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ABSTRACT 

 
Face recognition is a very challenging issue and has 
attracted much attention over the past decades. This paper 
makes a new attempt to face recognition based on 3D 
point clouds by constructing 3D eigenfaces. First, a 3D 
mesh model is built to represent the face shape provided 
by the point cloud. Then, the principle component 
analysis (PCA) is used to construct the 3D eigenfaces, 
which describe each mesh model in a lower-dimensional 
space. Finally, the nearest neighbor classifier and 
K-nearest neighbor classifier are utilized for recognition. 
Experimental results on 3D_RMA, a likely largest 3D 
face database available currently, show that the proposed 
algorithm has promising performance with a low 
computational cost. 
Keywords: 3D eigenfaces, mesh model, 3D point cloud, 
3D face recognition 
 
 

1. INTRODUCTION 
 
Nowadays biometric identification has obtained a wide 
interest not only in the laboratory but also in civilian 
applications. Of all the biometrics features, face is among 
the most common and most reachable so that face 
recognition remains one of the most active research issues 
in pattern recognition. In the past decades, many works 
focus on the source of 2D intensity or color images. The 
recognition accuracy is sensitive to lighting conditions, 
expressions, viewing position and varieties of 
subordinates such as hair, glasses. So far, it is still 
difficult to develop a robust automatic 2D face 
recognition system. 

The 3D facial data can provide more geometric 
information for recognition than that of 2D images and 
has potential possibility to improve the performance of 
the system. With the development of 3D acquisition 
system, 3D capture is becoming faster and cheaper, and 
face recognition based on 3D information is attracting 
much attention. Some researches on curvature analysis 
[1,2,10] have been proposed for face recognition based on 
the high-quality range data from 3D laser scanners. In 
[3,4], a 3D morphable model was described with a linear 
combination of the shape and texture of multiple 

exemplars. This model could be fitted to a single image to 
obtain the individual parameters, which were used to 
characterize the personal features. Their results seemed 
very promising except that the modeling process incurred 
a high computational cost. Chen et al. [5] treated face 
recognition as a 3D non-rigid surface matching problem 
and divided the human face into rigid and non-rigid 
regions. The rigid parts are represented by point 
signatures to identify the individual. Beumier et al. [6,7] 
developed a 3D acquisition prototype based on structured 
light and built a 3D face database. They also proposed 
two methods of surface matching and central/lateral 
profiles to compare two instances. Both of them 
constructed some central and lateral profiles to represent 
the individual, and obtained the matching value by 
minimizing the distance of the profiles. It should be noted 
that there are two main difficulties facing 3D face 
recognition: high computational and spatial cost and 
inconvenient 3D capture. The existing methods usually 
have the high computational cost [3,4,6,7] or are tested on 
a small database [1,2,5,10].  

Eigenfaces based on 2D images have been proposed 
by Turk et al. [ 8 ] and applied to face recognition 
successfully. 3D Eigenfaces are also introduced for face 
modeling by Iwasa et al. [9]. Here, we use 3D eigenfaces 
for face recognition based on 3D point clouds. First, 3D 
mesh models (called mesh image) are built to describe the 
geometric features of individual faces. Each 3D mesh 
model can be considered as a 2D image that the grey 
value is the depth value of the mesh nodes. Then, PCA 
method is used to obtain dominant eigen vectors, called 
3D eigenfaces. Any new mesh model can be represented 
with the linear combination of these eigenfaces. Thus, one 
mesh model can be projected into the lower-dimensional 
space by these eigenfaces. 

The main contributions of this paper are as follows: 1) 
A robust method is developed to build the mesh model 
based on the scattered point cloud. 2) 3D eigenfaces are 
constructed to realize face recognition on the 3D_RMA 
database [6]. Since matching process is performed in a 
lower-dimensional space, it has a low computational and 
spatial cost. 

The remainder of this paper is organized as follows. In 
Section 2, we introduce how to obtain the mesh model 
from the 3D point cloud. The process of calculating 3D 



eigenfaces is described in Section 3. Section 4 illustrates 
the classifiers for face recognition. Section 5 reports the 
experimental results and gives some comparisons with 
existing methods. Finally, Section 6 summarizes this 
paper and future work. 

