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Geopolymers are inorganic polymers produced by the alkali activation of alumina-silicate minerals. Geopolymer is an alternative
cementitious binder to traditional Ordinary Portland Cement (OPC) leading to economical and sustainable construction
technique by the utilisation of alumina-silicate waste materials. 'e strength development in fly ash-slag geopolymer mortar is
dependent on the chemical composition of the raw materials. An effective way to study the effect of chemical components in
geopolymer is through the evaluation of molar ratios. In this study, an Artificial Neural Network (ANN) model has been applied to
predict the effect of molar ratios on the 28-day compressive strength of fly ash-slag geopolymer mortar. For this purpose,
geopolymer mortar samples were prepared with different fly ash-slag composition, activator concentration, and alkaline solution
ratios. 'e molar ratios of the geopolymer mortar samples were evaluated and given as input to ANN, and the compressive
strength was obtained as the output. 'e accuracy of the assessed model was investigated by statistical parameters; the mean,
median, and mode values of the ratio between actual and predicted strength are equal to 0.991, 0.973, and 0.991, respectively, with
a 14% coefficient of variation and a correlation coefficient of 89%. Based on the mentioned findings, the proposed novel model
seems reliable enough and could be used for the prediction of compressive strength of fly ash-slag geopolymer. In addition, the
influence of molar compositions on the compressive strength was further investigated through parametric studies utilizing the
proposed model. 'e percentages of Na2O and SiO2 of the source materials were observed as the dominant chemical compounds
in the mix affecting the compressive strength. 'e influence of CaO was significant when combined with a high amount of SiO2 in
alkaline solution.

1. Introduction

Production of Ordinary Portland Cement (OPC) is an en-
ergy-intensive process that consumes enormous amount of
energy and results in emission of substantial amount of
carbon dioxide into the atmosphere leading to global
warming and atmospheric pollution [1–3]. Burning of fossil
fuels and the calcination of limestone are both responsible
for carbon dioxide emission during OPC manufacturing. A
cumulative amount of 4.5 GtC has been sequestered in
carbonating cement materials from 1930 to 2013, offsetting

43% of the CO2 emissions from production of cement over
the same period, not including emissions associated with
fossil use during cement production [4]. For the past few
decades, researchers are investigating alternative materials
for OPC due to environmental concern, and geopolymer is
identified as an excellent solution in this regard. Geopolymer
is an inorganic polymer produced by the polymerization of
alumina-silicate minerals activated with high-concentration
alkali solutions [5]. 'e most widely available alumina-sil-
icate minerals are Fly Ash (FA), metakaolin, Ground
Granulated Blast Furnace Slag (GGBFS), rice husk ash, palm
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oil fuel ash, etc. [6]. FA is an industrial waste resulting from
the burning of coal in thermal power plant with a chemical
composition based essentially on SiO2 and Al2O3, and
GGBFS is produced from slag resulting from steel
manufacturing with a chemical composition based essen-
tially on CaO, SiO2, and Al2O3. Both FA and GGBFS are
pozzolanic materials which are generally blended with OPC
to produce Portland pozzolanic cement and are also used as
workability-improving admixtures [7]. However, a tre-
mendous amount of these waste materials is still landfilled. A
promising solution seems to be the complete substitution of
Portland cement with fly ash-based geopolymers, as an eco-
friendly and sustainable construction material.

FA-based geopolymers are gaining interest due to their
availability as alumina-silicate mineral. In addition, the
partial replacement of fly ash by various additives such as
GGBFS, lime, and silica resulted in improved mechanical
properties; for instance, the combination of FA and GGBFS
yielded better compressive strength [8]. Due to improved
mechanical properties, fly ash-slag-based geopolymers were
found superior to fly ash geopolymers [6, 8–11]. 'e oxides
of calcium are highly reactive and result in increased
compressive strength for fly ash-slag geopolymers. In fact,
the calcium dissolving from GGBFS is responsible for early-
and late-age properties. 'e presence of GGBFS increases
the long-term resistance as it continues the reaction for a
longer duration and at the same time accelerates the
achievement of short-term resistance. 'e addition of slag
into FA geopolymer is also advantageous for overcoming
drawbacks related to reduced workability and setting time
[6, 12–14]. Elevated temperature curing in fly ash-based
geopolymers causes evaporation of water from the pores
resulting in increased pore structure; thus, lower curing
temperature and longer curing duration become significant
targets [15]. Partial replacement of fly ash by GGBFS enables
geopolymerization at ambient curing conditions, which
makes it superior for practical applications [16, 17]; in fact,
greater compressive strength can be obtained for fly ash-slag
geopolymer cured at ambient conditions compared with
heat-cured fly ash geopolymer [12].

