3D
application so�ware was introduced to simulate the motion
of ultrasonic trajectory and path planning [8]. �e kine-
matics and singularities of an asymmetrical parallel robotic
wrist were investigated by using the method of Lagrange
multipliers and considering all the mobile components.
�e designed model was numerically illustrated to show
its computation accuracy [9]. A technique for solving the
inverse kinematics problem using arti	cial neural networks
was introduced for a PUMA 560 robot. An inverse kine-
matic solution was studied by training the neural network
with the robot’s end e
ector Cartesian coordinates and its
corresponding joint con	gurations. Results showed mean
square error (MSE) of 1.2178, the regression value obtained
was 0.87527, and the position errors in �-, �-, and �-axis
were 4.93%, 7.29%, and 3.73%, respectively [10]. A solution
to the inverse kinematics was required for generating desired
trajectories in theCartesian space (2D). A feedforward neural
network was used for planar of three-link manipulators.
�e result showed the best performance at epoch 9 with
mean squared error (MSE) of 0.0054387 [11]. �e kinematics
of three DOF was introduced for the lower limb of the
humanoid robot. Decoupled closed-form solution for the
position and orientation was the solution of kinematics;
the joint sequences were presented by Denavit-Hartenberg
(DH) transformation matrices. Swing phase equations were
developed to avoid matrix inversion problems [12]. �e
kinematic parameters on industrial robot were a
ected by
vibrations disturbance. �e error in motion was improved
by sensors of accelerometer and gyroscope. �e motion
pro	le was analyzed for joint; then, the path tracking of
welding taskwas estimated [13].Human robot kinematicswas
identi	ed by geometry kinematics approach to map human
arm con	guration and sti
ness controlled index by hand
gesture. �e human arm sti
ness was estimated within robot
experiential stability region. Amoving task was implemented
to test the performance of geometry kinematics approach
on Baxter robot simulator [14]. �e geometric approach was

used to solve the kinematics of the autonomous positioning
of a robotic arm. �is modeling and analysis approach was
tested by using a 	ve DOF arm with a gripper mounted to
the iRobot mobile platform [15]. Online robot kinematics
parameter errors estimation based on inertial measurement
unit (IMU) was presented. It obtained the orientation of the
manipulator with the orientation of the IMU in real time.
�is approach incorporated Factored Quaternion Algorithm
(FQA) and Kalman Filter (KF) to the orientation of the
IMU [16]. An analytical solution of inverse kinematics for a
	ve DOF spatial parallel micromanipulator was presented. A
geometrical mode and structural of system were introduced
for themicrorobot’s task [17]. Forward kinematics and inverse
kinematics were calculated and simulation was done for
joints and link parameters of six-axis robotic arm. Trajectory
planning was described for the requisite motion of the
manipulator as a time sequence task [18]. Forward and inverse
kinematics of a KUKA robotic arm in the application of
a simple welding process were introduced. A general DH
representation of forward and inverse matrix was obtained.
A movement �ow planning was designed and developed for
the programming of the robot [19]. �e mobile robot with
arm (KUKA youBot) and the solving of inverse kinematics
problem were introduced. �e robot was presented as 8
DOF.�e kinematics redundancy of the holonomic platform
was presented. Including redundancy parameters, the inverse
kinematics solution was suggested [20]. �e end e
ector
position and orientation error of a space robot were studied.
A geometric parameter identi	cation method was presented
based on a laser ranger attached to the end e
ector. �e
independence of the geometric parameters was analyzed.
Identi	cation equations were derived by simulation which
was implemented for di
erent types of robot con	guration
[21].

�is paper introduces a novel solving method for six-
axis manipulator robot based on ANN to be used in motion
control. It is clear from previous survey that no study has
included current joint angles of robot in their ANN. In this
study, the ANN architecture has included current joint angles
of robot in the input pattern and it improves the performance
of proposed ANN in solving inverse kinematics. It is the 	rst
ANN that ful	ls the requirement of robot precise motion and
reduces joint angles error and outcomes in some aspects of
the robot tasks.