 
2. FACE MODELING 

 
Each instance in 3D_RMA is represented with one 3D 
scattered point cloud. We intend to build a regular mesh 
with a fixed number of nodes and facets to represent the 
shape of one human face. Moreover, the different meshes 
have the corresponding nodes and same poses. Our 
modeling process includes three steps: pre-modeling, 
calculating transformation and modeling as outlined in 
Fig.1. In the following, we’ll introduce them in detail. 

 
2.1. Pre-modeling 
 
Beginning with a simple basic mesh (see Fig.3a), a 
regular and dense mesh model is generated to fit the 3D 
scattered point cloud. We develop a universal fitting 
algorithm for regulating the hierarchical meshes to be 
conformed to the 3D points. This process includes two 
steps: initialization and hierarchical mesh fitting.  

(1) Initialization of basic mesh 
Our basic idea for modeling is to use optimization to 

tune the position of mesh nodes so that they are close to 
the point clouds perfectly. To keep the fitted result 
reasonable, one of the most pivotal problems is to give 
this fitting process a good initial value. Thus, it is 
necessary to detect some features correctly in the 3D 
scattered point clouds.  

Some algorithms [2,10] have been proposed to label 
some facial features based on the high-quality data 
obtained from the laser scanner. They do not work on 

3D_RMA data due to the limited quality, which has been 
proved in the literature [6,7]. Beumier et al. [6] also 
observed that the nose seems to be the only facial feature 
providing robust geometrical features for limited effort. 
We localize the prominent nose in the point cloud and 
utilize it to initialize the basic mesh as shown in Fig. 2a. 

In most cases, there is much noise around the brim of 
the point cloud. To avoid the effect of the noise, we 
ignore the points whose projection on X-Y plane is out of 
the basic mesh as shown in Fig.2b. 

(2) Hierarchical mesh fitting 
After initialization, the basic mesh is aligned with the 

point cloud. Nevertheless, the basic mesh is so coarse that 
the basic contour of human face cannot be described. The 
subdivision scheme [11] is utilized to refine the basic 
mesh, and at the same time the refined mesh is regulated 
according to the data at each level. With the proceeding of 
refinement and regulation, the mesh can represent the 
individual well level by level.  

Here, we describe the regulation in one refining level, 
which can be extended to all the levels. During the 
process of regulation, not only the nodes move forward to 
the 3D point cloud, but also the whole surface needs to be 
kept as smooth as possible. To meet with these two 
requirements, we define the following energy function: 

)(),()( αωαα smoothidis ExEE +=          (1) 
where ix  is a 3D point, α  is a parameter vector and 
ω  is the positive weighted factor. The distance term 

disE  means the sum of weighted squared distances from 
the 3D data points to the model. The smooth term 

smoothE  attempts to keep the local area planar as 
described in Marschner et al. [12].  

Minimizing )(aE  through regulating the fitted 
parameters a  is a global optimization problem, which 
can be solved well by Levenberg-Marquardt method [13]. 
To reduce the dimension of the fitted parameters, we only 
regulate the Z position of each node instead of regulating 
all the coordinates.  

Fig.3 shows the mesh after regulation in different 
refining levels. The mesh of level four is dense enough to 
represent the face surface. Of course, the denser the mesh 
is, the better the face is represented. Obviously, the denser 
mesh costs more time and space. In this paper, we use the 
mesh refined four times.  

 
2.2. Obtaining transformation 

 
The different point clouds have different position and 
rotation relative to the 3D equipment. The mesh model 
obtained from the previous step has the same pose to its 
corresponding point cloud. Thus we can get the 
transformation parameters from the mesh models rather 
than from the point clouds directly, which will save much 
time. 

First, an average mesh model is obtained by averaging 

Figure 2. Initialization of the basic mesh. (a) The basic
mesh is moved to the position of the nose tip in X-Y
plane. (b) The points outside the basic mesh are ignored. 

(a) (b) 

Y 

X 

Z 

Y
X

Z

Figure 1. Modeling process 

Pre-modeling

Transformation

Modeling

3D point cloud



the mesh models from pre-modeling process. This 
average model is considered as the ground model and all 
the models are rotated and translated to align with it. 