'e chemical composition of the source materials, alkali
concentration, and percentage replacement of FA by GGBFS
are major factors which influences the strength of FA-slag
geopolymer. 'e chemical components SiO2, Al2O3, Na2O,
and CaO of the source materials have significant effect on the
properties of geopolymer [18]. Chemical optimisation of Si :
Al and Na : Al molar ratios is also found to have an effect on
compressive strength [19]. 'e Al ions appear to have a
dominant effect on setting time of geopolymer and in-
creasing the molar ratio of SiO2/Al2O3 is largely responsible
for high-strength gain at later stages [20]. 'e composition
of C-A-S-H gel produced by the alkaline activation of slag
and Na-A-S-H gel produced by FA largely affects the system
mechanical strength and durability [21]. 'e characteristics
of the gel depend on the molar ratios CaO/SiO2 in slag and
SiO2/Al2O3 in FA geopolymers. Multicompound activators
using sodium hydroxide and sodium silicate solutions are
found better than sodium hydroxide or sodium silicate
alone. Sodium silicate-to-sodium hydroxide ratios varying

from 1 to 2.5 are suggested for obtaining higher compressive
strength [22–25]. 'e concentration of sodium hydroxide
also plays a crucial role in geopolymerization and should be
sufficient for the leaching of oxides of alumina-silicates from
the source materials [26–28]. Also, the compressive strength
increases with the increase in the concentration of sodium
hydroxide. Studies show that the optimum compressive
strength was obtained at various percentage replacements of
FA by GGBFS from 15 to 40% [8, 9, 12]; the variation in
strength development and optimum slag content may be due
to the FA composition and activator concentrations [29].
'e complexity of the effect of variables on the compressive
strength can be evaluated through mathematical modelling;
in particular, those considering molar ratios as key pa-
rameters have been found effective in predicting the com-
pressive strength of alkali activated phosphorous slag [30].
Literatures on the influence of chemical composition on
compressive strength of FA-slag geopolymer using ANN are
lacking.

In this research, an experimental investigation was
conducted to evaluate the influence of alkali concentration,
ratio of various alkalis used for geopolymerization, and
percentage of replacement of FA by slag on the compressive
strength of FA-slag geopolymer mortar. A replacement
percentage of FA by slag equal to 10%, 20%, 30%, and 40% is
considered in this paper. 'e NaOH concentrations are
varied from 8 M to 14 M with 2 M increment based on
previous studies [31–35]. 'e various ratios of NaOH/
Na2SiO3 were 1, 1.5, 2, and 2.5. 'e ratios were selected
based on previous studies where the optimum value lies
between 1 and 2.5 [31]. 'e 28-day compressive strength for
56 combinations of these parameters was experimentally
obtained. 'e molar compositions of various components
are calculated from the chemical composition of each raw
material. 'e experimental results in terms of compressive
strength are, thus, reported and discussed. Based on ex-
perimental outcomes, an ANN model is proposed, able to
predict the compressive strength on the basis of chemical
parameters, SiO2, Al2O3, Na2O, and CaO. 'e reliability of
the proposed model is investigated, confirming its effec-
tiveness at least in relation to the range of findings and
variables referred to the present experimental campaign.

2. Experimental Program

2.1. Materials. Fly ash used in this study was generated in
Tuticorin coal-fired thermal power plant, India. 'e fly ash
belonged to class F with a low calcareous content and high
siliceous content according to IS 3812-1 [36]. 'e material
had a mean particle size of 24 µm, specific gravity of 2.97 kg/
mc, and fineness of 365 m2/kg by Blaine’s air permeability
test. 'e GGBFS was supplied by JSW Cement Ltd., India.
'e material had a mean particle size of 20 µm, specific
gravity of 2.91 kg/mc, and fineness of 382 m2/kg by Blaine’s
air permeability test. 'e chemical composition of FA and
GGBFS obtained by XRF analysis and expressed as the
weight percentage (wt%) is given in Table 1. 'e raw
constituents are shown in Figure 1.
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'e fine aggregate used was quarry dust [37] obtained as
a byproduct from an aggregate crusher and supplied from an
M-sand manufacturing unit Poabs Ltd., Trivandrum. 'e
material has a particle size less than 600 µm. 'e alkaline
solution used was a combination of sodium hydroxide
(NaOH) and sodium silicate (Na2SiO3). For the preparation
of NaOH solution, industrial-grade NaOH in flake form and
white colour with 98% purity was used. Commercially
available liquid sodium silicate light greyish in colour and
having 49.7% solid content was used, whose composition is
given in Table 2.

2.2. Mix Proportion and Specimen Preparation.
Geopolymer mortar was prepared with a fine
aggregate-to-binder ratio 1 : 2 by weight. An alkaline fluid-
to-binder ratio of 0.5 was fixed in the study [37]. Four
different concentrations of NaOH, viz., 8 M, 10 M, 12 M, and
14 M, and sodium silicate to NaOH ratios, namely, 1, 1.5, 2,
and 2.5, were used for the preparation of geopolymer
mortar. Fly ash replacement by slag was also considered in
various proportions: 10%, 20%, 30%, and 40%. Ambient
curing conditions were adopted for all the specimens (i.e.,
25–28°C and ∼70% RH). 'e superplasticizer used was
Conplast SP430-grade from Fosroc Ltd. Table 3 shows the
mix proportioning details utilized in the investigation. FA
stands for fly ash, NH for sodium hydroxide, NS for sodium
silicate, and SP for superplasticizer. 'e first two numbers in
the mix ID stand for percentage replacement of fly ash by
slag, S for slag, the next number for the molarity of sodium
hydroxide (e.g., 8 M for 8 molar concentration), and the last
number for the sodium hydroxide-to-sodium silicate ratio.
A total number of 56 mixes were designed as shown in
Table 3. For mixes with 14 M concentrations, alkaline so-
lution ratios of 1 and 1.5 were excluded in Table 3 since they
had exhibited high viscosity nature like a gel.

