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A NEW ASYMPTOTIC METHOD FOR THE MODELING OF NEAR-FIELD 

ACCELEROGRAMS 

BY P.  BERNARD AND R.  MADARIAGA 

ABSTRACT 

We study high-frequency radiation from a dislocation model of rupture propa- 

gation at the earthquake source. We demonstrate that in this case all the radiation 

emanates from the rupture front and, by a change of variables, that at any instant 

of time the high-frequency waves reaching an observer come from a line on the 

fault plane that we call isochrone. An asymptotic approximation to near-source 

velocity and acceleration is obtained that involves a simple integration along the 
isochrones for every time step. It is shown that wave front discontinuities (critical 

or stopping phases) are radiated every time an isochrone becomes tangent to a 

barrier. This leads to what we call the critical ray approximation which is given in 

a closed form. The previous results are compared with discrete wavenumber 

synthetics obtained by Bouchon (1982) for the Gilroy 6 recording of the Coyote 

Lake earthquake of 1980. The fit between the asymptotic and full numerical 

method is extremely good. The critical ray approximation permits the identifica- 

tion of different phases in Bouchon's synthetics and the prediction of the behavior 

of the signal in the vicinity of their arrival time. 

INTRODUCTION 

Most methods to calculate synthetic acceleration and velocity in the vicinity of a 

seismic source rely on the numerical integration over the fault plane of complete 

near-field Green functions weighted by the slip functions. Several studies of radia- 
tion from dynamic source models have shown that it is possible to develop very 

efficient asymptotic methods for the simulation of accelerograms (Madariaga, 1977; 
Achenbach and Harris, 1978). Recently, we have found an analytical solution for 

the high-frequency radiation of a circular expanding crack, which stops abruptly 
and simultaneously around the circular rupture front (Bernard and Madariaga, 

1983). The high-frequency approximation was then compared with solutions ob- 
tained by Archuleta and Hartzell (1981) and Campillo (1983) using standard 

integration of complete Green functions over the circular fault. The agreement 
between the two types of calculations was striking. The circular crack model, 
because of its simplicity, has been used as elementary source for modeling the near 

field of large events (Boatwright, 1982; Papageorgiou and Aki, 1983). But this model 
is clearly unphysical: a propagating circular rupture front would never stop simul- 

taneously around its periphery, because there is little chance that it will encounter 
a preexisting circular barrier centered at the focus. 

In this paper, we continue our investigation of asymptotic methods using only 
the far-field term of the Green function in the representation theorem. This 

approximation leads to a number of simplifications of the calculations and simple 
physical models of the generation of high-frequency waves. We assume that the 

seismic source is a dislocation with a propagating circular rupture front stopping 
abruptly on a preexisting barrier of arbitrary shape. We show that the barrier 

geometry controls the high frequency of the source, and give it a simple analytical 
f o r m .  
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GEOMETRICAL ANALYSIS OF HIGH-FREQUENCY RADIATION 

We are interested in high-frequency radiation from a dislocation or crack-like 

seismic source in which there is a strong concentration of slip velocity near the 

rupture front. By high-frequency radiation, we mean that  the wavelengths in which 

we are interested are all shorter than the shortest distance from the observer to the 

source. In this case, the far-field term of the radiation from a point dislocation 

source is the appropriate Green function to calculate synthetic seismograms. Fol- 

lowing Aki and Richards (1980), the far-field P or S wave are given by 

1 RC 1 
G ( P ,  t l O) - 47rpc3 -~ M o ( t  - D / c ) .  (1) 

Here, p is the density, c stands for a or fl the compressional and shear wave 

velocities according to the particular wave under consideration, D is the distance 

between the observer at P and the source at 0, Mo( t )  is the seismic moment, and R c 

is the radiation pattern for P or S waves. 

~ ( o )  

FIG. 1. The dislocation model with a straight barrier. The slip is constant inside the rupture front, 
which expands circularly with constant velocity in the fault plane, and stops when it reaches the barrier 
LB. 

In order to establish the basic results, we will use a very simple model for the 

source (Figure 1): The rupture initiates at the focus 0 and expands radially with 

constant velocity v on the fault plane. The slip Au will be assumed to be uniform, 

constant, and parallel to the fault plane inside the rupture front limits. This simple 

model of the slip function is not physically acceptable but it may be converted into 

a crack-like dislocation by convolution as we will show later in the paper. Let the 

rupture grow until it reaches a straight-line barrier LB at distance do from the origin 

0 (see Figure 1). The slip and the slip velocity are expressed as 

A u ( r ,  0, t) = D o H ( t  - r / v )H(ro (O)  - r) (2) 

and 

Af t (r ,  6, t) = D05(t - r / v )H(ro (O)  - r), (3) 

respectively. Here t is time, r and 0 are polar coordinates on the fault plane, H is 

the Heaviside function, 5 is the Dirac function, and the equation r = ro(0) is the 
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analytical representation of the barrier line LB. For a straight barrier line, we have 

ro(O) = do/cos O. (4) 

The slip velocity (3) is zero everywhere on the fault plane, except on the rupture 

front, where it becomes infinite. This is the model with the maximum possible 

concentration of slip velocity in the vicinity of the rupture front. In more realistic 

models, the concentration will be spread in a way determined by the conditions at 

the rupture front. For perfectly sharp cracks, At~ will have an inverse-square root 

singularity (Madariaga, 1977); for cracks with cohesion the singularity will be 

smoother (Achenbach and Harris, 1978). In Haskell's dislocation model the slip 

velocity singularity is spread over the rise time ¢, so that  Au will have a boxcar 

shape. Solutions for these kind of slip velocity singularities may be obtained by 

convolution of our solutions with appropriate source time functions. 

