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ABSTRACT: 

 

One of the most basic classification tasks is to distinguish bare-soil areas from urban region. Bare-soil plays an important role in the 

ecosystem. It could be the reason of dust storms and the indicator of urban expansion. It is also important to monitor the bare-soil 

areas, but there was no good idea to automatically extraction bare-soil areas using existing method. In this work, a new bareness 

index (BI) has been developed and applied to map developing region in Pearl River Delta using Landsat OLI/TIRS data in 2013. The 

BI based on the logical combination of the Tasseled Cap transformation (TCB) and Normalized Difference Bareness Index (NDBaI). 

Results show that the BI not only has a good effect on the enhancement of bare soil information, but also on the inhibition of the 

background information, and improve the accuracy of detection. The results of this study could be of scientific and practical merits 

in regional remote sensing monitoring and improve the accuracy of land use classification. 

 

 

                                                                 

*  Corresponding author.  

1. INTRODUCTION 

Land use and land cover change (LUCC) is regarded as the 

single most important variable of global change affecting 

ecosystems with an impact on the environment that is at least as 

large as that associated with climate change (Vitousek, 1994; 

Skole, 1994). So, gaining a better understanding of the ways 

that land cover practices evolve is a primary concern for the 

global change research community (Southworth, 2004). Over 

recent years, scholars have increasingly turned to remotely 

sensed data to improve the accuracy of datasets that describe 

the geographic distribution of land cover at different scales (De 

Fries, et al., 1998). Considerable efforts have gone into 

simplifying the process of automatically mapping land covers, 

such as using remote sensing feature indexes (Zha, et al., 2003). 

Researchers have developed many indexes based on the 

different land surface types, commonly used are Normalized 

Difference Vegetation Index (NDVI), Normalized Difference 

Snow Index (NDSI), Normalized Difference Water Index 

(NDWI), and Normalized Built-up Index (NDBI) and so on. 

These methods have been validated in the researches of land 

cover classification, for example, the use of NDVI data for land 

cover classification of vegetation types has become increasingly 

successful (Hansen, et al., 2000; Azzali and Menenti, 2000). 

 

Bare-soil plays an important role in the ecosystem. It could be 

the reason of dust storms (Chen, 2004) and the indicator of 

urban expansion. It is also important to monitor the bare-soil 

areas, but there was no good idea to automatically extraction 

bare-soil areas using existing method. In the past, the most 

common are density slice using single or multiple bands and 

multispectral classification, both the method of supervised and 

unsupervised (e.g. ISODATA-unsupervised classification, 

principal components analysis (PCA), tasseled cap transfor-

mation (TCB), maximum-likelihood supervised classification). 

The TCB was originally constructed for understanding the 

phenomena of crop development in spectral space with Landsat 

data. It is a useful tool for compressing spectral data into a few 

bands associated with physical scene characteristics. The 

tasseled cap transformation of Landsat data consists of six 

multispectral features; three of the six tasseled cap transform 

bands are often used: B (brightness, measure of soil), G 

(greenness, measure of vegetation) and W (wetness, interrela-

tionship of soil and canopy moisture) (Ouma and Tateishi, 

2006). B change a component is closely related to the bare-soil 

information extraction soil brightness index. 

 

Southworth (2004) find that the thermal infrared band (TIR) of 

Landsat TM measures the emission of energy from the Earth’s 

surface and, as this is a function of the surface cover, it can be 

used as a determinant of land cover type based on the 

temperatures measured. According to this principle, Zhao & 

Chen (2005) build a normalized difference bareness index 

(NDBaI) for mapping of the bare-soil areas from the satellite 

images. This index is based on the difference between strong 

reflection of TIR radiation and near total absorption of middle 

infrared (MIR) wavelengths by bare-soil (Chen, et al., 2006). It 

is effective in distinguishing bare-soil from similarly built-up 

and vegetation. 

 

Sensors on Landsat satellites have been collecting images of the 

Earth's surface for nearly 40 years. These images play an 

irreplaceable role for earth observation. The successful launch 

of Landsat 8 on February 11, 2013 has made the research of 

theory and application based on OLI/TIRS image becomes 

hotspot at home and abroad. The Landsat 8 carries two 

instruments: the Operational Land Imager (OLI), collects image 

data for nine shortwave spectral bands (OLI1~ OLI7, OLI9) 

over a 185 km swath with a 30 m spatial resolution for all bands 

except a 15 m panchromatic band (OLI8); the Thermal Infrared 

Sensor (TIRS), collects image data for two thermal bands with a 
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100 m resolution over a 185 km swath. Quality of Landsat 8 

data is superior to its predecessors (e.g. MSS, TM, ETM+), 

inclusion of a 15-m resolution panchromatic band (OLI8), and 

two improved 100-m spatial resolution thermal infrared band 

(TIRS10, TIRS11). Nevertheless, in the premise of the spatial 

resolution in the data band are not completely unified, thermal 

infrared bands lower spatial resolution will lead to a lack of 

information of features. 