2.3. Mixing, Casting, and Curing. 'e NaOH flakes were
diluted in potable water at ambient temperature and then
mixed to sodium silicate solution. 'e alkaline solution was
prepared 24 hours prior to mixing to reduce excessive heat
generation. 'e dry binder (fly ash, slag, and fine aggregate)

was mixed for 2 minutes to attain homogeneity. Mixing was
done using a handheld putty mixer at 600 rpm. 'e cal-
culated quantity of premixed alkaline solution was added
gradually to the dry binder and mixed thoroughly. Later, the
premixed superplasticizer and water were added, and mixing
is continued for further 5 minutes. Cylindrical specimens [2]
of 70 mm diameter and 140 mm height were cast in PVC
moulds. 'e mould was filled in three layers with each layer
compacted by a vibrator. A total of 56 mixes were designed
in the study and 6 specimens were cast for each mix. After
casting, the specimens were kept in moulds for 48 hours and
after demoulding were left at room temperature to achieve
28 days of ambient curing. Before testing, the end faces of the
cylinders were smoothened using an angle grinder to avoid
any surface irregularities and, thus, possible stress con-
centrations under loading. Figure 2 shows the mixing,
casting, cast, and demoulded geopolymer mortar specimens.

2.4. Testing. Compressive strength of geopolymer mortar
was evaluated by compression test on cylindrical specimens
made by a UTM of capacity 3000 kN, according to ASTM
C873M standard [38]. 'e UTM was also equipped with a
load cell of 50 T capacity for a more accurate and finer
reading (see Figure 3). 'e load cell used had a least count of
0.1 T. 'e failure type observed in the specimens is similar to
that generally expected for cement-based mortar, namely,
cracking along the length of the specimen (see Figure 3).

3. Results and Discussion

Figures 4(a)–4(d) indicate the 28-day cylindrical compres-
sive strength of ambient cured fly ash-slag geopolymer
mortar for 8 M, 10 M, 12 M, and 14 M NaOH concentra-
tions, respectively.

As the percentage replacement of FA by GGBFS in-
creases, the compressive strength is found to be increasing
for all the mixes. 'e percentage gain in compressive
strength for most cases was more pronounced passing from
20% to 30% replacement of FA by GGBFS; this result is
evident for 10 M NH concentration and 12 M NH con-
centration, while for 14 M NH only at NS to NH ratio of 2,
the same trend is confirmed. In the case of 8 M NH con-
centration, the greatest increase of compressive strength
occurs when passing from 30% to 40% of GGBFS replace-
ment. 'e maximum compressive strength was obtained for
mix with 40% FA replaced by GGBFS, 10 M NH concen-
tration, and NS/NH ratio of 2. 'e increased compressive
strength with moderate addition of GGBFS is due to the
simultaneous formation of two separate phases: NASH gel
formed through the activation of fly ash and CASH gel
formed through the activation of slag. 'e addition of slag
reduced porosity; the matrix was compact with better space-
filling properties of CASH gel compared with the NASH gel.
'e significant increase in strength is also due to strong load-
bearing CASH gel formed [39]. Depending upon the alka-
linity, the dissolved calcium from GGBFS increases; the
formation of NASH gel and CASH gel competes for soluble
silicates and available space for growth. Consequently,

Table 1: Chemical composition of fly ash and GGBFS.

Chemical composition
Component (wt%)

FA GGBFS

SiO2 61.53 33.81
Al2O3 25.19 19.52
Fe2O3 5.39 0.49
CaO 1.31 35.22
MgO 0.63 6.68
SO3 0.82 1.40
Na2O 0.39 0.34
TiO2 0.65 0.94
MnO 0.30 0.96
K2O 0.23 0.44
LOI∗ 0.95 0.11
∗Loss on ignition.
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instead of having one phase acting as microaggregates, the
resultant binder will be disordered with similar-size phases
resulting in strength reduction [40].

For 8 M of NH concentration, the strength was relatively
lower due to lower Na2O content. At lower concentrations of
NH, the dissolution of Al and Si ions is lesser, which results
in weak polymer chains and thus lower strength. At 10 M
concentration of NH, the leaching of Al and Si ions is
maximum, which enables polycondensation process. Be-
yond 10 M, leaching of alumina-silicates remains almost
constant or hinders polycondensation process [41, 42]. As
the NS/NH ratio is increased, the compressive strength
increases almost linearly due to the reactive silicate content
in the NS. But as the concentration of NH is equal to or more
than 10 M, the compressive strength increases up to an NS/
NH ratio of 2 and then decreases. When NS/NH ratio is
increased, the excess silicate content hinders water evapo-
ration and causes geopolymer chain to break down into
individual monomer, thus reducing the strength [43, 44].
'e factors affecting the compressive strength of fly ash-slag
geopolymer are basically related to the molar compositions;
in particular, the alumina-silicate minerals in the source
materials (Al2O3 and SiO2), the CaO content in slag, Na2O
content in the alkaline solution, and (SiO2)L content in the
NS. As the influence of these variables is complex in nature,
it cannot be experimentally evaluated; mathematical mod-
elling of the molar composition is a possible way to un-
derstand its influence. 'e proposed model is based on ANN
to predict the compressive strength of fly ash-slag

geopolymer and to evaluate the influence of the molar
composition on its values.