In order to calculate the radiation from our source, we use the representation 

theorem for a flat seismic fault 

u(P ,  t) = f G(P,  t ] ro ) . t tA i t ( ro ,  t) d S  (5) 

where G is the Green function for a unit seismic moment with a step source time 

function, and r0 is the position on the fault. Using (1) we obtain 

tt 1 
u c(p, t) - ] R c 

4¢rpc 3 .-13 -~ Au(t -- D/c)  dS  (6) 

which is similar to equation (14.4) of Aki and Richards (1980). In (6) however, R c 

and D vary with position on the fault, i.e., we do not make the Fraunhoffer 

approximation. There is some confusion in the literature between far-field and 

high-frequency approximations as exemplified by equation (1), and the Fraunhoffer 

or far-from-the-source approximation which applies when the observer is at a 

distance far greater than the dimensions of the source. Our intention is to prove 

that  within the limits of our theory, accelerograms calculated using (6) are very 

good approximations to those calculated with full wave theory including "near- 
field" terms in the Green function (1). 

Let us introduce the slip velocity (3) into (6) to obtain 

#Do 1 
uc(P,  t ) -  | 47rpc 3 J s  R c -~ 5[t - ¢(P, r)]H(ro(O) - r) dS  (7) 

where 

7(P,  r) = r /v  + D/c  (8) 

is the retarded time. Given a point on the fault (r, 0), the distance D to the observer 
at P is 

D(r,  O) = (r 2 + R 2 - 2 r d cos O) 1/2 (9) 

where r, 0, R and d are defined in Figure 2. 
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Ignoring/'or the time being the barrier at r = r0(0), we may interpret (7) as the 

integral along a line on the fault defined parametrically by the equation 

t = r (P,  r) = r /v  + D(r,  0)/c. (lo) 

For a given value of the time t at the observer, equation (10) defines a closed 

curve on the fault plane that  we call the isochrone. This curve defines the set of 

points [rl(t, 0), 0], solution of (10) on the fault plane, from which radiation is 

arriving at P at time t. Let us note that the points on the isochrone do not radiate 

simultaneously but only when the rupture front passes through them, i.e., at time 

rl(t, O)/v. Following Figure 2, we can give a simple geometrical interpretation to 

P 

h 

Q 

FI6. 2. Three-dimensional space geometry o[ the dislocation model. The observer is at P, whose 
projection on the fault plane is Q. Point  0 is the focus, (r, 0) are polar coordinates; ¢ and D are the 
radiation angle and distance from point A to the observer at P. 

~ _ _  ¢ / n _ ~  ~ P 

0 D 

FIG. 3. Geometricalproperties of the isochrones. Any point A on the isochone Lo(P, t) refracts the ray 
OA in the direction of the observer at P: angles il and i2 are related by Snell's law. TA is the tangent  to 
the isochrone at the point A, n is the normal to TA on the fault plane, n' is the normal TA contained on 
a plane through TA and P. ¢ is the angle of radiation entering into the directivity term. 

(10) which will be useful in understanding radiation: t is the travel time of a "rupture 

ray" that  leaves the origin 0 in the direction 0 with velocity v and propagates for a 

distance r along the fault. At the point A, of coordinates (rl, 0), it leaves the source 

and propagates to the observer at P as an elastic wave with velocity c. Then r /v  in 

(10) is the travel time of the rupture ray between 0 and A; and D/c  is the travel 

time along AP.  
The equation for the isochrone in a homogeneous medium (7) may be easily 

solved numerically for r = rl(t, 0). Let Lo(P, t) be this isochrone which is a function 

both of the position of P and the time of observation t. In a general medium, Lo 

represents a closed curve around the origin. For a homogeneous medium the 
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isochrones Lo are quartic ellipses confocal with the source as shown in Figure 3. 

The isochrones have a remarkable geometrical property illustrated in Figure 3. Let 

n be a unit vector at A normal to L0 on the plane of the source, and n' another unit 

vector normal to the tangent TA to L0 and contained on a plane through this tangent 

and the observer. The angles il and i2, defined by cos il = (n, A0) and cos i2 = (n' ,  
AP), satisfy the following Descartes-Snell law 

sin il sin i2 

V C 
(11) 

The ray AP may be interpreted as a seismic ray generated by the diffraction of 

the rupture ray at the isochrone line Lo. In order to prove the relation (11), we may 

consider as in Figure 3 a point A' located near A on the tangent TA. Point A' is 

outside the closed isochrone L0(P, t) and is located on another isochrone L0(P, t ' )  

with t '  > t. Thus, as we move A' away from A along the tangent TA the travel-time 

t' increases. It is a minimum when A' coincides with A and t '  = t. The equivalence 

/ 

P 

LB 

FIG. 4. Rupture ray and isochrone line. At time to, the isochrone L(P, t) becomes tangent to the 
barrier LB at point Ip. At this same point Ip, the rupture ray is diffracted in the direction of P. For times 
greater than to, the missing segment of the isochrone is indicated by the dotted line. 

of Fermat's principle for the minimum time and the Snell-Descartes law for 

diffraction proves the relation (11). 