�is paper is organized as follows. Section 2 presents the
kinematics analysis and the required parameters for motion
control followed by an explanation of problem formula-
tion. �e proposed arti	cial neural network is described in
Section 3. Section 4 illustrates the system setup. Section 5
presents the experimental work and discussion of results.
Finally, Section 6 concludes this paper.

2. Kinematics Analysis

�e kinematics of serial manipulator describe the relation-
ship between the joint angles and the position and orientation
of its end e
ector. �e kinematics of robot is required in tra-
jectory generation and motion control. �e transformation
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Figure 1: Reference coordinates for the system.

matrices have been used for control.�e robotic system is the
Denso robot with 6 revolute joints. �e kinematics analysis
is done a�er system coordinate frame has been performed,
the coordinates�0, �0, �0, �0 are 	xed to the base which is the
base frame. �e other coordinate frames are attached to the
corresponding links. �e reference coordinates of the system
are shown in Figure 1.

�e homogeneous transformation matrix is stated to
represent the position and orientation of end e
ector with
respect to base coordinate; a homogeneous transformation

matrix �06 for overall system is as follows:

�06 = [�06 	060 1 ] , (1)

where �06 is a rotation matrix 3 × 3 and 	06 is a position vector
of the end e
ector in the base frame coordinate.�eDenavit-
Hartenberg DH method is used to analyze the kinematics
of Denso robot. �e robot transformation matrix has been
denoted. �e single link homogenous transformation matrix� � is

� � = Rot�,��Trans�,��Trans�,��Rot�,��,
� � = [[[[[[
��� −������ ������ �������� ������ −������ �����0 ��� ��� ��0 0 0 1

]]]]]]
, (2)

where � is link number, ��� = sin ��, ��� = cos ��, �� is the joint
rotation angle, �� is the length of links, �� is the twist angles,�� is the link o
sets, and � is the joint angles.

�e Denavit-Hartenberg HD parameters of the robot are
shown in Table 1.

Table 1: DH parameters of the Denso robot.

Link � �� �� �� ��
1 �1 0.125 0 pi/2

2 �2 0 0.21 0

3 �3 0 −0.075 −pi/2
4 �4 0.21 0 pi/2

5 �5 0 0 −pi/2
6 �6 0.07 0 0

�e system has six links and a gripper.�e homogeneous
transformation matrix is calculated by multiplication of
matrices as follows:

�0gripper = �1�2�3�4�5�6�gripper, (3)

where

�1 = [[[[[[
1 0 0 00 0 −1 00 1 0 .1250 0 0 1

]]]]]]
,

�2 = [[[[[[
1 0 0 .210 1 0 00 0 1 00 0 0 1

]]]]]]
,

�3 = [[[[[[
1 0 0 −.0750 0 1 00 −1 0 00 0 0 1

]]]]]]
,

�4 = [[[[[[
1 0 0 00 0 −1 00 1 0 .210 0 0 1

]]]]]]
,

�5 = [[[[[[
1 0 0 00 0 1 00 −1 0 00 0 0 1

]]]]]]
,

�6 = [[[[[[
1 0 0 00 1 0 00 0 1 .170 0 0 1

]]]]]]
.

(4)
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Figure 2: �e graphical representation for the robotic system.

�e transformation matrix of the gripper is �gripper; the joint
angles and gripper transformationmatrix are given; then, the
transformation matrix �Home of home position is calculated:

�Home = [[[[[[
−1 0 0 .210 1 0 00 0 −1 .240 0 0 1

]]]]]]
. (5)

�e graphical representation of Denso robot is done byMAT-
LAB programming robotics toolbox as shown in Figure 2.