4. Artificial Neural Networks (ANNs) Method

Artificial Neural Networks (ANNs) are a biologically in-
spired computational method able to extract knowledge
from a relatively large database. In particular, the devel-
opment of ANNs was inspired by the running of the human
nervous central system. ANNs cannot approach the com-
plexity of the brain, but there are two key correspondences
between biological neural networks and ANNs themselves.
First, both networks are computational devices with a huge
level of interconnection. Second, the connections between
neurons determine the function of the network; a human
brain approximately has 1010 neurons, which communicate
through a network. ANNs function as parallel distributed
computing networks of n-node, analogous to biological
neural systems. Each input is associated with a relative
weight (w1, w2, . . . , wn) and a bias (b1, b2, ..., bn) which affect
the impact of the inputs. Weights and bias are adaptive
coefficients within the network that determine the intensity
of the input signal as reported in equation (1). 'e output

Figure 1: Raw constituents of the geopolymer mortar. (a) FA. (b) GGBFS. (c) Quarry dust. (d) NaOH flakes. (e) Sodium silicate solution.
(f ) Superplasticizer.

Table 2: Composition of sodium silicate.

Material Chemical composition (wt%)

Na2SiO3
Na2O SiO2 Water
14.7 35 50.3
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signal of a neuron is produced by the sum function, cor-
responding roughly to the biological cell body, which al-
gebraically adds all the weighted inputs. In principle, ANNs

are able to adjust their inner structures in order to provide
optimal solutions or prediction, given enough data and a
proper initialization.

Table 3: Mix proportion details of geopolymer mortar (kg/m3).

Mix ID FA GGBFS Sand NH NS Water SP

10S8M1 567 63 1260 157.5 157.5 189 3.15
20S8M1 504 126 1260 157.5 157.5 189 3.15
30S8M1 441 189 1260 157.5 157.5 189 3.15
40S8M1 378 252 1260 157.5 157.5 189 3.15
10S8M1.5 567 63 1260 126 189 189 3.15
20S8M1.5 504 126 1260 126 189 189 3.15
30S8M1.5 441 189 1260 126 189 189 3.15
40S8M1.5 378 252 1260 126 189 189 3.15
10S8M2 567 63 1260 105 210 189 3.15
20S8M2 504 126 1260 105 210 189 3.15
30S8M2 441 189 1260 105 210 189 3.15
40S8M2 378 252 1260 105 210 189 3.15
10S8M2.5 567 63 1260 90 225 189 3.15
20S8M2.5 504 126 1260 90 225 189 3.15
30S8M2.5 441 189 1260 90 225 189 3.15
40S8M2.5 378 252 1260 90 225 189 3.15
10S10M1 567 63 1260 157.5 157.5 189 3.15
20S10M1 504 126 1260 157.5 157.5 189 3.15
30S10M1 441 189 1260 157.5 157.5 189 3.15
40S10M1 378 252 1260 157.5 157.5 189 3.15
10S10M1.5 567 63 1260 126 189 189 3.15
20S10M1.5 504 126 1260 126 189 189 3.15
30S10M1.5 441 189 1260 126 189 189 3.15
40S10M1.5 378 252 1260 126 189 189 3.15
10S10M2 567 63 1260 105 210 189 3.15
20S10M2 504 126 1260 105 210 189 3.15
30S10M2 441 189 1260 105 210 189 3.15
40S10M2 378 252 1260 105 210 189 3.15
10S10M2.5 567 63 1260 90 225 189 3.15
20S10M2.5 504 126 1260 90 225 189 3.15
30S10M2.5 441 189 1260 90 225 189 3.15
40S10M2.5 378 252 1260 90 225 189 3.15
10S12M1 567 63 1260 157.5 157.5 189 3.15
20S12M1 504 126 1260 157.5 157.5 189 3.15
30S12M1 441 189 1260 157.5 157.5 189 3.15
40S12M1 378 252 1260 157.5 157.5 189 3.15
10S12M1.5 567 63 1260 126 189 189 3.15
20S12M1.5 504 126 1260 126 189 189 3.15
30S12M1.5 441 189 1260 126 189 189 3.15
40S12M1.5 378 252 1260 126 189 189 3.15
10S12M2 567 63 1260 105 210 189 3.15
20S12M2 504 126 1260 105 210 189 3.15
30S12M2 441 189 1260 105 210 189 3.15
40S12M2 378 252 1260 105 210 189 3.15
10S12M2.5 567 63 1260 90 225 189 3.15
20S12M2.5 504 126 1260 90 225 189 3.15
30S12M2.5 441 189 1260 90 225 189 3.15
40S12M2.5 378 252 1260 90 225 189 3.15
10S14M2 567 63 1260 105 210 189 3.15
20S14M2 504 126 1260 105 210 189 3.15
30S14M2 441 189 1260 105 210 189 3.15
40S14M2 378 252 1260 105 210 189 3.15
10S14M2.5 567 63 1260 90 225 189 3.15
20S14M2.5 504 126 1260 90 225 189 3.15
30S14M2.5 441 189 1260 90 225 189 3.15
40S14M2.5 378 252 1260 90 225 189 3.15
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Among the various types of ANNs, in this paper, a
multilayer perceptron (MLP) with back-propagation learn-
ing algorithms is focused on. MLP is the ANN commonly
used for a wide variety of problems [45–54]. It is based on a
supervised procedure and generally comprises at least three

layers: input (i), hidden (h), and output (o). 'e procedure
continually adjusts the weights of the connections in the
network through a back-propagation method in order to
minimize the scatter between the actual output vector of the
network and the desired output vector (target of the

Figure 2: Mixing, casting, cast specimens, and demoulded geopolymer mortar specimens.