Now that the isochrone has been calculated, we can use the sifting property of 

the delta function to reduce the integral (7) over the fault surface into a line integral 
along the isochrone line L 

u c(p, t ) -  ttDo fL v 
47cpc 3 RC D(1 - v/c cos q~) dl (12) 

where ¢ is the angle between the radius vector of A and the direction of the observer 

(see Figure 2). L in (12) designates that part of the closed isochrone L0 that  is inside 
the barrier LB, i.e., it contains the set of points r,(t, 0) such that 

rl(t, 0) < ro(O). (13) 

Equation (12) provides a method to calculate near-field seismograms and accelero- 

grams. Only two approximations have been made to generate (12), the first one is 
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that the far-field Green function (1) be applicable, i.e., that the shortest wavelength 

~, of interest be smaller than the minimum value of D. The other approximation, 

which may be relaxed by convolution, is that Au be strongly concentrated at the 

rupture front (3). We will call asymptotic seismograms those calculated using 

approximation (12). Let us remark that since we are summing the radiation from a 

continuous distribution of sources on the fault, (12) is not strictly a high-frequency 

approximation. The proper high-frequency approximation to (12) will be obtained 

from the analysis of its discontinuities. This is the reason we prefer the name 

asymptotic approximation for (12) instead of high-frequency approximation. 

RADIATION FROM A BARRIER AND THE CRITICAL RAY APPROXIMATION 

There are two major kinds of discontinuities in (12), the first ones are the starting 

phases radiated from the origin of rupture at 0. These are weak singularities because 

the isochrone line L shrinks to zero as the time t --) R/c, the arrival time for the 

radiation from the origin. Initial phases for the dislocation model (2, 3) behave like 

t .H(t)  in displacement. Since these phases may be easily calculated by standard 

methods (see chapter 14 in Aki and Richards, 1980), we will concentrate on the 

strongest phases which are produced by the interaction of the rupture front and the 

barrier. 
Let us examine the straight barrier first, as time increases from the starting phase 

arrival time, the isochrone L0(P, t) is closed and increases continuously in size. The 

displacement field calculated from (12) is, therefore, continuous. At a certain time 

tc, which we call the "critical" time, Lo becomes tangent with the barrier LB at the 

point Ip as shown on Figure 4. For times t > tc, Lo(P, t) cuts through the barrier 

and L(P, t), which is the segment of Lo(P, t) that is inside the barrier L~, becomes 

an open line. This sudden change in the integration contour L of (12) is the origin 

of the high-frequency waves diffracted by the barrier and which we call critical 

phases. If the rupture process were to stop completely after the interaction of the 

rupture front with the barrier, we would call these waves the stopping phases. The 

method we propose can deal with much more general situations than the stopping 

phases; this is why we prefer the same critical phase. For instance, we may study 

asperities where it is the slip Do, not the rupture velocity, that changes on the line 

LB; or we may study very rapid changes in rupture velocity. The ray from Ip to P 

will be called a critical ray. If we can develop a method to trace these critical rays 

and to calculate the behavior of displacement (or acceleration) in their vicinity we 

would have a much simpler way to calculate high-frequency seismograms than 

equation (12). 
Let us examine the kinematical properties of a critical ray and its associated wave 

front. At Ip, the isochrone is tangent to the barrier LB so that the normals to Lo 

and LB coincide. Therefore, at Ip the Snell-Descartes law for diffraction (11) may 

be reinterpreted in terms of the angles il and i2 that the rupture ray OIp and the 

critical ray IpP make with the local normals n and n '  to the barrier at Ip. Thus, to, 

the arrival time of critical phase from the barrier LB at P, is the minimum time for 

a ray that leaves the source with the rupture velocity v, is diffracted by the barrier, 

and then propagates to P with the seismic velocity c. The diffracted ray that satisfies 

the Fermat's minimum time principle is the one that satisfies the diffraction law 
(11). The tracing and amplitude calculation of diffracted rays is a standard procedure 

of the geometrical theory of diffraction (Keller, 1962). 
Now that we have constructed a critical ray that passes through P we may 
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determine the critical wave front generated by the barrier L~. We proceed in the 

following way: for a fixed time tc we determine the locus of all the rays diffracted 

by the barrier which, for a given value of 0, may be obtained from (10) 

D(t~, O) = Ctc + c/vro(O). (14) 

Now for every value of 0, we calculate the point on the barrier where the rupture 

ray intersects it. From this point we draw a cone of rays of length D(tc, O) and 

summit angle 

i2 = arcsin(c/v  sin il). (15) 

Repeating this operation for all the angles 0 we obtain the diffracted front at time 

tc. Actually, because c > v, there is in general a maximum angle 0~ beyond which i2 

becomes complex. The critical wave front constructed in this manner has a cigar 

shaped form which is axially symmetric about the barrier line LB. Figure 5 shows 

an example of a critical wavefront. 

