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Abstract

We describe a new approach to feature-based object recognition, using maximum a posteriori
(MAP) estimation under a Markov random field (MRF) model. The main advantage of this
approach s that it allows explicit modeling of dependencies between individual features of an
object. For instance, we use the approach to model the fact that mismatched features due
to partial occlusions tend to form spatially coherent groups rather than being independent.
Efficient computation of the MAP estimate in our framework can be accomplished by finding
a minimum cut on an appropriately defined graph. An even more efficient approximation,
that does not use graph cuts, is also presented. This approximation technique, which we call
spatially coherent matching (SCM), is closely related to generalized Hausdorff matching. We
report some Monte Carlo experiments showing that the SCM technique improves substantially
on the tradeoff between correct detection and false alarms compared with previous feature
matching methods such as the Hausdorff distance.

1 Introduction

In this paper we present a new Bayesian approach to object recognition using Markov random
fields (MREF’s). As with many approaches to recognition we assume that an object is modeled
as a set of features. The recognition task is then to determine whether there is a match
between some subset of these object features and features extracted from an observed image.
The central idea underlying our approach is to explicitly capture dependencies between
individual features of an object. Markov random fields provide a good theoretical framework
for representing such dependencies between features. Recent algorithmic developments make
it quite practical to compute the maximum a posteriori (MAP) estimate for the MRF model



that we employ (e.g., [2], [5]). Moreover, in several cases of practical interest, we present
even faster approximation methods that do not require graph algorithms.

Our approach contrasts with most feature-based object recognition techniques, as they
do not explicitly account for dependencies between features of the object. It is desirable to
be able to account for such dependencies, because they occur in real imaging situations. For
example, a common case occurs with partial occlusion of objects, where features that are
near one another in the image are likely to be occluded together. In our model, we assume
that the process of matching individual object features is described a priori by a Gibbs
distribution! associated with a certain Markov random field. This model captures pairwise
dependencies between features of the object. We then use mazimum a posteriori (MAP)
estimation to find a match between the object and the scene or to show that there is no such
match. While a number of probabilistic approaches to recognition have been reported in the
literature (e.g., [10], [9],[12]) these methods do not provide an explicit model of dependencies
between features.

We show that finding the best match using the Hausdorff fraction [6], [11] can be viewed
as a special case of our technique, where the dependencies between all pairs of features in
the object are equally strong. Therefore, our Bayesian framework can be seen as providing a
probabilistic understanding of generalized Hausdorft matching. With this view of Hausdorff
matching, it becomes apparent that one of the main limitations of the Hausdorff approach
is its failure to take into account the spatial coherence of matches between neighboring
features. That is, the Hausdorff approach does not account for the fact that in a local
neighborhood there tends to be a higher correlation between features. We thus suggest
a closely related method, which we call spatially coherent matching (SCM). This method
requires that matching features be more than some critical distance from features that do not
match, thus ensuring spatially contiguous sets of matching features. We present some Monte
Carlo experiments demonstrating that the SCM approach is a substantial improvement over
Hausdorff and other previous matching techniques, in cases where the image is cluttered with
many irrelevant features and there is substantial occlusion of the object to be recognized.

In the following section we present the MRF framework for recognition and the resulting
MAP estimation problem. Then in Section 3 we briefly discuss how recent results on graph
algorithms for solving MRF’s provide an efficient solution to this estimation problem. In
Section 4 we show that the generalized Hausdorff matching problem can be seen to be a spe-
cial case of this MAP-MRF framework, and then introduce the spatially coherent matching
approach to improve upon Hausdorff matching. Finally in Section 5 we present some Monte
Carlo experiments comparing the new SCM approach with Hausdorff matching.

2 The MAP-MRF Recognition Framework

In this section we describe our object matching framework in more detail. We represent an
object by a set of features, indexed by integers in the set M = {1,2,...,m}. Each feature
corresponds to some vector M; in a feature space of the object. Commonly the vectors
M; will simply specify a feature location (x,y) in a fixed coordinate system of the object,

'In Section 2.1 we briefly discuss the Gibbs distribution. See [8] for more details.



although more complex feature spaces fit within the framework.

A given image I is a set of observed features from some underlying true scene. Each
feature ¢ € I corresponds to a vector I; in a feature space of the image. The true scene can
be thought of as some unknown set of features /*" in the same feature space. Similarly, I
is a vector describing the feature i € I in the feature space of the image. We are interested
in finding a match between the object features M and the true scene features I'", using the
observed image features I.