(a) (b)

Figure 3: Compression test on geopolymer mortar cylinder: test setup (a) and typical failure mode (b).
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analysis). 'e information passes from the input layer to
output layer through the hidden layer. All neurons from one
layer are connected to the neurons in the next layers. 'ese
connections are represented as weights (connection inten-
sity) in the computational process. 'e number of neurons
in the input layer depends on the number of independent
variables in the model, while the number of neurons in the
output layer is equal to the number of dependent variables.
Moreover, both the numbers of hidden layers and their
neurons are dependent on the complexity of the model (set
by the user) and are important parameters in the devel-
opment of the MLP model. An MLP is trained/learned to
minimize errors between the desired target values and the
values computed from the model. If the network provides
errors greater than a given threshold, the weights are
updated for minimizing them. 'us, errors are reduced up to
a small enough value. Finally, an activation function

(generally sigmoidal-like) passes the sum results in a [0,
1] range; in such way, the best-fitting neural path is
identified.

y � bn +∑
n

i�1

xn · wn, (1)

where b is the bias; x is the input; n is the number of datasets;
y is the output; and w is the weight.

'e ANN has also widely been used to model the be-
havior of concrete mixtures and elements, e.g., in [50–55].

5. The Proposed ANN-Model

Based on the abovementioned experimental evidence, a
database was set for the ANN purpose as reported in Table 4.
Since the molar composition was made up of five different
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Figure 4: 28-day cylindrical compressive strength of fly ash-slag geopolymer mortar.
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Table 4: ANN database.