Rupture J ~ 1 7 ' ~  

~ ~ D i f ~  fro c ted 
Wave Front 

FIG. 5. Wave front radiated by the barrier. The circular rupture front with velocity v is diffracted by 
the barrier, generating an axisymmetric wave front propagating with velocity c. 

Now that we have traced the critical rays to the observer at P, we may determine 

the nature of the wave front discontinuities associated with the critical rays. The 

detailed derivation will be presented in the following section, here we give a simple 

qualitative explanation. When t is slightly greater than to, the dicontinuity of the 

integral in (12) is due to the disappearance of the dashed line segment AL = Lo - 

L in Figure 4 from the integration contour. The size of this segment is of order AL 

h ~/t - tc where h is a constant to be determined later. Since all the terms inside 

the integral are regular at t~, we can approximate its singularity by 

u(P ,  t) = F ( D ,  ¢, RC)h ~/t - tc H ( t  - to) 

where F is the value of the integrand in (12). For particle velocities, the singularity 
has the form 

du(P ,  t ) / d t  = F h  
H ( t -  t~) 

2 " f t - t c  
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and for acceleration 
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d2u(P, t ) /d t  2 = - F h  
H( t  - tc) 

4(t - tc) 3/2 

If the barrier has a general shape, described by LB, the isochrone line may become 

tangent to it several times, generating at each tangent point a wave front disconti- 

nuity. Let us remember that  the isochrone lines depend on the observation point 

and time, so that  every observer will see at high frequencies a different set of critical 

points. 

THE DISLOCATION SOURCE MODEL WITH GENERAL BARRIER SHAPE 

Let us consider the source model defined by the slip velocity function (3) buried 

in a homogeneous elastic medium. The barrier r = ro(O) may be a closed line ot 

general shape surrounding the focus. Referring to Figure 2, the observer is at P, 

whose projection on the fault plane is Q. The focus 0 is the origin of the cylindrical 

coordinates, and the polar angle in the fault plane is counted from the axis OQ. 
Point A(r, O) is on the fault plane. We define: h = PQ, d = OQ, r = OA, R = OP, 0 
= (OQ, OA) and ¢ = (OA, AP).  Then D(r, 0), defined by (9), is the distance from 

A(r, O) to P. We may now rewrite (7) in its explicit form 

u c ( P , t ) _  gD° foo2~ for°(°) 1 47rpc3 dO R e -~ ~(t - r)r dr 

where r is defined by (8). The isochrone lines Lo(P, t) defined by (10) are closed 

lines surrounding O. For a given t and a given 0, there exists one and only one r, 

denoted rl(t, 0), which verifies equation (10), because a radial line may intersect an 

isochrone line at only one point. Now let us change the variables (r, 0) to the new 

ones (~', 0). Then, 

u ~ ' ( p , t ) _  gD° fo2~ fR~ 1 4~roc, ~ dO /~' R c ~ ~(t - r)rl(r, O)&r dr 

where the partial derivation &r = Or~Or may be calculated from (8) 

&r = 1/(1/v  + c)rD/c) 

and cgrD = -cos  ¢ as may be seen from Figure 2. Doing the integral over r we finally 

get 

foo 2° 
uc(P, t) - ~tDo dORC 1 yr,(t, O) (16) 

4~pc a D 1 - v/c cos ¢ 

where the bar across the integral means that  the integeral is taken only over the 

segments of the isochrone inside the barrier LB. The factor (1 - v/c cos ~b) -1 is the 

well-known directivity effect of the propagation of the rupture front. Note that  (14) 

is the precise formulation of (12) in "Radiation from a Barrier and the Critical Ray 
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Approximation", with dl = rl dO. This integral is in general impossible to compute 

analytically, because we have to determine numerically the isochrone lines rl(t, 0). 
It is, however, very simple to calculate numerically once the isochrone lines have 

been determined by ray tracing techniques. Seismograms calculated in this way will 
be called asymptotic and will be compared with calculations made by Bouchon 

(1982) with a discrete wave method. 
Let us study now the origin of the wave front singularities of the integral over 0 

in (17). By definition of the barrier, rl(t, 0) cannot be greater than ro(O) for a 

radiating point. This restriction appears in the integral (16) in the form of inter- 

ruptions in the integration over 0, which in turn create the wave front discontinuities 

that dominate the high-frequency behavior of the radiation. Let us consider the 

geometry of the barrier and isochrones shown in Figure 6. Initially, the isochrones 

L0(P, t) are continuous curves closed around the origin. As time increases, the 

isochrone eventually becomes tangent to the barrier at the point Ip[ro(O~), Oc] at the 

critical time t~. In the vicinity of IF, Lo cuts LB at two points defined by their polar 

angles 01 and 02. Two geometrical cases have to be considered, depending on the 

I 
I 

J ............................ 2 

/ ............... i i  ................. 