A match of the object M to the true scene I*" is described by a pair {S, L} where
S = {51,S52,...,5m} is a collection of boolean variables and L is a location parameter. If
S; = 1 then the 7th feature of the object has a matching feature in I*" and if S; = 0 then it
does not. In the latter case we say the feature is mismatched. For example, the event

{Slzszzl, Sk+1:...:Sm:O,L:l}

implies that for 1 < ¢ < k, feature 7 of M has a matching feature j € I, such that
I" = M; @ L. Moreover, the last (m — k) features are mismatched, meaning they have no
such matching features. The operation & depends on the type of mapping from the object
to the image feature space, which varies for the particular recognition task. In this paper we
will use translation (vector summation), but other transformations are possible.

To determine the values of {5, L} we use the maximum a posteriori (MAP) estimate

{S*,L*} = arg max Pr(S, L|I).

Bayes rule then implies

{S*,L*} = arg max Pr(1|S,L) - Pr(S) - Pr(L), (1)

assuming that the distributions of S and L are a priori independent. The prior distributions
Pr(S) and Pr(L) are discussed in Section 2.1. We assume that the prior distribution of S is
described by a certain Markov random field, thus allowing for spatial dependencies among
the S;. The likelihood function Pr(7|S, L) is then discussed in Section 2.2.

Let £ denote a set of possible locations of the object in the true scene. Then the range
of the location parameter L is £ U @) where the extra value () implies that the object is not
in the scene. The basic idea of our recognition framework is to report a match between the
object and the observed scene if and only if

S* 40 and L* #0. (2)

In Section 2.3 we develop the test in (2) for the model specified in Sections 2.1 and 2.2.

2.1 Prior Knowledge

We assume that the prior distribution of the location parameter L can be described as

Pr(L) = (1—=p)- f(L) + p-6(L=10) (3)



where f(L) = Pr(L|L € L), the parameter p is the prior probability that the object is
not present in the scene, and §(-) equals 1 or 0 depending on whether condition “-” is
true or false. Generally the distribution function f(L) is uniform over £. However in some
applications f(L) can reflect additional information about the object’s location. For example,
such information might be available in object tracking since the current location of the object
can be estimated from its previous location. The value of the constant p may be anywhere
in the range [0,1). In Section 2.3 we will see that p appears in our recognition technique
only as a threshold for deciding whether or not the object is present given the image.

We assume that the collection of boolean variables, S, indicating the presence or absence
of each feature, forms a Markov random field independent of L. More specifically, the prior
distribution of S is described by the Gibbs distribution

Pr{S} o« exp {— Yoa-(1-5) = > Buj-0(S; # Sj)} (4)

€M {:,5}

where the second summation is over all distinct unordered pairs of features of the object.
This model captures the probability that features will not be matched even though they
are present in the true scene, given some fixed location, L. Such non-matches could be due to
occlusion, feature extraction error, or other causes. The parameter a > 0 is a penalty for such
non-matching features. The coefficient 3, ;3 > 0 specifies a strength of interaction between
features ¢ and j of the object. For tractability, this model captures only pairwise interaction
between features. Nevertheless, the pairwise interaction model provided by this form of
Gibbs distribution is rich enough to capture one important intuitive property: a priori it is
less likely that a feature will be un-matched if other features of the object have a match. Note
that if all 8; ;3 = O then there is no interaction between the features and the S;’s become
independent Bernoulli variables with probability of success Pr(S; = 1) = e*/(1+¢€*) > 0.5.

2.2 Likelihood Function

The features of the observed image I may appear differently from the features of the unknown
true scene I due to a number of factors. This includes sensor noise, errors of feature
extraction algorithms (e.g. edge detection), and others. It is the purpose of the likelihood
function to describe these differences in probabilistic terms.

We use the likelihood function

Pr(118,L) o ] g:(11S; 1) (5)

i€ M

where g;(-) is a likelihood function corresponding to the ith feature of the object. If S; = 0
or L = ( then g;(I|S;, L) is the likelihood of I given that the true scene does not contain the
ith feature of the object. We assume that all cases of a mismatching feature have the same
likelihood

where Cj is a positive constant.



If L € £ then ¢,(I|1, L) is the likelihood of observing image I given that the i-th feature
of the object is at location (L @ M;) in the feature space of the true scene I*". The choice of
9:(I|1, L) for L € £ will depend on the particular application.

Example 1 (Recognition based on edges) Consider an edge-based object matching
problem, where all features of the object are edge pixels. We observe a set of image features
I obtained by an intensity edge detection algorithm. One reasonable choice of g;(I|1, L) for
LeLlis

G(I[1,L) = C1- glds(L & My)) (7)

where d;(-) is a distance transform of the image features I. That is, the value of d;(p)
is the distance from p to the nearest feature in I. The function ¢(-) is some probability
distribution that is a function of the distance to the nearest feature. Normally, ¢ is a
distribution concentrated around zero. The underlying intuition is that if the true scene
I'™ has an edge feature located at (L & M;) then the observed image I should contain an
edge nearby. Thus the distance transform d;(L & M;) will be small with large probability.
A number of existing recognition schemes use functions of this form, including Hausdorff
matching [6] and Chamfer matching [1]. O