We define an energy function 
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where R and T mean the rotation and translation 
parameters respectively, in  is a node of the regulated 
model and zd  is the Euclidean distance from in  to the 
average model.  

There are six parameters (three translation and three 
rotation) to be considered. During the regulation, the 
rotation parameters are first tuned, and then the 
translation parameters (see Fig. 4 for this procedure). 

Before this optimization process, we obtain a good 
initialization by moving both models so that their nose tip 
nodes (center node of the basic mesh) are on the origin of 
the coordinate system. We use Levenberg-Marquardt 
method [13] to solve this problem again. In this 
processing, the nose tip node gives a good initialization, 
which avoids the local minima effectively. This process 
can converge rapidly, about 0.5 seconds. Finally, we 
obtain the result that the models have the best 
superposition with the average model, as well as the 
values of rotation and translation.  

 
2.3. Modeling 

 
We transform the original point clouds using the obtained 
values from previous section so that they have proper 
alignment with the average mesh model. The transformed 
point cloud is modeled in the same way as the first 
modeling stage. Thus all these built mesh models have the 
same pose and represent the facial geometric shape 

realistically. Next we will use this kind of model to 
construct 3D eigenfaces. 

Due to noise, wrong detection of nose tips and other 
unimagined reasons especially in automatic database in 
3D_RMA, some built mesh models cannot describe the 
geometric shape of the individual. These mesh models are 
called non-face models. Fortunately, the non-face models 
are rare (<5% in automatic DB) and we can find these 
models using the reconstructed error described in the 
following section. 

 
3. 3D EIGENFACES 

 
Each point cloud can be represented with a regular 3D 
mesh containing many nodes (545 nodes in our case). 
Obviously, all the faces have similar general shape and 
will not be randomly distributed in this huge space. We 
can find a lower-dimensional space to exactly describe 
the facial distribution using the idea of eigenfaces [8].  

We consider one 3D mesh as a two-dimensional 
intensity image. Each node of 3D mesh is regarded as a 
pixel of an intensity image and Z-coordinates of the mesh 
nodes are regarded as the intensity values. Thus a mesh 
image is generated, which is very similar to the 2D 
images. Each mesh model is represented with one d  
dimension vector M  where d  is the number of mesh 
nodes and each component is the value of Z-coordinates. 

Let mesh images in the training set be represented by 
1M , 2M , … , nM , where n  is the number of the 

training meshes. The average 3D mesh model averM  is 
calculated easily. Each mesh differs from the average 
with the vector averii MM −=Φ . Then one covariance 
matrix is constructed as follows 

T
n

i

T
ii AA

n
C =ΦΦ= ∑

=1

1             (3) 

The matrix C is 545 by 545 and we can obtain its 
eigenvalues and corresponding eigenvectors by solving 
an alternative matrix AAT  ( nn by  ) [8].  

Generally, we can obtain 1−n  non-zero eigenvalues 
and 1−n  orthogonal eigenvectors. We can select the 
first )( nee <  largest eigenvalues to approximate the 
facial geometric space and their corresponding 
eigenvectors are 1u , 2u ,…, eu , which are called 3D 

(a) (b) (c) (d) (e) 
Figure 3. The regulated mesh models in different levels. (a) Basic mesh. (b) Level one. (c) Level two. (d) Level
three. (e) Level four. 

Figure 4. Transformation between the average model
(black) and one individual model (red). (a) The average
model and the individual model. (b) Models after
transformation. (c) Transformation parameters. 
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eigenfaces.  
To show the results realistically, we use one database 

(Manual DB, session1, 90 instances) to obtain the 3D 
eigenfaces. Fig.5 shows the average mesh model, and 
Fig.6 shows the first six largest 3D eigenfaces. In our 
experiments, the first 20 eigenvalues occupy almost all 
the energy (98%). 

To a new mesh model M , it can be transformed into 
this e-dimensional space by a simple operation 

eiuMM i
T

averi ,...,2,1,)( =−=ω .     (5) 
Thus, each mesh model will become one point in the 
e-dimensional space.  