# Label
Molar composition (kg/m3) Inputs Output

Na2O (SiO2)L SiO2 Al2O3 CaO i1 i2 i3 i4 i5 o� fc

1 10S8M1 62.21 55.13 370.18 155.12 29.62 0.09 0.08 0.55 0.23 0.04 5.63
2 20S8M1 62.21 55.13 352.71 151.55 50.98 0.09 0.08 0.52 0.23 0.08 7.71
3 30S8M1 62.21 55.13 335.25 147.98 72.34 0.09 0.08 0.50 0.22 0.11 6.50
4 40S8M1 62.21 55.13 317.78 144.41 93.71 0.09 0.08 0.47 0.21 0.14 6.11
5 10S8M1.5 59.03 66.15 370.18 155.12 29.62 0.09 0.10 0.54 0.23 0.04 6.33
6 20S8M1.5 59.03 66.15 352.71 151.55 50.98 0.09 0.10 0.52 0.22 0.07 10.10
7 30S8M1.5 59.03 66.15 335.25 147.98 72.34 0.09 0.10 0.49 0.22 0.11 11.70
8 40S8M1.5 59.03 66.15 317.78 144.41 93.71 0.09 0.10 0.47 0.21 0.14 22.14
9 10S8M2 56.91 73.50 370.18 155.12 29.62 0.08 0.11 0.54 0.23 0.04 10.75
10 20S8M2 56.91 73.50 352.71 151.55 50.98 0.08 0.11 0.51 0.22 0.07 11.61
11 30S8M2 56.91 73.50 335.25 147.98 72.34 0.08 0.11 0.49 0.22 0.11 13.87
12 40S8M2 56.91 73.50 317.78 144.41 93.71 0.08 0.11 0.46 0.21 0.14 19.41
13 10S8M2.5 55.40 78.75 370.18 155.12 29.62 0.08 0.11 0.54 0.23 0.04 14.52
14 20S8M2.5 55.40 78.75 352.71 151.55 50.98 0.08 0.11 0.51 0.22 0.07 15.47
15 30S8M2.5 55.40 78.75 335.25 147.98 72.34 0.08 0.11 0.49 0.21 0.10 20.41
16 40S8M2.5 55.40 78.75 317.78 144.41 93.71 0.08 0.11 0.46 0.21 0.14 27.99
17 10S10M1 71.98 55.13 370.18 155.12 29.62 0.11 0.08 0.54 0.23 0.04 10.36
18 20S10M1 71.98 55.13 352.71 151.55 50.98 0.11 0.08 0.52 0.22 0.07 14.65
19 30S10M1 71.98 55.13 335.25 147.98 72.34 0.11 0.08 0.49 0.22 0.11 21.27
20 40S10M1 71.98 55.13 317.78 144.41 93.71 0.11 0.08 0.47 0.21 0.14 29.42
21 10S10M1.5 66.84 66.15 370.18 155.12 29.62 0.10 0.10 0.54 0.23 0.04 15.17
22 20S10M1.5 66.84 66.15 352.71 151.55 50.98 0.10 0.10 0.51 0.22 0.07 17.51
23 30S10M1.5 66.84 66.15 335.25 147.98 72.34 0.10 0.10 0.49 0.21 0.11 25.30
24 40S10M1.5 66.84 66.15 317.78 144.41 93.71 0.10 0.10 0.46 0.21 0.14 30.33
25 10S10M2 63.42 73.50 370.18 155.12 29.62 0.09 0.11 0.54 0.22 0.04 15.21
26 20S10M2 63.42 73.50 352.71 151.55 50.98 0.09 0.11 0.51 0.22 0.07 20.15
27 30S10M2 63.42 73.50 335.25 147.98 72.34 0.09 0.11 0.48 0.21 0.10 40.04
28 40S10M2 63.42 73.50 317.78 144.41 93.71 0.09 0.11 0.46 0.21 0.14 46.97
29 10S10M2.5 60.98 78.75 370.18 155.12 29.62 0.09 0.11 0.53 0.22 0.04 14.34
30 20S10M2.5 60.98 78.75 352.71 151.55 50.98 0.09 0.11 0.51 0.22 0.07 17.42
31 30S10M2.5 60.98 78.75 335.25 147.98 72.34 0.09 0.11 0.48 0.21 0.10 33.80
32 40S10M2.5 60.98 78.75 317.78 144.41 93.71 0.09 0.11 0.46 0.21 0.13 39.73
33 10S12M1 81.74 55.13 370.18 155.12 29.62 0.12 0.08 0.54 0.22 0.04 10.79
34 20S12M1 81.74 55.13 352.71 151.55 50.98 0.12 0.08 0.51 0.22 0.07 14.78
35 30S12M1 81.74 55.13 335.25 147.98 72.34 0.12 0.08 0.48 0.21 0.10 24.83
36 40S12M1 81.74 55.13 317.78 144.41 93.71 0.12 0.08 0.46 0.21 0.14 27.12
37 10S12M1.5 74.66 66.15 370.18 155.12 29.62 0.11 0.10 0.53 0.22 0.04 12.26
38 20S12M1.5 74.66 66.15 352.71 151.55 50.98 0.11 0.10 0.51 0.22 0.07 23.14
39 30S12M1.5 74.66 66.15 335.25 147.98 72.34 0.11 0.09 0.48 0.21 0.10 32.28
40 40S12M1.5 74.66 66.15 317.78 144.41 93.71 0.11 0.09 0.46 0.21 0.13 29.85
41 10S12M2 69.93 73.50 370.18 155.12 29.62 0.10 0.11 0.53 0.22 0.04 11.83
42 20S12M2 69.93 73.50 352.71 151.55 50.98 0.10 0.11 0.50 0.22 0.07 19.63
43 30S12M2 69.93 73.50 335.25 147.98 72.34 0.10 0.11 0.48 0.21 0.10 36.96
44 40S12M2 69.93 73.50 317.78 144.41 93.71 0.10 0.11 0.45 0.21 0.13 42.55
45 10S12M2.5 66.56 78.75 370.18 155.12 29.62 0.10 0.11 0.53 0.22 0.04 12.00
46 20S12M2.5 66.56 78.75 352.71 151.55 50.98 0.10 0.11 0.50 0.22 0.07 21.88
47 30S12M2.5 66.56 78.75 335.25 147.98 72.34 0.09 0.11 0.48 0.21 0.10 33.58
48 40S12M2.5 66.56 78.75 317.78 144.41 93.71 0.09 0.11 0.45 0.21 0.13 36.57
49 10S14M2 76.44 73.50 370.18 155.12 29.62 0.11 0.10 0.53 0.22 0.04 16.25
50 20S14M2 76.44 73.50 352.71 151.55 50.98 0.11 0.10 0.50 0.21 0.07 19.93
51 30S14M2 76.44 73.50 335.25 147.98 72.34 0.11 0.10 0.48 0.21 0.10 34.53
52 40S14M2 76.44 73.50 317.78 144.41 93.71 0.11 0.10 0.45 0.20 0.13 37.83
53 10S14M2.5 72.14 78.75 370.18 155.12 29.62 0.10 0.11 0.52 0.22 0.04 21.19
54 20S14M2.5 72.14 78.75 352.71 151.55 50.98 0.10 0.11 0.50 0.21 0.07 24.13
55 30S14M2.5 72.14 78.75 335.25 147.98 72.34 0.10 0.11 0.47 0.21 0.10 25.17
56 40S14M2.5 72.14 78.75 317.78 144.41 93.71 0.10 0.11 0.45 0.20 0.13 28.03
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substances (i.e., Na2O, (SiO2)L, SiO2, Al2O3, and CaO), a
total of five input nodes were considered referring to the
molar fraction computed according to equation (2). 'us,
the sum of the input value always provides 1. A ternary
diagram which displays the proportion of three-by-three
selected variables (from Table 4) using centroid coordinates
is shown in Figure 5. 'e coordinate axes of such a diagram
reported in the x-, y-, and z-axes were scaled so that 0≤ x; y;
z≤ 1. In order to achieve all the possible combinations, five
graphs were plotted (see Figures 5(a)–5(e)), and the constant
value was assumed to be the compressive strength (see
Output in Table 1) defined in five ranges as follows:

(i) 1 means 0 ≤ compressive strength (fc)≤ 10 MPa

(ii) 2 means 10 < compressive strength (fc)≤ 20 MPa

(iii) 3 means 20 < compressive strength (fc)≤ 30 MPa

(iv) 4 means 30 < compressive strength (fc)≤ 40 MPa

(v) 5 means 40 < compressive strength (fc)≤ 50 MPa

in �
ym
yt
, (2)

It was found that in case of combinations illustrated in
Figures 5(d) and 5(e), nonsensitivity with respect to the
compressive strength was detected. Contrarily, the per-
centage of Na2O, SiO2, and Al2O3 was dominant in the
combinations illustrated in Figures 5(a)–5(c), respectively.
Definitely, the relationship between the molar composition
and the compressive strength of the geopolymer (fc) is not
robust because very small modification of the molar fraction
implies a large variation of the relative compressive strength.
For this reason, a predictive model assumes a crucial role
because the manufacturing of FA-based matrices may
produce large differences in their compressive strength
depending on the type and the amount of the raw burned
material.where in is the generic input; n� 1, . . ., 5; ym is the
molar quantity of the j-substance; and yt is the total molar
quantity.