Q 

FIG. 6. Geometrical [eatures for a barrier o/general shape. The isochrone is tangent to the barrier line 
at /1 , /2 ,  and/3,  at  times t,, t2, and t3, respectively. The isochrone presents some missing segments whose 
number increases at  I, and/3,  and decreases a t /2 ,  depending on the relative radius of curvature. These 
singularities are related to the high-frequency radiation of the source. 

relative curvature at Ip of Lo and LB; they are illustrated in Figure 6 by the critical 

points/1 and/2.  Just  before the isochrone L reaches the point/1,  the integral (16) 

is continuous. When time becomes greater than to, the isochrone in the vicinity of 
I1 breaks into two segments. In the vicinity of/2,  on the other hand, a segment of 

L disappears when t increases beyond tc. In either case for times t ~- tc, the 

discontinuity of the displacement field u in (16) may be aproximated by 

uc(p, t) = ~ gD° ~|°~ 1 vrl(t, O) 
47rpc 3 JOl dORC-D1-  v/c cos ¢" (17) 

The upper sign applies to a critical point like I1 of Figure 6 since in this case the 

singularity is due to the disappearance of the segment 01 - 02 from the integral. The 

opposite sign applies to the case/2 where the contour shrinks to zero as t approaches 

re. 
For t ~ to, the segment of integration 01 is small and the integral (17) may be 
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approximated by 
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uc(p,  t) = • uDo R~ 1 vrl(tc, 0~) 
47rpc -----5 D 1 -- v--~-c~s ¢c (0 - Oz) 

(18) 

where R c, D, ¢c, etc., are calculated at the critical point on the barrier. For the 

critical point/1,  (18) applies for t > t~, while the opposite is valued for the critical 

point I2. The discontinuities radiated by I1 and /2  are the Hilbert transforms of 

each other or, in other terms, the critical phase from/1 is a minimum time phase 

while that from/2 is maximum time (see Bernard and Madariaga, 1983). 

In order to evaluate (18), we calculate (01 - 0z) in the vicinity of the critical angle 

0~. Let us introduce the travel-time T(O) of a rupture ray diffracted by the barrier 

LB in the direction of the observer. The diffraction angles il and iz (see Figure 4) 

are not assumed to satisfy the relation (11). T is given by 

T(O) = ro(O)/v + D(ro(O), O)/c (19) 

where D is defined by (9) and ro(O) is the equation of the barrier. For a given 

observer, T is an extremum for 0 = 0~, the angle(s) that satisfies 

dT(Oc)/dO = 0 (20) 

and the critical ray travel-time tc = T (0~). It may be proven by a rather lengthy but 

straightforward procedure that  the extremum condition for the travel-time 0c may 

be recast in the more familiar form in terms of incidence and diffraction angles 

(11). 
We may now calculate 01 and 0 2 in the vicinity of 0c by means of the Taylor series 

for T(O) in the vicinity of 0~ 

1 d2T(Oc) 
T(O) = tc + 2 dO - - - - y -  (O - Oc) 2. (21) 

Since by definition the points 01 and 02 are located on the same isochrone of 

travel-time t, T (01) = T (02) = t and we get for either 01 or 02 

tc) 
O - Oc = ~- V T"(Oc)  

(22) 

the upper sign applies for 01, the lower one for 02 and T "  = d2T/dO 2. For T "  > O, 
(22) gives 01 and 02 for t > to, this is the situation that prevails in the vicinity of 11. 

For T"  < O, t has to be less than tc as for the critical phase radiated from Ie. We 

may now insert (22) into (18) and obtain the singularity associated with a critical 

phase. For a point like/1, a minimum time phase, T"(Oc) > 0 and we get 

~Do RC 2~/2 v rl ~/t - tc H ( t  - to) (23) 
uc(P, t) - 47rpc3 1 - v/c cos ¢ D ~/] T " l  

where T" ,  Rc,  rl, D, and ¢ are calculated at the critical point I1. For a maximum 
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time critical phase, like/2, T z < 0 and 

_ _  2 ~  V r l  ~ - -  t H ( t c  - t )  (24) uc(P,  t) = + ~Do RC 
47rpc ~ 1 - v/c cos ~b D ~f[ T" [  

where T", Re, rl, D, and ~b are calculated at the critical point I2. As we have already 

suggested, the time dependence of (24) is the Hilbert transform of that of (23). The 

second derivative of the travel time is the usual geometrical spreading for two- 

dimensional waves. It may be recast in a form that is closer to that used in 

geometrical diffraction theory but the algebra is rather long and (23, 24) is more 

suitable for numerical calculation. For a uniform elastic medium, T" may be directly 

calculated by differentiation of the travel time (19). 

Equations (23) and (24) give the high-frequency part of the displacement u: the 

critical time t = tc corresponds to the arrival time of the ray reaching P and passing 

through Ip. So the critical point IF seems to radiate the high-frequency signal. 

Remember that the position of the critical points on a barrier depends on the 

observer position P. 

. . . . .  . . . . . . .  . 

0 

FIG. 7. Broken barrier line. The barrier presents an angular point J(00) at time to, which is responsible 
for high-frequency radiation similar to the starting phase at the focus. 