 

In this paper, we build a new methodology based on a logical 

combination of the two indices TCB and NDBaI for bare-soil 

areas mapping. This combined formulation is called the bare-

soil index (BI). And it is applied within a Landsat 8 data 

(WRS2: Path/Row =122/44, acquired on August 9, 2013) 

covering part of the Pearl River Delta of P.R. China. The results 

are very promising following extensive empirical, ground 

measurements and statistical comparisons. 

 

2. DATA AND METHODOLOGY 

2.1 Study area 

The Pearl River Delta (PRD) is located in Guangdong Province 

of South China, between 21°17.6'~ 23°55.9' N and 111°59.7'~ 

115°25.3' E. PRD has been selected as the study area 

considering its rapid urbanization in the past 30 years, which 

has been an important driver of China’s economic growth and 

place for the country’s growing integration into the global 

economy. PRD contains many cities and counties, including the 

city of Guangzhou, Shenzhen, Foshan, Nanhai, Dongguan, 

Zhongshan, Huizhou and Jiangmen, and the county of Boluo, 

Gaoming, Heshan and Xinhui (Figure 1), with a total population 

of 42.3 million, a total area of 41, 698 square kilometres. 

 

 

Figure 1. Location of Pearl River Delta. (a) Bound of China, (b) Administrative divisions of Guangdong Province and study area, 

and (c) Study area 

 

2.2 Data and Image Pre-processing 

The Landsat 8 carries two instruments: the Operational Land 

Imager (OLI), collects image data for nine shortwave spectral 

bands (OLI1~ OLI9) over a 185 km swath with a 30 m spatial 

resolution for all bands except a 15 m panchromatic band 

(OLI8); the Thermal Infrared Sensor (TIRS), collects image 

data for two thermal bands (TIRS10, TIRS11) with a 100 m 

resolution over a 185 km swath (Irons et al., 2012). 

 

A scene Landsat OLI/TIRS image covers an area of 185 × 185 

km, covering most areas in the PRD. The study data were taken 

from 9 August 2013 for Landsat 8 in a scene (path 122, row 044) 

of Level 1 (L1). And the data can be downloaded from the 

Center for Earth Observation and Digital Earth (CEODE, 

http://www.ceode.cas.cn/) or the Earth Resources Observation 

and Science Center  (EROS, http://glovis.usgs.gov/). 

 

OLI band data can be converted to Top Of Atmosphere (TOA) 

reflectance using reflectancerescaling coefficients provided in 

the product metadata file (MTL file).  The following equation is 

used to convert DN values to TOA reflectance for OLI data as 

follows (USGS, 2013): 

   
   

  
sin( )

cal

SE

M Q Aρ ρρλ
θ
+

=                            (1) 

where:  

ρλ = TOA planetary reflectance.  

Mρ = Band-specific multiplicative rescaling factor from the 

metadata (REFLECTANCE_MULT_BAND_x, where x is the 

band number). 

Aρ  = Band-specific additive rescaling factor from the metadata 

(REFLECTANCE_ADD_BAND_x, where x is the band 

number). 

(a) 

(b) 
(c) 
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Qcal = Quantized and calibrated standard product pixel values 

(DN). 

θSE = Local sun elevation angle. The scene center sun elevation 

angle in degrees is provided in the metadata (SUN_ELEVA-

TION).  

 

The removal of method was performed by using software 

ERDAS IMAGINE 2013. To analyse the bare-soil areas 

changes in the study region, multi-temporal images were geo-

referenced to a common UTM coordinate system and re-

sampled using the nearest neighbour algorithm with a pixel size 

of 30 m by 30 m for all bands except the TIR band. The RMSE 

of rectification was controlled less than 0.5 pixel. 