'e R-code was used for the ANN-model definition [55].
Many models were set by varying the architecture and the
minimum average scatter with respect to the experimental
finding was met by the proposal illustrated in Figure 6 (with
the relative legend). In particular, it was set as follows:

(i) One input layer with 5 nodes

(ii) One hidden layer with 10 nodes

(iii) One output layer with 1 node where fc is attended

hk � bk + ∑

i�5

k�10

n�1

k�1

xn · wkn, (3)

So, summing up, the ANN proposed model is reported
in equations (2)–(5). 'e weight and bias are summarized in

Tables 5 and 6 for the different ANN layers. 'e optimized
architecture was found by trial and error method for
minimizing the experimental versus theoretical scatter. No
input normalization was computed since the molar fraction
is dimensionless. In order to activate the h-neurons, a sig-
moidal-shaped activation function (namely, activation) was
selected as reported in equation (4). While an identity
function was imposed for the activation of the output node
(see Figure 6), sum functions were also needed in the hidden
and output layers in order to process the additives (weight
and bias), i.e., equations (3) and (5), respectively. 'e “trial
and error method” was used by considering 1/3 and 2/3 of the
database for the training and the learning phases, respec-
tively.where k� 1, . . ., 10, according to Table 5, and n� 1, . . .,
5, according to Table 4 and equation (2).

act hk( ) �
1

1 + e− hk( )
, (4)

fc � o � B + ∑

n�5

j�5

n�1

j�1

xn · wj

+ ∑

k�10

j�15

k�1

j�6

act hk( ) · wj,

(5)

where n� 1, . . ., 5, according to Table 4 and equation (2),
k� 1, . . ., 10, according to Table 5, j� 1, . . ., 15, according to
Table 6, and B, according to Table 6.

Obviously, the mixture proportions have significant
influence on the fresh and harden properties of the mortars.
In other words, the amount of sand, coarse aggregate, and
water-to-cement ratio can affect the compressive strength. In
our study, the values of these factors have been fixed.
'erefore, the results of the ANN modelling can only be
valid for the condition under which the models have been
developed.

6. ANN Model Evaluation

'e proposed ANN model allows predicting the compres-
sive strength of the considered geopolymer-based mortar.
'e sample-by-sample comparison is reported in Figure 7 by
reporting both the actual (or experimental) and predicted
(or theoretical) outcomes. It can be seen that the ANN model
significantly overestimates the relative experimental data
only for sample number 39, i.e., 30S12M1.5, while a satis-
factory prediction was reached in all the other cases.
Moreover, a correlation index (R2) equal to 0.89 was ob-
tained as illustrated in Figure 8. In addition, the 25% scatter
area was plotted demonstrating that almost all the predic-
tions are within it. It can be noticed that the trend line of the
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Figure 5: Continued.
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Figure 5: Continued.
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points in figure (red dots) quite approximates the green line
(perfect prediction x� y). Finally, the frequency distribution
of the ratio between the actual and predicted values is shown
in Figure 9. 'e mean, median, and mode values were 0.991,
0.973, and 0.991, respectively, with a 14% coefficient of
variation. Since the mean, median, and mode are so close,
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Figure 5: Ternary plot of the molar composition with respect to the compressive strength (values: 1� 0–10 MPa; 2�10–20 MPa;
3� 20–30 MPa; 4� 30–40 MPa; 5� 40–50 MPa).

5

Input

Hidden

W

b

W

b

10

∑ ∑

Node

Additive

Activation

Layer

Output

1

Output

1

Figure 6: Architecture of the proposed ANN model.

Table 5: Weight matrix and bias vector of the hidden layer.

Label Weight (wkn) Bias (bk)

h1 387.62 74.34 −148.41 −86.69 −157.70 69.33
h2 3.99 7.11 −54.74 −13.79 48.92 −8.28
h3 22.18 172.70 −208.02 −60.03 149.32 77.01
h4 2.49 2.34 −3.60 0.01 8.52 10.00
h5 28.29 38.41 −16.3 −5.49 5.07 48.89
h6 −91.99 −21.12 −84.44 1.75 216.12 19.56
h7 106.19 240.86 262.65 −89.65 105.64 100.45
h8 −3.71 −33.66 6.03 6.45 24.38 −2.31
h9 7.45 10.33 −30.81 −4.46 47.17 28.27
h10 8.27 16.53 −3.63 −2.82 0.27 17.09

Table 6: Weight matrix and bias value of the output layer.

Label Weight (wj) Bias (B)

i1 to o1 −21.83

−9.51

i2 to o1 42.09
i3 to o1 −132.17
i4 to o1 −31.31
i5 to o1 132.33
h1 to o1 65.13
h2 to o1 31.32
h3 to o1 −68.89
h4 to o1 −4.19
h5 to o1 54.90
h6 to o1 30.28
h7 to o1 62.76
h8 to o1 −11.65
h9 to o1 −24.70
h10 to o1 6.60
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the frequency distribution is symmetric, and its axis of
symmetry is x ∼ 1� perfect prediction. Furthermore, the
lower and upper outliners were 0.75 and 1.23, respectively.
In fact, only two findings were minor of 0.75 and two were
over 1.23.