2.3 MAP Estimation

By substituting (3), (4), (5) into (1) and then taking the negative logarithm of the obtained
equation we can show that MAP estimates {S*, L*} minimize the value of the posterior
energy function

E(S,L) = { Hp($)=Inf(L) - In(1-p)  ifLel

H(S) — Inp ifL=0
where
Hy(S) = Y By 8(Si#8) + Y (a “lng(IlS, L) (8)
{17.7} ieM

Our goal is to find {S* L*}. The main technical difficulty is to determine {S,L} that
minimize Hr(S)—1n f(L) for L € £. In Section 3 we show how this can be done in the most
general case. For the moment simply assume that {5, L} are given.

Consider H(S) for L = 0. Equation (6) implies that Hp(S) is minimized by the config-
uration S = 1 where all S; = 1. If E(S,L) > E(1,0) then {S*, L*} = {I,0}. According to
(2), in this case we report that the object is not recognized in the scene. If E(S,L) < E(1,0)
then {S* L*} = {S,L}. In this case L* € £. Nevertheless, if $ = 0 we would still report
the absence of the object in the scene.

Finally, our recognition framework can be summarized as follows. The match between
the object and the observed scene is reported if and only if § # 0 and

. . 11—
H:i(S) - f(I) < m-ln— +In—2F (9)
Co P




where (9) is derived from E(S,L) < E(1,0). The right hand side of (9) is a constant that
represents a certain decision threshold. Note that this decision threshold depends on two
things: first, the prior probability of occlusion, p; and second, the product of the number of
features of the object, m, with the log-likelihood of a mismatch, Cj.

3 Energy Minimization

In our framework, the recognition problem is formulated as finding a pair {5‘, f,} that min-
imizes Hy(S) —In f(L) for L € L. In this section we briefly explain how to perform this
minimization in the most general case. In Section 4 we consider some special cases where
no sophisticated algorithmic scheme is needed to obtain {3, L}.

In the simplest formulation, this minimization problem can be solved in two steps. The
first step is to find an Sy, that minimizes Hp(S) for each fixed value of L € L, and the
second step is to find an L in £ that gives the smallest value for H(S;) —In f(L). More
sophisticated schemes can be envisioned that use properties of Hr(S) to avoid computing
its minimum for each possible value of L. For example, the techniques for pruning the
search space in Hausdorff matching [6, 11] can be applied in the special cases considered in
Sections 4.1 and 4.3. For the moment we simply consider checking all possible values of L.

The first step, of minimizing Hy(S), appears computationally quite difficult as the num-
ber of possible configurations of S is 2™. This number is astronomical in practice since we
consider objects where the number of features m > 100. Fortunately, the graph cut methods
developed in [5] and [2] can be applied to minimize Hy(S) exactly and efficiently. We now
briefly explain their technique in the context of our problem.

To minimize H(S) we need to find an optimal assignment of labels 1 and 0 to the
variables S; for i € M. Consider a graph G = (V, E) where V is a set of vertices and E is a
set of edges. The set V' consists of m vertices indexed by the names of the variables S; and
two terminal vertices indexed by the integers 1 and 0. The set of edges E consist of n-links
connecting pairs of S; vertices with each other and ¢-links connecting S; vertices with one of
the terminals. The structure of the graph is shown in Figure 1.

A cut C of the graph G is a subset of edges F such that the terminals 1 and 0 are
completely separated on the induced graph G(C) = (V,E — C). Note that a cut C of G
corresponds to a certain assignment of labels. If the vertex S; is connected to the terminal 1
on the induced graph G(C') then S; = 1 and if S; is connected to the terminal 0 then S; = 0.

We need to specify a cutting cost for all edges in . The n-link connecting the vertices S;
and S; costs By; ;3. Therefore, the stronger the interaction between features ¢ and j according
to the prior distribution in (4) the costlier it is to assign them different labels, that is, to cut
the edge between them.

The t-link between S; and the terminal 1 costs (o —In Cy) and the ¢-link between S; and
the terminal 0 costs —Ing;(I|1,L). According to (6), these edge cutting costs represent
the penalties in the second summation in (8) when S; is assigned 0 or 1, correspondingly.
Note that if the likelihood g;(I|1, L) is large then the cutting cost of the ¢-link between S;
and the terminal 0 becomes small. Intuitively speaking, this encourages assigning label 1 to
S;. Note also that Cy and g; have values between zero and one and, therefore, the weights



Figure 1: The graph G = (V, E).

of t-links are non-negative.