�e inverse kinematics might got several solutions pro-
duced for each of the joint angles because these are corre-
sponding to many robot con	gurations such as elbow up,
elbow down, wrist up, wrist down, shoulder forward, and
shoulder back. �e position and orientation of end e
ector
are obtained by forward kinematics as follows:�06 = forward kinematics [�] . (6)

�e joint angles are calculated by inverse kinematic for
desired position/orientation of end e
ector:[�] = inverse kinematics (�06 ) . (7)

In this study, a new arti	cial neural network solution for
inverse kinematics of (8) is introduced in Section 3:

[[[[[[[[[[[[

�1�2�3�4�5�6

]]]]]]]]]]]]
= inverse kinematics

(((((
(

!�!�!�������
)))))
)
. (8)

2.1. �e Problem Statement. In general, the desired motion
of robot is carried out in the Cartesian coordinate, while
the robotic arm motion is controlled by joint coordinate;
a solution for the inverse kinematics is very important to
be calculated. Solving the inverse kinematics problem for
robotic manipulators is a di�cult and also quite challenging
task. �e di�culty of this problem is given by the robot’s

geometry and the nonlinear trigonometric equations that
describe the relationship between the Cartesian space and the
joint space. Although a closed-form solution to this problem
is preferable in robotics, sometimes it is impossible to 	nd.
�erefore, various other ways to determine the solution for
inverse kinematics problem were studied such as geometrical
solutions and numerical algorithms.�is task depends on the
designed structure of the robot while many robots such as
redundant manipulators do not have an analytical solution
for the inverse kinematics.

In this study, twoANNs are designed for inverse kinemat-
ics of robotic arm.�e	rst one is the traditional ANN as used
in serial robotics inverse kinematics analysis, and the second
is the proposed ANN by considering the feedback of current
robot con	guration (current joint angles) in the design of
ANN.

3. Traditional Design of Artificial
Neural Network

A traditional design for ANN is used in many studies [6,
10, 11]. In order to utilize the advantages of this proposed
method, traditional ANN is designed in this study to solve
the inverse kinematics. In this ANN, the elements in the
input layer are six variables, which are the position 	
and orientation � of gripper in Cartesian coordinates. �e
number of hidden layers is ten. �e output layer has six
elements of the angles of joint %. MATLAB/neural network
toolbox is used for training, validation, and testing. Figure 3
shows a block diagram for traditional ANN and its model as
follows: [%] = ANN Traditional Net (	, �) . (9)

�e inputs are uniformly enclosed with the workspace of
speci	ed position; the corresponding inputs/outputs are
computed by solution of forward kinematics. In this way, each
position of the robot has a unique joint con	guration in the
neural network inputs/outputs set.

�e training algorithm is the Levenberg-Marquardt back-
propagation; it is used to assure fast convergence of the train-
ing error and is also a very popular curve-	tting algorithm.
Figure 4 shows the performance of the traditional neural
network; theMSE of training is decreased until the validation
error is stopped at epoch 121 and MSE was 1.1892&−5 in the
best performance. A closed relation was between the output
and target samples at correlation of 0.99758.

4. Proposed Artificial Neural Network Design

Always, robot starts motion from current position, and in
most applications robot moves on trajectory on sequential
point’s path. So the inclusion of current joint con	guration
in ANN has a positive e
ect in the estimation of joint angles
for the next desired position. In this paper, a novel neural
network design is proposed and used to solve the inverse
kinematics problem of robotic arm. �e proposed method
relies on the constraints of the kinematics of robotic arm
to achieve robot’s motion in an intelligent way with high
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Figure 3: Block diagram of robot motion control by traditional ANN.
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Figure 4: �e performance of the traditional neural network.

accuracy in position. �e contribution of proposed design is
considering the current joint angles of the robot in solving
the inverse kinematics of robot by ANN. �e inclusion of
the current joint angles during training produces a strong
network and adjusts the weights with very low error.

�e forward kinematics is used to generate the input/
target data set which is used in training; the inputs of neural
network are the desired position/orientation and current
robot joint con	guration while the targets are the required
joint angles of the robot relative to those points.�e proposed
neural network has 13 elements in the input layer, which
are the gripper position 	 and orientation � in Cartesian
coordinates and current joint angles %	 of the robot. �e
output layer has six elements of joint coordinates, which are
the joint angles% of the robot. Figure 5 shows a block diagram
for proposed ANN, the inputs, and outputs of neural network
as follows:

[%] = ANN Proposed Net (	, �, %	) ,% = [�1, �2, �3, �4, �5, �6] ,	 = [�, �, �] ,� = [��, ��, ��] ,%	 = [�1	, �2	, �3	, �4	, �5	, �6	] .
(10)

