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Abstract. This paper presents a novel, three-stage, auto-associative
memory based on lattice algebra. The first two stages of this memory con-
sist of correlation matrix memories within the lattice domain. The third
and final stage is a two-layer feed-forward network based on dendritic
computing. The output nodes of this feed-forward network yield the de-
sired pattern vector association. The computations performed by each
stage are all lattice based and, thus, provide for fast computation and
avoidance of convergence problems. Additionally, the proposed model is
extremely robust in the presence of noise. Bounds of allowable noise that
guarantees perfect output are also discussed.

1 Introduction

The computational framework of morphological associative memories involves
lattice algebraic operations, such as dilation, erosion, and max and min product.
Using these operations, two associative memories can be defined. These memories
can be either hetero-associative or auto-associative, depending on the pattern
associations they store. The morphological auto-associative memories are known
to be robust in the presence of certain types of noise, but also rather vulnerable
to random noise [1–4].

The kernel method described in [1, 3, 5] allows the construction of auto-
associative memories with improved robustness to random noise. However, even
with the kernel method, complete reconstruction of exemplar patterns that have
undergone only minute distortions is not guaranteed. In this paper we present
a new method of creating an auto-associative memory that takes into account
the kernel method discussed in [1, 3] as well as a two-layer morphological feed-
forward network based on neurons with dendritic structures [6–8].

2 Auto-associative Memories in the Lattice Domain

The lattice algebra in which our memories operate is discussed in detail in [1]. In
this algebraic system, which consists of the set of extended real numbers R±∞
and the operations +, ∨ and ∧, we define two matrix operations called max
product and min product, denoted by the symbols ∨ and ∧ , respectively. For
an m× p matrix A and a p×n matrix B with entries from R, the m×n matrix
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Fig. 1. Images p1, . . . ,p6, converted into column vectors x1, . . . ,x6, and stored in the
morphological auto-associative memories WXX and MXX .

C = A ∨ B has the i, jth entry cij =
∨p

k=1(aik + bkj). Likewise, the i, jth entry
of matrix C = A ∧ B is cij =

∧p
k=1(aik + bkj).

For a set of pattern vectors X = {x1, . . . ,xk} ⊂ R
n we construct two

natural auto-associative memories WXX and MXX of size n × n defined by
WXX =

∧k
ξ=1

[
xξ × (−xξ)′

]
and MXX =

∨k
ξ=1

[
xξ × (−xξ)′

]
. Here the sym-

bol × denotes the morphological outer product of two vectors, such that x×x′ =
x ∨ x′ = x ∧ x′. In [1] we proved that

WXX ∨X = X = MXX ∧X , (1)

where X can consist of any arbitrarily large number of pattern vectors. In other
words, morphological auto-associative memories have infinite capacity and per-
fect recall of undistorted patterns.

Example 1. For a visual example, consider the six pattern images p1, . . . ,p6

shown in Fig. 1. Each pξ, ξ = 1, . . . , 6, is a 50 × 50 pixel 256-gray scale image.
For uncorrupted input, perfect recall is guaranteed by Eq. (1) if we use the
memory WXX or MXX . Using the standard row-scan method, each pattern
image pξ can be converted into a pattern vector xξ =

(
xξ

1, . . . , xξ
2500

)′ by
defining xξ

50(r−1)+c = pξ(r, c) for r, c = 1, . . . , 50.

Morphological associative memories are extremely robust in the presence
of certain types of noise, missing data, or occlusions. We say that a distorted
version x̃ξ of the pattern xξ has undergone an erosive change whenever x̃ξ ≤ xξ

and a dilative change whenever x̃ξ ≥ xξ. The morphological memory WXX is a
memory of dilative type (patterns are recalled using the max product) and thus
is extremely robust in the presence of erosive noise. Conversely, the memory
MXX , of erosive type, is particularly robust to dilative noise.

Several mathematical results proved in [1] provide necessary and sufficient
conditions for the maximum amount of distortion of a pattern that still guar-
antees perfect recall. In spite of being robust to the specific type of noise they
tolerate, the morphological memories WXX and MXX can fail to recognize pat-
terns that are affected by a different type of noise, even in a minute amount.
Thus, WXX fails rather easily in the presence of dilative noise, while MXX fails
in the presence of erosive noise. Additionally, both types of morphological mem-
ories are vulnerable to random noise, i.e. noise that is both dilative and erosive
in nature.