EXTENSION AND LIMITS OF THE HIGH-FREQUENCY METHOD 

The results of "The Dislocation Source Model with General Barrier Shape" may 

be adapted to deal with more realistic seismic sources than a dislocation expanding 

with constant rupture velocity and stopping abruptly on a regular barrier line. In 

this section, we discuss the following two generalizations. 

1. The barrier line presents some angular points. 

2. The slip velocity is that of a crack model and has the characteristic inverse 

square root singularity (Madariaga, 1977) near the rupture front. 

Let us consider first the case of a broken barrier line. Physically, that means that 

on some points of the barrier, the curvature radius is shorter than the wavelength. 

We call J[ro(Oo), 0o] an angular point of the barrier (see Figure 7). The rupture front 

reaches point J at time to. The angles 0, and 02 are equal when t = to, but the 
isochrone line is not tangent to the barrier, as it was in the case of a critical point, 

and the travel time T(Oo) is not an extremum. The Taylor expansion (21) becomes, 
to first order 

T(O) = to + T'(Oo)(O - 00) (25) 



550 P. BERNARD AND R. MADARIAGA 

so that, since 01 and 02 are on the same isochrone of travel-time t, 

t - t o  
O1 -- 0 2 = 2 ~ (26) 

Inserting this relation into the standard expression (18), we get 

u c ( P ,  t)  = + ~  R c 2v  rl  to - 
4~pc  1 - v / c  cos ¢ D ~ 5  t H ( t o  - t) (27) 

where T ', R c, rl, D, and ¢ are calculated at the angular point Io. Thus, the presence 

of a corner in the barrier line produces a discontinuity in the displacement u of the 
form 

u~(P,  t ) a H ( t o  - t ) ( to  - t) or H ( t -  t o ) ( t -  to). 

The spectral amplitude is of the order 1/x/-~ times the spectra of u 

H ( t  - te)~/t - to, therefore the contribution of the angularities of the barrier to the 

high-frequency radiation is weaker than the contribution of the critical points, and 
may be neglected to the first order. 

Note that the starting phase for t ~- R / c  gives a similar displacement u ( P ,  t ) a  

H ( t  - R / c ) ( t  - R / c ) .  Another important consequence is that for any point Q in 

space, the angular point J is of course fixed so that, apart from the directivity term, 

the high-frequency radiation from a corner does not depend on the position of the 

observation point Q as it was the case with critical phases where the critical point 

moves along the barrier as the observation point is displaced. 

The second extension that we want to discuss is a quasi-dynamical model 

(Boatwright, 1982) for slip velocity since a crack model is more satisfactory in a 

physical sense than a dislocation model. As the rupture front propagates, the slip 

velocity may be expressed as 

A u ( r ,  O, t) = (t  - r / v ) - i / 2 H ( t  - r / v )  

near the front. Let us consider two particular behaviors of the rupture front when 
it reaches a barrier. 

In the first model, we take 

H ( t  - r / v )  
A u ( r ,  0, t )  - H(ro(O)  - r)  (28) 

4 t  - r / v  

meaning that slip continues indefinitely once the rupture stops at the barrier line. 

An alternative model is 

H ( t  - r / v )  
A u ( r ,  O, t) = H(ro(O) - v t )  (29) 

~/t - r / v  

which means that the crack stops simultaneously on the whole radial line of angle 
0 when the rupture front reaches the barrier along that line. Between these two 
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extreme models, unfortunately, it seems difficult to construct a realistic model with 

stopping phases without loosing the simplicity of the analytical expression of slip 

velocity. 
For the first extreme model, the high-frequency displacement is the one obtained 

in (23) or (24), convolved with (t - r / v )  ~/2. Then if T"  > 0, 

u ( P ,  t) ~ (t  - t c )H( t  - t~) 

and 

d 2 u ( P ,  t ) / d t  2 ~ 5 ( t -  to) 

while for T" < 0 we obtain the Hilbert transformed pulses. For example, the 

acceleration pulse behaves like 

d 2 u ( P ,  t ) / d t  2 ~ H ( t  - tc ) / ( t  - re). 

The high-frequency acceleration radiated by a propagating crack stopping ab- 

ruptly is well described by a superposition of 5-like and 1/t-like impulses, generated 

at the critical points on the barrier. 

These results are compatible with observational acceleration spectra, for which 

the high-frequency part is usually flat. If the jump of the rupture velocity is not 

instantaneous, but takes a time At, the spectral amplitude of acceleration should 

break down for frequencies greater than/max = 1~At. 

The interest of the method presented here is that once we have solved for the 

radiation in a uniform medium, we may simply apply ray theory to propagate the 

high-frequency signal in a more realistic heterogeneous attenuating medium. 