We also reconstruct the mesh model according to the 
coefficients of the eigenfaces: 
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The reconstructed error can be described as 
)()( recon

T
recon MMMMdiff −−= .    (7) 

With further observation, we can find that the 
reconstructed error is small if the mesh model is like the 
human face; otherwise it is large. Intuitively, we can 
preset a threshold, which determines whether one mesh is 
a face mesh or not. We test it on the set of the first 90 
instances of automatic DB (session1) and the 
reconstructed error is showed in Fig.8. The meshes of 
No.14, 20, 37 and 38 have big reconstructed error and 
thus, we can determine that they do not describe faces 
well. The mesh model of No.38 and its reconstructed 
model are showed in the bottom row of Fig.7. During the 
recognition process, we can remove the non-face models 

in order to avoid their influence. 
 

4. FACE RECOGNITION 
 
All the 3D point clouds in one database are approximated 
with 3D meshes, which are divided into the training and 
the testing sets. Then 20 most dominant 3D eigenfaces are 
obtained (98% of the total energy) from the training set. 
We transform the mesh models into this 3D eigenface 
space and each mesh model has one coefficient vector 

120×∈ RVi , which forms the gallery set ),...,,( 21 nVVV .  
The testing mesh model is also projected into the same 

3D eigenface space and forms the vector 120×∈ RV , 
which is then compared to the vectors in the gallery set 
using the Euclidean metric T

iii VVVVd ))(( −−= . We 
use the nearest neighbor classifier (NN) and K-nearest 
neighbor classifier (KNN) respectively to determine 
which classification the tested sample belongs to. Here 
our focus is to validate the separability in the 
lower-dimensional space and only classifiers are used. 
More sophisticated classifiers may be applied to improve 
the recognition accuracy. 

 

Figure 8. Reconstructed errors of the mesh models on
automatic DB, seesion1 in 3D_RAM. Non-face models
have big reconstructed error. 

Figure 7. Original mesh models (left) and reconstructed
models (right). The top row has small reconstructed error
and the bottom has big error. 

Figure 6. First six largest 3D eigenfaces 

Figure 5. Average mesh image 



5. EXPERIMENTS 
 

To demonstrate the performance of our proposed method, 
we implement it on the 3D database 3D_RMA. All these 
tests are finished under the hardware environment of P  Ⅳ
1.3G CPU and 128M RAM.  

 
5.1. 3D face databases 
Our experiments are done on the 3D face database 
3D_RMA [6, 7], where each face is described with a 3D 
scattered point cloud, obtained by structured light. 
Compared with the data obtained from the laser scanner, 
these point clouds are of limited quality (Fig.9).  

The database includes 120 persons and two sessions: 
Nov. 97(session1) and Jan. 98 (session2). In each session, 
each person is sampled three shots, corresponding to 
central, limited left/right and up/down poses. People 
sometimes wear their spectacles, and beards and 
moustaches are also represented. From these sessions, 
two databases are built: automatic DB (120 persons) and 
manual DB (30 persons). Two 3D point clouds from 
manual DB and automatic DB are showed in Fig. 9 
respectively and each shot shows the front and profile 
views. Here we can see that the quality of manual DB is 
better than that of automatic DB. 

5.2. Experimental results 
Identification accuracy is evaluated with the different sets 
in 3D_RMA. Considering the limited quantity of the 
samples, we use the method of Leave-one-out Cross 
Validation. In each data set, all the point clouds are 
represented with mesh models. Each time we leave one 
mesh image out as a test sample and train on the 
remainder. After computing the similarity differences 
between the test sample and the training data, the nearest 
neighbor (NN) and K-nearest neighbor (KNN) are then 
applied for classification. Table 1, Table 2 and Table 3 
summarize the Correct Classification Rate (CCR) in 
manual DB, first 30 persons of automatic DB and all 
persons of automatic DB. 

To avoid their influence of non-face models, we 
evaluate the CCR after removing them and the results are 
shown in the last two columns in Table 2 and Table 3. 