�e performance of the neural network was determined
based on the mean squared error (MSE) between the neu-
ral network’s actual output and the desired output. �e
performance of the proposed ANN is shown in Figure 6.
�e di
erences between the network outputs and target are
calculated through the mean squared error (MSE); it drops
rapidly through the learning process; the MSE of training
is decreased until the validation error is stopped at epoch
68 and MSE was 3.3029&−8 in the best performance. A
closed relationship was between output and target samples
at correlation 0.99999. �e new outputs of the network are
checked by the test data, the training samples were 2800, and
the validated and test samples were 600 for each one.

5. System Setup

Denso robot VP6242 is a six-axis industrial robot (Quanser
Company). Arti	cial neural network is implemented on this
system for predicting joint angles during real-time Cartesian
motion.�e robot is communicatedwithMATLAB/Simulink
via TCP/IP. An open source program (QUARC) control
so�ware is supported; the QUARC so�ware is executed in
Simulink for real-time application. A blockset is used to
connect Simulink programwithDenso driving unit.�e joint
positions and joint currents (ampere) are reading onPCwhile
the joint velocities/positions are sending to robot. �e joint
PID parameters or joint feedforward gains are adjustable and
user can deal with them.�e total arm length is 420mm, and
the payload is 2.5 kg. Figure 7 shows the control parameters
between robot and QUARC so�ware SW.

�e gripping system is an electrical drive gripperWSG 32
SCHUNK; it is a very precise handling system for medium
parts weight up to 0.5 kg, and it has integrate high-sensitivity
sensor to detect parts in a gripping force of 5–50N and
opening of up to 65mm.�e gripper is required for pick-and-
place part or other handling activities. Figure 8 shows robotic
system full setup.

A virtual model is connected with Simulink to visualize
the system by using Simulink 3D animation. �e virtual
model and the system model are combined to create a
virtual robotic system environment. �is virtual model can
record and present the motion path of real robot during
experiments. Figure 9 shows the virtual model of robotic
system.
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Figure 6: �e performance of the proposed neural network.
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Figure 9: Virtual model of the robotic system.

6. Experiment Results and Discussion

A�er the training of proposed ANN and traditional ANN is
completed, the experiments of movement are carried out by
the robotic system. �e gripper motion is in a helical path
within the workspace area. �e input path for gripper tip
is generated by 	�(/) = 61 sin (/), 	�(/) = 62 cos (/), and	�(/) = 63/. In this experiment, the robot has to follow a
sinusoidal rotation in �-axis and �-axis while the motion
in �-axis is a linear path; the constants 61 and 62 are the
amplitude of radius on the �- and �-axis, respectively; the
constant 63 is the pitch of a helix, and / is the sample time.
Figure 10 shows the real robotic system and the virtual model
to demonstrate helical motion path by ANN. �e inverse
kinematics solution for robotmotion is achieved by proposed
ANN and traditional ANN.

�e movements of robot are executed in circular and
linearmotion.�e pitch of path of the end e
ector is changed
by varying the position in � direction relative to workspace
coordinates. �e rotation of end e
ector is performed by
changing the position to � and � directions. Two paths are
generated by using proposed ANN and traditional ANNwith
desired path. Figure 11 illustrates the paths con	guration of
the end e
ector by the robot movement.

�e motion of the robot is in a Cartesian space. In
Figure 12(a), the motion in � direction is an enlargement
of the time period (20 s–25 s). Figure 12(b) is the motion
in � direction enlarged for the time period (26 s to 30 s).
Figure 12(c) is the motion in � direction enlarged for the
time period (14 s to 19 s). Figures mentioned above show the
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Figure 10: Experiment on the robotic motion demonstration by ANN (movement of end e
ector through helical path).
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Figure 11: Paths con	guration generated by robot in two di
erent
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Figure 12.

di
erences in �, �, and � directions formotion resulting from
proposed ANN and traditional ANN and the high accuracy
and precision of proposed ANN.