COMPARISON WITH DISCRETE WAVENUMBER ACCELEROGRAMS 

We shall now apply the results of the previous sections to the calculation of 

synthetic accelerograms for the Gilroy 6 recording of the 6 August 1979 Coyote lake 

earthquake in California. This event was studied by Bouchon (1982) who proposed 

a dislocation model for the source and calculated synthetic accelerograms with his 

discrete wavenumber method. His model is a vertical strike-slip fault as shown in 

Figure 8. Rupture starts at 9.5 km depth and propagates self-similarly with a 

constant rupture velocity of 2.6 km/sec. Slip is constant (dislocation model) and 

equal to Do = 21 cm. The final fault shape is defined by a rectangular barrier where 

rupture stops abruptly. The Gilroy 6 station was practically on the fault trace, 10 
km away from the epicenter. The medium consists of an upper layer 1.75 km thick, 

with a shear velocity of 2.4 km/sec, and a density of 2.6 gm/cm 3, overlying an elastic 

half-space with a shear velocity of 3.5 km/sec and density 2.8 gm/cm 3. 

Let us first apply the theory of critical rays. We trace the critical rays using 

standard ray theory for a layer over a half-space and relation (11) for diffraction by 

the barrier. For each segment of the barrier, there is a single critical point that 

diffracts a particular ray in the direction of the station. We denote by I , , /2 , /3 ,  and 

/4 these four critical points on Figure 9. The rays through these four points will be 
used to generate high-frequency seismograms. 

Next we calculated the isochrones for regular increments of the observation time. 

They were obtained by a numerical solution of equation (10) where D / c  was replaced 
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by the appropr ia te  expression for the t ravel  t ime in a layer over a half-space. As 

seen in Figure 10, the  isochrones,  as expected, are t angen t  to the barr iers  at  the  

four critical points.  Since at  any  point  on the  fault  p lane the radial distance between 

neighboring isochrones is p ropor t iona l  to the direct ivi ty factor, the area tha t  radiates  

the higher ampl i tudes  is the e longated sector  point ing f rom the source to the 

observat ion point .  Th is  explains why, as will be shown later, the critical p h a s e / 2  

domina tes  high-frequency radiation.  

1.75 km I 

7.5 km 

,p 
0.5km $ 

EPICENTER GILROY 6 

••"•u pture 

O. Slip 1 

2 km 12 km 

Upper 
layer 

I0 km 

FIG. 8. Rectangular source model. The fault plane is vertical and the focus at depth 9.5 km. The 
rupture front propagates with contant velocity 2.6 km/sec and stops on the rectangular barrier 8 km x 
14 km, whose top is at 2 km depth. The station (Gilroy 6) is at 10 km from the epicenter, on the fault 
plane. The slip inside the rupture front is 21 cm {dislocation) in the horizontal direction (strike-slip). 
The medium has an upper layer 1.75 km thick. 

EPICENTER GILROY 6 

• Iz/  

/" / Cr;;i~l 

14 
FIG. 9. Critical rays and critical points ]'or the rectangular barrier model. Rupture rays are associated 

with the circular rupture front and are diffracted by the barrier in the direction of the station• The four 
minimum travel time rays, diffracted at the critical points I1, h ,  h,  and L4, are the critical rays that 
dominate the high-frequency motion at Gilroy 6. 

We may  now compute  synthet ic  d isp lacement  records by the two methods  t ha t  

we have proposed:  in tegra t ion along the isochrones and  the critical ray approxi-  

mat ion.  Since s ta t ion  Gilroy 6 is pract ical ly on the  fault  plane, only S H  waves with 

d isp lacement  perpendicular  to the fault  have to be considered. We computed  the  

d isp lacement  and  velocity records shown on the top in Figure 11 using equat ion 

(16). We  call these  asympto t ic  se ismograms since the only approx imat ion  involved 
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EPICENTER GILROY 6 

553 

FIG. 10. Isochrone [or the rectangular barrier model. The isochrones are plotted for a regular increment 
of the observation time. They are tangent  to the barrier at  points I1, I2,/3, and/4 ,  which are also the 
critical points of Figure 9. 

DISPLACEMENT VELOCITY 
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FIG. 11. Comparison between the asymptotic method and the critical ray method. For the displacement, 
the fit is good near the arrival times of the high-frequency phases 0, 1, 2, and 4 radiated from 0,/1, I2, 
and/4,  respectively. We did not plot phase 3, radiated by Is, because its arrival time is very close to tha t  
of phase 2, and its amplitude is even weaker than phase 1. For velocity, there are no significant 
differences, except just  before phase 2, where the rapid increase of u and du/dt is explained by the 
proximity of the interface to point /2.  
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in their calculation is the use of the far-field asymptotic approximation to the Green 

function. Particle velocity was calculated by numerical differentiation of displace- 

ment. Theoretically, these asymptotic records are valid for frequencies greater than 

1.5 Hz in order that all wavelengths be shorter than the distance to the fault. We 

clearly identify in the synthetics of Figure 11 the starting phase (0) and the high- 

frequency phases generated at the critical points I1 and/2.  The radiation from/3 
and/4 is less easily identified because it is very weak. Just before the arrival time 

of the phase radiated by I~, the displacement increases rapidly. This is not a barrier 
effect, but is explained by the very short distance between the interface and the top 

of the barrier: the consequence is a very rapid decrease with time of the transmission 

D I S P L A C E M E N T  

~ TOTIC 

; HOD 

oi,, 
, I s  

METHOD 

9 . 3  cm ,,I..o l" 
14 

FIG. 12. Comparison between the asymptotic method and Bouchon's lull numerical method. The 
asymptotic displacements calculated by the two methods show a similar overall shape. Phases 0, 1, 2, 
and 4 in the asymptotics appear clearly in the complete solution, and their arrival times coincide 
perfectly. The arrival before phase 0 in Bouchon's synthetic is due to near-field low frequencies, which 
would be reduced any may be neglected in velocity and acceleration synthetics. 

coefficient near/2.  It is also interesting to note that the radiation from the corners 
is very weak. This is in contrast to the Haskell model where radiation comes mainly 
from the corners as shown by Madariaga (1978). 