The following experiment illustrates this behavior of the lattice auto-associ-
ative memories. Figure 2 shows the images p1, . . . ,p6 in which 75% of the pixels
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Fig. 2. Images corrupted with 75% random noise (both dilative and erosive) in the
range [−72, 72]. Pixel values are in the range [0, 255].

Fig. 3. Incorrect recall of memory WXX when presented with the noisy input images
from Fig. 2. The output appears shifted towards white pixel values.

have been corrupted by random noise. The noise has uniform distribution and
is in the range [−72, 72]. When the pixel values affected by noise become less
than 0 or greater than 255, the result is clamped at 0 and 255, respectively. The
range of noise has been chosen by calculation, in order to compare the memories
WXX and MXX to the ones based on the dendritic model, as discussed in the
subsequent sections of this paper.

The output of the memory WXX when presented with the patterns corrupted
with random noise is illustrated in Fig. 3. When compared to the original images
from Fig. 1 stored in the memory, the patterns recalled by WXX appear to be
different from the original pξ, ξ = 1, . . . , 6. The output of WXX is offset toward
white (high pixel values), as WXX is applied dilatively via the max product.
A similar experiment will show that the output of MXX will be shifted toward
black (low pixel values), as MXX is a memory of erosive type, used in conjunction
with the min product.

Because of this failure of the memories WXX and MXX , we developed the
method of kernels to treat random noise. This method is discussed in detail
in [3]. Basically, a kernel for X is a set of vectors Z = {z1, . . . , zk} ⊂ R

n such
that ∀γ = 1, . . . , k,

1. zγ ∧ zξ = 0 ∀ξ �= γ ,
2. zγ contains exactly one non-zero entry, and
3. WXX ∨ zγ = xγ .
4. If zγ

i denotes the non-zero entry of zγ , then zγ
i = xγ

i .

Now if Z satisfies the above conditions and x̃γ denotes a distorted version
of xγ such that x̃γ

i = zγ
i , where zγ

i denotes the non-zero entry of zγ , then
WXX ∨ (MZZ ∧ x̃γ) = xγ . Here we assume that the set X of exemplar patterns
have non-negative coordinates, which is generally the case in pattern recognition
problems. If, however, x̃γ

i �= zγ
i , then perfect recall cannot be achieved. To over-
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come this shortcoming, we developed an extended model that takes into account
dendritic neural structures.

3 The Dendritic Model

The artificial neural model that employs dendritic computation has been mo-
tivated by the fact that several researchers have proposed that dendrites, and
not the neurons, are the elementary computing devices of the brain, capable
of implementing logical functions such as AND, OR, and NOT [9–14]. In the
mammalian brain, dendrites span all cortical layers and account for the largest
component in both surface and volume. Thus, dendrites cannot be omitted when
attempting to build artificial neural models.

Inspired by the neurons of the biological brain, we developed a model of mor-
phological neuron that possesses dendritic structures. A number of such neurons
can then be arranged on one layer, similarly to the classical single layer per-
ceptron (SLP), in order to build a single layer morphological perceptron with
dendritic structures (SLMP). This artificial model is described in detail in [8,
15] and only briefly summarized below due to page limitation.

Let N1, . . . , Nn denote a set of input neurons, which provide synaptic input
to the main layer of neurons with dendritic structures, M1, . . . , Mm, which is
also the output layer. The value of an input neuron Ni (i = 1, . . . , n) propa-
gates through its axonal tree to the terminal branches that make contact with
the neuron Mj (j = 1, . . . , m). The weight of an axonal branch of neuron Ni

terminating on the kth dendrite of Mj is denoted by w�
ijk , where the superscript

� ∈ {0, 1} distinguishes between excitatory (� = 1) and inhibitory (� = 0) input
to the dendrite. The kth dendrite of Mj will respond to the total input received
from the neurons N1, . . . , Nn and will either accept or inhibit the received input.
The computation of the kth dendrite of Mj is given by

τ j
k (x) = pjk

∧

i∈I(k)

∧

�∈L(i)

(−1)1−�
(
xi + w�

ijk

)
, (2)

where x = (x1, . . . , xn)′ denotes the input value of the neurons N1, . . . , Nn with
xi representing the value of Ni; I(k) ⊆ {1, . . . , n} corresponds to the set of
all input neurons with terminal fibers that synapse on the kth dendrite of Mj ;
L(i) ⊆ {0, 1} corresponds to the set of terminal fibers of Ni that synapse on
the kth dendrite of Mj; and pjk ∈ {−1, 1} denotes the excitatory (pjk = 1) or
inhibitory (pjk = −1) response of the kth dendrite of Mj to the received input.