�e di
erences between desired path and arti	cial neural
network path are measured by calculating the error in posi-
tion from proposed ANN and traditional ANN with respect
to position from desired path. Figure 13 shows the error in �,�, and � position for proposed ANN, while Figure 14 shows
the errors in �, �, and � position for traditional ANN.

�e motion curves of proposed ANN are much more
precise than the motion curves of traditional ANN in esti-
mating the joint angles of the robot for desired positions.�e
maximum error in � direction for proposed design of ANN
was near 0.22 millimeters and for traditional design of ANN2
was 6.5 millimeters. �e maximum error in � direction for
proposed design of ANN was less than 0.3 millimeters and
for traditional design of ANN2 was near 6 millimeters. �e
maximum error in � direction for proposed design of ANN
was 0.35 millimeters and for traditional design of ANN2 was
near 2.5 millimeters. Table 2 shows the error percentages of
proposed and traditional ANNs.

Table 2: Performance of robotic system by ANNs.

Parameters Proposed ANN Traditional ANN	� error% 0.17 5.78	� error% 0.36 7.25	� error% 0.12 1.28

MSE 3.3029&−8 1.1892&−5
Regression 0.99999 0.99758

According to the ANN based solving inverse kinematics
results in the literature [2–6, 10, 11], the proposed approach in
this study has a minimized error in the inverse kinematics
solution. Table 3 shows system performance comparison
between this study and other studies from literature.�e high
accuracy and the low MSE that are obtained in this work can
be obviously seen.

�e errors are increased in somepoints and are reduced in
other points; the point of high error is because of estimating
position by ANNwhile the point of low error is the point that
is near the samples of training set in ANN.

�e proposed ANN has given higher accuracy and preci-
sion in position than the traditional ANN, and this method
is applicable in precise robotic motion.

7. Conclusions

�is study introduced a very accurate solution for inverse
kinematics by using the arti	cial neural network to overcome
the drawbacks of traditional ANN controller. A new design
of arti	cial neural network ANN has been proposed for the
optimal robot motion control in Cartesian coordinates. In
order to evaluate the integral performance of the system, the
current joint angles information was added to the traditional
ANNbased inverse kinematics solution.�eproposed design
showed improvement in performance of end e
ector in some
aspects.

�e motion of robot has been executed; it satis	es the
constraint of robotic arm motion by the designed structure.
Robot kinematics are analyzed, and position/orientation of
end e
ector in di
erent con	gurations are studied.
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Figure 12: Robot motion by two ANNs: (a) the motion in � direction, (b) the motion in � direction, and (c) the motion in � direction.
Table 3: System performance comparison between this study and other studies mentioned in the literature.

Study System DOF Method MSE Hidden layers Errors

Proposed Denso 6 ANN 3.3&−8 10
� = 0.17%� = 0.36%� = 0.12%

Luv et al., 2014 [10] PUMA 560 6 ANN 1.217 30
� = 6.42%� = 4.90%� = 2.92%

Hasan et al., 2010 [2] FANUCM-710i robot 6 ANN ∼1 1
� = 3.34%� = 6.72%� = 0.35%

Toshani and Farrokhi, 2014 [4] Simulation PA-10 robot 7 NNs with optimization 1 — End e
ector 5mm

Duka, 2014 [11] Planar simulation 3 NNT 0.0054 1 —

Köker, 2013 [3] Stanford 6 ANN 2.38 25 End e
ector 4.28mm

Nanda et al., 2012 [5] Simulation 3 ANN, FLANN >1 20 —

Daya et al., 2010 [6] simulation 2 NNT 5.24&−5 2 —
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Figure 13: Proposed ANNmotion error in �, �, and � direction.
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Figure 14: Traditional ANN motion error in �, �, and � direction.
A comparison has been carried out between two ANNs.

�e parameters of motion and the errors were calculated.
�e results showed that the proposed ANN has superior
performance in terms of the joint angles estimation. �e
design of ANN compared to other techniques is applicable
for some of the most di�cult and challenging problems of
kinematics. �ese results have proved the e
ectiveness of
the proposed ANN. �e inclusion of current con	guration
of joint angles in ANN increased the accuracy of ANN
estimation and succeeded inmapping between input position
and joint angles output.
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