In Figure 11, we also plot the high-frequency displacement and velocity calculated 
by the critical ray approximation [equation (23)]. This is the generalization of the 

stopping phase approximations that Bernard and Madariaga (1983) used to approx- 
imate the radiation from a circular fault model. We may compare on Figure 11 the 
results obtained by the asymptotic method and the critical ray approximation. For 
displacement, the fit is good only near the singularities; for velocity, on the other 
hand, the two functions match almost at all times. We conclude that, for velocity, 
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the much simpler critical ray approximation is as good at high-frequency as the 

more expensive method of integration along the isochrones. 

Let us now compare in Figure 12 the asymptotic displacement with the displace- 

ment computed numerically by Bouchon (1982) for the rectangular fault. He 

discretized the fault into elementary sources and calculated displacement superpos- 

ing the full near-field radiation for each of these sources. In spite of the different 

theoretical limits of validity for the two methods, f < 3.2 Hz for Bouchon and f > 

1.5 Hz for the asymptotic method, the two solutions are very similar. The principal 

high-frequency phases are clearly identified, and the general form even at low 

frequencies is very similar. The asymptotic solutions appear to be valid down to 

frequencies of 1 Hz in this case. The principal difference between our results and 

Bouchon's is the rapid increase of u just before phase 2 which does not appear in 

his synthetic. This difference is probably due to the discretization of the source in 

Bouchon's model. In fact, the top row of elementary sources in his discrete model 

is deeper than the nominal top of the fault so that they are farther from the 

interface, and the rapid change in reflection coefficient that causes the increase in 

u in our synthetics is absent from his model. 

Our results permit us to compare three methods to calculate synthetics in the 

vicinity of a fault. First, the most complex, numerical integration of complete near- 

field Green functions (Bouchon, 1982). Second, numerical integration along iso- 

chrones derived from the use of the far-field approximation for the Green functions 

and, third, the critical ray approximation. It appears that for displacement, the first 

two methods give practically the same result. For velocity, the critical ray approxi- 

mation works almost as well as the asymptotic method. For acceleration calcula- 

tions, the critical ray approximation is definitely superior allowing--at least in 

principle--the frequency resolution to increase without limit. In practice, attenua- 

tion and source properties will limit the resolution. 

The rectangular source model discussed here gives a synthetic displacement which 

fits well the general shape of the Gilroy 6 record for the Coyote Lake earthquake. 

Bouchon had then to modify the main parameters of his model to improve the fit 
to the data. The use of the methods proposed here could be of great help in 

understanding how the different source parameters control the synthetic record. It 

would then be possible to develop inversion procedures to obtain the source 
parameters. 

CONCLUSIONS 

A theoretical study of the radiation from a moving dislocation loop stopping at a 

barrier of general shape has revealed a number of important geometric and kinematic 

features which we describe with the following three concepts: (1) isochrone lines, 

the locus on the fault of those points whose radiation reaches the observer at a 

given time. This is a very general concept valid in general heterogeneous media 

which depends only on the use of the ray theoretical approximation to the Green 

function for every point on the fault. (2) A rupture ray is a ray that propagates 

initially on the fault plane with the local rupture velocity, is diffracted by a barrier, 

and then propagates to the observation point with the elastic wave velocity. (3) 

Critical points, which are the points on a barrier from which is diffracted the rupture 

ray with minimum travel time, we call this ray a critical ray. The critical points are 

also the points of tangency between an isochrone line and a barrier. The critical 
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ray satisfies an extension of Snell's law for the diffraction of the rupture ray into a 

seismic ray by the barrier. Using ray tracing techniques, there critical rays (stopping 

phases if we are dealing with an unbreakable barrier) may be computed and used to 

estimate accelerograms. These concepts may be generalized for more complex 

rupture front propagation, including rupture velocity jumps and gradients. Based 

on these results, two methods of approximation for near-source records were 

proposed, in the first, an asymptotic approximation is obtained which gives the 

displacement and velocity as a single integral along an isochrone for every time 

point. The other method or critical ray approximation, which is appropriate for the 

synthesis of velocity and acceleration, gives closed-form expressions for the behavior 

near the wave fronts. These approximations are certainly more efficient for com- 

puter evaluation than the full numerical methods which are currently in use. Even 

more interesting is that it appears from our results that at high frequencies, the 

fault reduces to a finite number of critical points from which critical rays are emitted 

that completely dominate the strong motion. These critical points depend on the 

position of the observation point with respect to the fault barriers. This may explain 

the great complexity of accelerograms and their variability from one station to 

another. It does also suggest several ways in which the inversion of source param- 

eters from near-field observations may be approached. 
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