It follows from the formulation L(i) ⊆ {0, 1} that the ith neuron Ni can have
at most two synapses on a given dendrite k. Also, if the value � = 1, then the
input

(
xi +w1

ijk

)
is excitatory, and inhibitory for � = 0 since in this case we have

−(
xi + w0

ijk

)
.

The value τ j
k (x) is passed to the cell body and the state of Mj is a function of

the input received from all its dendrites. The total value received by Mj is given
by τ j(x) = pj

∧Kj

k=1 τ j
k (x), where Kj denotes the total number of dendrites of Mj
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and pj = ±1 denotes the response of the cell body to the received dendritic input.
Here again, pj = 1 means that the input is accepted, whereas pj = −1 means that
the cell rejects the received input. The next state of Mj is then determined by an
activation function f , namely yj = f

(
τ j(x)

)
. Typical activation functions used

with the dendritic model include the hard-limiter and the pure linear identity
function. The single layer morphological perceptron usually employs the former.

For a more thorough understanding of this model as well as its computational
performance, we refer the reader to examples and theorems given in [7, 8, 15].

4 An Auto-associative Memory
Based on the Dendritic Model

Based on the dendritic model described in the previous section, we construct an
auto-associative memory that can store a set of patterns X =

{
x1, . . . ,xk

} ⊂ R
n

and can also cope with random noise. The memory we are about to describe will
consist of n input neurons N1, . . . , Nn, k neurons in the hidden layer, which
we denote by H1, . . . , Hk, and n output neurons M1, . . . , Mn. Let d

(
xξ,xγ

)
=

max
{∣
∣xξ

i − xγ
i

∣
∣ : i = 1, . . . , n

}
and choose an allowable noise parameter α with

α satisfying

α <
1
2

min
{
d

(
xξ,xγ

)
: ξ < γ, ξ, γ ∈ {1, . . . , k}} . (3)

For x ∈ R
n, the input for Ni will be the ith coordinate of x. Each neuron Hj

in the hidden layer has exactly one dendrite, which contains the synaptic sites
of the terminal axonal fibers of Ni for i = 1, . . . , n. The weights of the terminal
fibers of Ni terminating on the dendrite of Hj are given by

w�
ij =






−
(
xj

i − α
)

if � = 1

−
(
xj

i + α
)

if � = 0
,

where i = 1, . . . , n and j = 1, . . . , k. For a given input x ∈ R
n, the dendrite of

Hj computes τ j(x) =
∧n

i=1

∧1
�=0(−1)1−�

(
xi + w�

ij

)
. The state of the neuron Hj

is determined by the hard-limiter activation function

f(z) =
{

0 if z ≥ 0
−∞ if z < 0 .

Thus, the output of Hj is given by f
[
τ j (x)

]
and is passed along its axon and

axonal fibers to the output neurons M1, . . . , Mn.
Similar to the hidden layer neurons, each output neuron Mh, h = 1, . . . , n,

has one dendrite. However, each hidden neuron Hj has exactly one excitatory
axonal fiber and no inhibitory fibers terminating on the dendrite of Mh. Figure 4
illustrates this dendritic network model. The excitatory fiber of Mj terminating
on Mh has synaptic weight vjh = xj

h. The computation performed by Mh is
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Fig. 4. The topology of the morphological auto-associative memory based on the den-
dritic model. The network is fully connected; all axonal branches from input neurons
synapse via two fibers on all hidden neurons, which in turn connect to all output nodes
via excitatory fibers.

given by τh(q) =
∨k

j=1 (qj + vjh), where qj denotes the output of Hj , namely
qj = f

[
τ j(x)