 

2.3 Tasseled Cap Brightness (TCB) 

The concept of tasseled cap transformation was originally 

constructed for understanding the phenomena of crop 

development in spectral space with Landsat MSS data. It is a 

useful tool for compressing spectral data into a few bands 

associated with physical scene characteristics . The tasseled cap 

transformation of Landsat TM or ETM+ consists of six 

multispectral features, three of the six tasseled cap transform 

bands are often used: B (brightness, measure of soil), G 

(greenness, measure of vegetation) and W (wetness, interre- 

lationship of soil and canopy moisture). The Tasseled Cap 

transformation provides useful information for agricultural 

applications because it allows the separation of bare-soils from 

vegetated and wet soils. Research has produced three data 

structure axes that define the vegetation information content. B 

change a component is closely related to the bare soil 

information extraction soil brightness index for Landsat, the 

computational model is as follows (Crist et al, 1986; Jensen, 

1996): 

Brightness = 0.3037*OLI 2 + 0.2793*OLI 3 + 0.4743*OLI 4 + 

0.5585*OLI 5 + 0.5082*OLI 6 + 0.1863*OLI 7         (2) 

Greenness =-0.2848*OLI 2 – 0.2435*OLI 3 – 0.5436*OLI 4 + 

0.7243*OLI 5 + 0.0840*OLI 6 - 0.1800*OLI 7          (3) 

Wetness = 0.1509*OLI 2 + 0.1973*OLI 3 + 0.3279*OLI 4 + 

0.3406*OLI 5 - 0.7112*OLI 6 - 0.4572*OLI 7          (4) 

where: OLIi represents digital number value (DN) of corresp- 

onding bands. 

 

2.4 Normalized Difference Bareness Index (NDBaI) 

Normalized Difference Bareness Index (NDBaI) was first 

introduced by Zhao & Chen in 2004. This index is based on 

significant differences of spectral signature in the nir-infrared 

(OLI 6) between the bare-soil and the backgrounds. However, it 

showed little difference between built-up areas and bare-soil 

areas in OLI 6 (Figure 2) (Zhao & Chen, 2004). Figure 2 

suggests that further consideration of the visible may be 

necessary to determine the vegetation areas. In this work we 

propose to estimate the NDBaI by evaluating different NDBaIs 

based on the different spectral bands of Landsat. The 

computational models are as follows: 

     NDBaI1 = [OLI7 – TIRS]/[OLI7 + TIRS]               (5) 

NDBaI2 = [OLI6 – TIRS]/[OLI6 + TIRS]                (6) 

NDBaI3 = [OLI5 – TIRS]/[OLI5 + TIRS]                (7) 

NDBaI4 = [OLI4 – TIRS]/[OLI4 + TIRS]                (8) 

NDBaI5 = [OLI3 – TIRS]/[OLI3 – TIRS]                 (9) 

NDBaI6 = [TOA6 –TOA5]/[TOA6 + TOA5]             (10) 

NDBaI7 = [TOA5 – TOA4]/[TOA5 + TOA4]             (11) 

where: OLIi represents digital number value (DN) of corresp- 

onding bands, TIRS represents digital number value (DN) of 

TIRS10 for OLI, TOAi represents TOA reflectance of corresp- 

onding bands. 

 

 

Figure 2.  Spectral profiles of six typical land covers in the 

study area  

 

3. APPLICATION AND RESULTS 

3.1 Methodology for Test Case Using Shekou Peninsula 

Firstly, we performance of each of the NDBaIs and TCB by 

comparing results from OLI data for Shekou Peninsula in 

Shenzhen, for different background of the bare-soil areas with 

interesting features/characteristics. The Shekou Peninsula was 

chosen for the test because coastal reclamation has been carried 

out along the coastal areas near Shenzhen, China in a large 

scale since 1980s by dumping fill materials over the marine 

mud at the sea bottom (Huang, et al., 2007). In addition, the 

authors have a good physical knowledge of the peninsula.  

 

 

Figure 3.  The false color image (R(6)G(5)B(4)) of test area 

 

A comparison between the TCB and the NDBaI1-7 maps are 

presented in Figure 4(a) and 4(b)–4(h) derived from OLI data of 

Aug. 9, 2013. TCB (Figure 4 (a)) NDBaI1(Figure 4(b)), and 

NDBaI2 (Figure 4(c)) results increase the bare-soil very well, 

comparing the entire scene, the bare-soil is well delineated with 

bright pixels. NDBaI3 (Figure 4(d)) results increase the bare-

soil very well, but the vegetation aslo delineated with bright 

pixels too, this method does not apply southern humid areas of 

bare soil information extraction. A visual comparison of 

NDBaIs results shows that NDBaI1 (Figure 4(b)) and NDBaI4 

(Figure 4(e)) present a nearly similar output. NDBaI6 (Figure 

4(g)) results also increase the bare-soil very well, but the water 

body aslo delineated with bright pixels too, this method does 

not apply southern humid areas of bare soil information 

extraction too. From the visual point of view, the tasseled cap 

transformation (TCB), NDBaI1, NDBaI2 and NDBaI4 have the 

better extraction results than others. 
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Figure 4.  Results of TCB (a) and NDBaI1-7 (b~h) for Shekou Peninsula in Shenzhen 
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3.2 Comparison of TCB with the NDBaIs Results 

To evaluate the significance of the results, we empirically 

analyzed the results of the NDBaIs. We selected unique 

sections of the test area: (i) bare-soil area (A); (ii) water body 

area (B); (iii) vegetation area (C); and (iv) built_up area (D). In 

figure 3 (false color composite of OLI bands 6, 5 and 4), 

sections A, B, C and D of the test area are marked out. 