7. Parametric Analysis

A parametric analysis is reported in Figures 10(a)–10(c) by
relating the molar fractions (x- and y-axes) to the com-
pressive strength prediction in MPa (o) on the z-axis
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Figure 10: 3D surface plot of the molar fractions with respect to the compressive strength: (a) %SiO2 vs %Al2O3; (b) %CaO vs % (SiO2) L;
(c) %Na2O vs %SiO2.

Table 7: Predicted inputs corresponding to mortar compressive strength fc >80 MPa.

# %Na2O %(SiO2)L %SiO2 %Al2O3 %CaO fc (MPa)

1 0.13 0.11 0.49 0.20 0.07 83.53
2 0.13 0.14 0.52 0.15 0.06 84.69
3 0.11 0.13 0.47 0.24 0.05 82.65
4 0.13 0.12 0.46 0.23 0.05 80.58
5 0.12 0.11 0.46 0.25 0.06 80.88
6 0.13 0.12 0.51 0.15 0.08 82.41
7 0.10 0.14 0.49 0.21 0.06 80.53
8 0.12 0.13 0.49 0.20 0.06 81.16
9 0.12 0.11 0.45 0.26 0.06 80.07
10 0.15 0.12 0.51 0.16 0.06 84.15
11 0.13 0.12 0.50 0.19 0.06 82.86
12 0.15 0.10 0.48 0.20 0.07 83.80
13 0.12 0.13 0.49 0.21 0.06 82.08
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throughout a linear surface interpolation. Within this scope,
a database of 1500 possible combination of the five con-
stituents was randomly processed, with a variation range
consistent with Table 4 (i.e., 0.10± 11%; 0.10± 12%;
0.50± 6%; 0.22± 3%; and 0.09± 39% for i1; i2; i3; i4; and i5,
resp.). 'e molar fractions were considered two-by-two
while the remaining three were assumed constant and equal
to the relative average value from Table 4 data. 'e target was
forecasted by means of the proposed ANN model, excluding
negative outcomes. 'e colour maps indicate the value of the
theoretical compressive strength. 'e theoretical trends were
found consistent and coherent with the experimental one.
Na2O and SiO2 were dominant in the mix for reaching high
levels of compressive strength, while CaO mostly affected the
output when combined with high amount of (SiO2)L
according to Figure 10(b). Furthermore, a compressive
strength >80 MPa was computed for the input’s combina-
tions reported in Table 7 (20 cases on the total 1500).

8. Conclusions

'e present study shows the application of ANN methods to
predict the cylindrical compressive strength of fly ash-slag
geopolymer mortar varying the molar compositions of SiO2,
Al2O3, Na2O, and CaO, based on an experimental investigation
carried out on several mix proportions. A new analytical
formula was assessed. Despite the variability of the input pa-
rameters, the proposed ANN model presents good precision
and accuracy. 'e satisfying performance of the proposed
model was clearly indicated by the mean, median, and mode
values of fc,act/fc,pre, equal to 0.991, 0.973, and 0.991, re-
spectively, with a 14% coefficient of variation and a correlation
value of 0.89, indicating the reliability of the proposed model.
Parametric analysis was conducted to evaluate the effect of
molar fractions on the compressive strength. Na2O and SiO2

were dominant in the mix for reaching greater compressive
strength. 'e influence of CaO is significant when combined
with a high amount of SiO2 in alkaline solution.

'e results of the study are valid for the variation ranges
of the inputs, herein experimentally found. Further exper-
imental investigations are required for the ANN model
validation when different inputs, in terms of chemical
composition, are considered.
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[3] C. D. Atiş, E. B. Görür, O. Karahan, C. Bilim, S. Ilkentapar,
and E. Luga, “Very high strength (120 MPa) class F fly ash
geopolymer mortar activated at different NaOH amount, heat
curing temperature and heat curing duration,” Construction
and Building Materials, vol. 96, pp. 673–678, 2015.

[4] F. Xi, S. J. Davis, P. Ciais et al., “Substantial global carbon
uptake by cement carbonation,” Nature Geoscience, vol. 9,
no. 12, pp. 880–883, 2016.

[5] J. L. Provis, “Alkali-activated materials,” Cement and Concrete
Research, vol. 114, pp. 40–48, 2018.

[6] P. Nath and P. K. Sarker, “Effect of GGBFS on setting,
workability and early strength properties of fly ash geo-
polymer concrete cured in ambient condition,” Construction
and Building Materials, vol. 66, pp. 163–171, 2014.

[7] A. C. Ayachit, P. Nikam, S. N. Pise, A. D. Shah, and
V. H. Pawar, “Mix design of fly ash based geopolymer con-
crete,” International Journal of Scientific and Research Pub-
lications, vol. 6, pp. 381–385, 2016.

[8] R. Mustafa, K. N. Shivaprasad, and B. B. Das, “Effect of various
additives on the properties of fly ash based geopolymer
mortar,” Lecture Notes in Civil Engineering, vol. 25,
pp. 707–715, 2019.
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