]
. The activation function for each output neuron Mh is the simple

linear identity function f(z) = z.
Each neuron Hj will have output value f (qj) = 0 if and only if x is an element

of the hypercube Bj =
{

(x1, . . . , xn) ∈ R
n : xj

i −α ≤ xi ≤ xj
i +α, i = 1, . . . , n

}

and f (qj) = −∞ whenever x ∈ R
n\Bj . Thus, the output of this network will be

y = (y1, . . . , yn) =
(
xj

1, . . . , x
j
n

)
= xj if and only if x ∈ Bj . That is, whenever x

is a corrupted version of xj with each coordinate of x not exceeding the allowable
noise level α, then x will be identified as xj .

If x does not fall within the allowable noise level α specified by Eq. (3), then
the output will not be xj . We can, however, increase the geometric territory
for distorted versions of xj by first employing the kernel method. In particular,
suppose that X is strongly lattice independent and Z is a kernel for X satisfying
properties 1–4 specified earlier. Then, for each pattern xj , the user can add
the noise parameter α about zj as well, as shown in Fig. 5. This increases the
allowable range of noise. In particular, if |zj

i − xi| > α ∀i, then x is rejected as
an input vector. However, if x falls within any of the shaded regions illustrated
in Fig. 5, then the memory flow diagram x → MZZ → WXX → M → xj , where
M denotes the two-layer feed-forward dendritic network, provides perfect recall
output. That is, we first compute y = WXX ∨ (MZZ ∧ x) and then use y as
the input vector to the feed-forward network M . For purpose of illustration, we
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Fig. 5. The two patterns x1,x2 with corresponding kernel vectors z1, z2. The non-zero
entries of z1 and z2 are z1

2 and z2
1 , respectively. Every point on and between the lines

L(x1) and L(x2) is a fixed point of WXX . Similarly, every point on and between L(z1)
and L(z2) is a fixed point of MZZ .

used two independent vectors in R
2. The corresponding kernel vectors lie on the

coordinate axes. Observe that if x lies in the lightly shaded area above the line
L(z1), then MZZ ∧ x lies on the segment [a1, b1] ⊂ L(z1). If x lies within the
other shaded regions, then MZZ ∧ x = x. Everything within the parallelogram
〈a1, b1, d1, c1〉 (including [a1, b1]) will be mapped under WXX onto the segment
[c1, d1] ⊂ L(x1) and any point within the triangle specified by 〈c1, d1, e1〉 will be
mapped by M to x1. This schema can be easily extended to any dimension.

Example 2. To illustrate the performance of this auto-associative memory, we
stored the same exemplar patterns x1,x2, . . . ,x6 ∈ R

2500 used in Example 1 and
shown in Fig. 1. The images were then distorted by randomly corrupting 75%
of the coordinates within a noise level α, chosen to satisfy the inequality in (3).
Letting α = 2

5 min
{
d

(
xξ,xγ

)
: 1 ≤ ξ < γ ≤ 6

}
we obtain α = 2

5 ·180 = 72. This
is how the allowable amount of distortion [−72, 72] was chosen in Example 1,
and applied to the images resulted in the noisy patterns of Fig. 2. Using the same
corrupted patterns as input to the memory based on the model described here,
we obtain perfect recall, i.e. patterns identical to the input patterns in Fig 1.

5 Conclusions

We presented a new paradigm for an auto-associative memory based on lattice
algebra that combines correlation matrix memories and a dendritic feed-forward
network. We gave a brief overview of correlation matrix memories in the lattice
domain as well as single layer morphological perceptrons with dendritic struc-
tures, whose computational capability exceeds that of the classical single layer
perceptrons. Using a two-layer dendritic model, we defined an auto-associative
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memory that is able to store and recall any finite collection of n-dimensional pat-
tern vectors. We showed by example that this memory is robust in the presence
of noise where the allowable noise level depends only on the minimum Chebyshev
distance between the patterns.

The allowable noise level can be increased dramatically if the set of patterns
is strongly lattice independent. It follows from the description of this model that
recognition does not involve any lengthy training sessions but only straightfor-
ward computation of weights in terms of pattern distances. Convergence prob-
lems are non-existent as recognition is achieved in one step in terms of informa-
tion feed-forward flow through the network.
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