Calculating the contrast value (C) between bare-soil with the 

background to quantitative evaluation of the difference between 

the NDBaIs. The computational model as follows: 

C a b= −                                        (12) 

where: C is contrast value, a  is the mean value of bare-soil 

area, b  is the mean value of background areas. 

Table 1  Mean values of  NDBaIS bands and the contrast value (C) between  bare-soil area with the background areas 

 bare-soil water vegetation built_up C_ab C _ac C _ad 

TCB
*
 0.6105 0.1146 0.2453 0.3256 0.4959 0.3653 0.2849 

NDBaI1 -0.2437 -0.6047 -0.5092 -0.3746 0.3610 0.2655 0.1309 

NDBaI2 -0.0943 -0.5763 -0.4070 -0.3230 0.4819 0.3127 0.2286 

NDBaI3 -0.1317 -0.5489 -0.1796 -0.3455 0.4172 0.0479 0.2138 

NDBaI4 -0.2519 -0.4730 -0.5950 -0.4184 0.2212 0.3431 0.1665 

NDBaI5 -0.3183 -0.4159 -0.5371 -0.4276 0.0976 0.2187 0.1093 

NDBaI6 0.0476 -0.1115 -0.3552 0.0382 0.1592 0.4028 0.0094 

NDBaI7 0.1648 -0.2291 0.7296 0.1363 0.3939 0.5648 0.0285 

      Note: TCB
* 

is the normalized values of TCB iamge. 

 

Table 1 shows that TCB gave the best results in inhibition of 

influence from water bodies and buildings on bare-soil, 

followed by NDBaI2 and NDBaI3. NDBaI7 gave the best results 

in inhibition of influence from vegetation, followed by NDBaI6 

and TCB. NDBaI2 gave the results in inhibition of the back-

ground surface features are not the best, but the contrast 

between the average value is more suitable for bare soil to 

extract information in complex environments. 

 

From all the above results, it is consistently observed that TCB 

and NDBaI2 gave the best results. 

 

3.3 Bare-soil Index (BI) 

Following empirical analysis of the results, TCB gave better 

results than either of the NDBaIs. However, the problem of a 

clearly defined bare-soil area is persistent in both the results; 

that is, crispness does not imply higher accuracy and fuzziness 

does not necessarily mean lower accuracy. Striking a balance 

between these two observations is a way forward to accurate 

bare-soil area detection from remote sensing data. A new bare-

soil Index (BI) has been proposed that combines the TCB and 

NDBaI2 to accurately delineate the bare-soil. The model as 

follows: 

2( , )BI f TCB NDBaI=                     (13) 

where: f denotes a function, TCB  is the normalized values of 

TCB iamge, and 2NDBaI  is the normalized values of NDBaI2 

iamge. 

 

3.4 BI results of study area 

The results of BI based on Shekou Peninsula is illustrated in 

figures 5 for the Landsat OLI, respectively. The results show 

bare-soil area isolation from the rest of the scenes. Figures 5 for 

the Landsat OLI showing the bare soil can be well distinguish 

with the background, which was fuzzily represented before by 

the TCB and NDBaIs (figure 4), are now perfectly isolated. 

 

Figure 5. The BI results of study area 

 

4. CONCLUSION 

Bare-soil plays an important role in the ecosystem. It could be 

the reason of dust storms and the indicator of urban expansion. 

It is also important to monitor the bare-soil areas, but there was 

no good idea to automatically extraction bare-soil areas using 

existing method. In this paper, we build a new methodology 

based on a logical combination of the two indices TCB and 

NDBaI2 for bare-soil areas mapping. This combined 

formulation is called the bare-soil index (BI). And it is applied 

within a Landsat 8 data (WRS2: Path/Row =122/44, acquired 

on August 9, 2013) covering part of the Pearl River Delta of 

P.R. China. The results are very promising following extensive 

empirical, ground measurements and statistical comparisons. 
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