In addition, we use one more familiar method, 
Cumulative Match Score (CMS) [14], to evaluate the 
identification performance. Fig.10 and Fig.11 show the 
CMS curves using the NN classifier on manual DB and 
automatic DB (first 30 persons and 120 persons, with and 

without non-face models) respectively.  
From an overall view of Table 1-3, Fig.10-11, we can 

draw the following conclusions: a) Identification 
performance on manual DB is better than that on 
automatic DB since the data on manual DB has better 
quality (comparing Table 1 with Table 2). b) The non-face 
models in automatic DB affect the performance strongly, 
which is distinctly showed in Table 2-3 and Fig.11. This 
can remind us that the recognition performance can be 
improved by building better models further. c) The NN 
and KNN classifiers have similar performance in all the 
databases (see Table 1-3). d) The increase of the training 
samples can improve CCR (see Table 1-3 and Fig.10). e) 
The reconstructed error strongly affects the identification 
accuracy. The smaller the reconstructed error is, the 
higher the correct rate is. To explain this further, Fig.12 
shows the CCR in different reconstructed error intervals 
on one automatic DB.  

 
5.3. Comparisons 
We make detailed comparisons with some existing 
methods to show the feasibility of our algorithm. 

(1) Our method has a lower computational cost. Our 
modeling process costs more time (about 2s for each) 
while the matching process costs little time due to only 
calculating the Euclidean distance between two points in 

Table 1. CCR in Manual DB (30 persons) 
Database NN (%) KNN (%)

Manual DB, session1 
(3 instances for each) 92.2 92.2 

Manual DB, session2 
(3 instances for each) 84.4 84.4 

Manual DB, session1-2
(6 instances for each) 93.9 93.9 

 
Table 2. CCR in Automatic DB (First 30 persons) 

First 30 
models 

Non-face meshes 
removed 

(22 persons) Database 
NN 
(%) 

KNN 
(%) 

NN 
(%) 

KNN 
(%) 

Automatic DB, session1
(3 instances for each) 71.1 73.3 83.3 83.3 

Automatic DB, session2
(3 instances for each) 80.0 80.0 89.4 89.4 

Automatic DB 
(6 instances for each) 80.6 82.2 92.4 92.4 

 
Table 3. CCR in Automatic DB (120 persons) 

All models 
(120 persons) 

Non-face 
meshes removed

(91 persons) Database 
NN 
(%) 

KNN 
(%) 

NN 
(%) 

KNN
(%) 

Automatic DB, session1
(3 instances for each) 59.2 60.3 71.1 71.8 

Automatic DB, session2
(3 instances for each) 59.2 61.1 67.4 68.5 

Automatic DB 
(6 instances for each) 69.4 71.1 79.3 80.2 

Figure 9. 3D point cloud from manual (a) and automatic
DB (b) of 3D_RMA respectively; 

(a) (b) 



a lower dimensional space. Beumier et al. [6] develop 
surface matching (SURF) and central/lateral profiles 
(CLP) to realize face authentication and their verification 
performance is close to ours as shown in Table 4. 
However, their matching process is an optimization 
process, which incurs a high computational cost (at least 
0.5s for each matching). 

In [3,4], a 3D deformable generic model is developed 
to build the individual model according to a single image 
and the shape and texture parameters are applied to face 
recognition. Although their results seem promising, the 
modeling process is very slow: about 40 minutes. 

(2) Our algorithm is tested on a bigger and more 
complex database. Gordon [2] obtained the higher 
recognition rate (100%) using depth and curvature 
features because they adopted a small database (only 8 
persons) with high-quality range data (similar to Fig.10c) 
and is without eyeglasses, beards or pose difference.  

Chua et al. [5] used the rigid region to characterize the 
individual in order to conquer the influence of the 
expressions. They tested their algorithm with only six 
objects (four expressions for each, without pose 
variations) and obtained promising results. Our algorithm 
is performed on 3D_RMA, which contains up to 120 
persons with different pose and expression variations. 

 
6. CONCLUSIONS 

 
Inspired by eigenfaces based on 2D images, we propose 
3D eigenfaces using statistical principal component 
analysis after constructing 3D mesh models to 
characterize the geometric features of the personal faces. 
The recognition is performed in the lower-dimensional 
space formed by 3D eigenfaces, which incurred a low 
computational and spatial cost. The proposed algorithm is 
tested with the 3D_RMA database, a likely largest 3D 
face database currently. The results and comparisons with 
previous works have demonstrated the feasibility of the 

algorithm. In the future, we will focus on improving the 
accuracy of mesh models as well as using other statistic 
methods to improve the identification rate. 
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