According to [5] and [2], the minimum cost cut on G gives an assignment to variables S,
that minimizes the value of H;(S) for a given L. The min cut problem is well studied in
combinatorial optimization. It can be solved exactly by the max-flow algorithm of Ford and
Fulkerson [3] or by the push-relabel algorithm of Goldberg and Tarjan [4]. The theoretical
running time is polynomial. In many practical problems its running time is close to linear.

4 Discussion of special cases

In this section we identify some interesting properties of our recognition framework by con-
sidering several special cases. We concentrate on the problem of finding an optimal match
configuration Sz that minimizes H(S) in (8) at a fixed location L € £. For the examples
below this problem can be solved without the graph cut technique of Section 3.

In Section 4.1 we show that Hausdorff matching is a special case of our framework. This
provides a probabilistic model for Hausdorff matching and suggests how Hausdorff matching
can be improved upon by taking into account spatial dependencies among the features.
We then consider models that account for spatial dependencies in Section 4.2, by imposing
some neighborhood system over the features. These neighborhood models yield a simple
technique which we call spatially coherent matching (SCM). This new technique is discussed
in Section 4.3, and is a natural generalization of Hausdorff matching.

4.1 Hausdorff Matching

In this section we show that Hausdorff matching is a special case of our framework where
the strength of interaction between features of the object is uniform, that is, 8 j; = 6 for
all {7, 7} where 3 is a non-negative constant. The classical Hausdorff distance is a max-min
measure for comparing two sets for which there is some underlying distance function on pairs
of elements, one from each set. The application of Hausdorff matching in computer vision



has used a generalization of this classical measure [6], that computes a distance quantile
rather than the maximum distance.

One form of the generalized Hausdorff measure is based on counting the number of
features of the object that are within some distance r of the nearest image feature. Let
Mp ={i € M :d;(L ® M;) <r} denote the subset of features of the object that are within
distance r of features of the image, when the object is positioned at location L. We call M,
a set of matchable features for a given location L. Then the Hausdorff approach matches
the object at L if and only if |Mp| > Const where |- | denotes the number of elements
in the set. The constant usually represents a critical fraction of the total number of object
features, m. Thus this measure is often referred to as the Hausdorff fraction.

In order to describe this measure using our framework we assume that g¢,(I|1,L) =
C1-g(d;(L @ M;)), as in Example 1. Moreover, we use the particular function

(@ z if d<r (10)
AR I T S

where 7 is the distance to the nearest image feature used in Hausdorff matching and in the
definition of the set M.

We then need the following notation. Any configuration S is uniquely defined by a
collection of integers 15 = {i € M : S; = 1} which is the subset of features of the object
assigned a match by S. Consider also 0g = {¢ € M : S; = 0}. Note that for any configuration
S we have 13 U0g = M and 15N 0g = @. Therefore, m = |15| + |0s].

Our approach is based on minimizing the function H.(S) in (8) for a fixed location
L € £. Equation (10) implies that if d;(L & M;) > r then g;(I|1,L) = 0. This means that
the likelihood of a match for a feature i« € M is zero if the image I does not contain any
features near L @ M;. Thus, one cannot assign S; = 1 if the ith feature of the object is such
that d;(L & M;) > r, and we must have 13 C M. Formally speaking, it is easy to check
that 1 € My, implies H.(S) = oo. If 1g C M|, then the second summation in (8) can be
rewritten as [0g| - (@ — InCp) — |1g] - In <.

The assumption that By ;3 = 6 for all {i,j} simplifies the first term of H;(S) in (8) to
B |1s|-|0s|. Since |0s| =m — [1g|, HL(S) can be rewritten as a function of a single scalar

) ALsl) i 1s € My
Hul3) = { 00 if 15 ¢ My (1)
where o
h(a:):ﬁ-a:-(m—a:)—m-(a+lnﬁ)—|—m-(a—ln00) (12)
0

is a concave down parabola shown in Figure 2.

Now we can show how to find a configuration Sy, that minimizes H(S) in (11) for a fixed
L. Equation (11) implies that 0 < |15| < |My|. Thus h(|1s|) is minimized by either |15| =0
or |1g| = |Mg|. It is straightforward to check that h(|My|) < h(0) if and only if |M.| > K

where o
o+ In 2

8
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a) Strong interaction (G > (). b) Weak interaction (0 < 8 < 3,).

Figure 2: Two typical cases of h(z) for § > (3, and 0 < § < (3, where 5, = (a +In %ﬂ)/m

Consequently, Sy # 0 if and only if |[M;| > K which is exactly the Hausdorff test described
above. That is, using the definition of g; in Example 1 and ¢ in (10) our framework computes
the Hausdorff matching using the Hausdorft fraction.

We close this section by noting that there are two qualitatively different cases depending
on whether K is positive or negative. Consider the threshold value (3, defined in Figure 2. If
B < B, then K < 0. In this case, the inequality |[M;| > K is always true and the configuration
Sy is always given by 1g, = M. Intuitively speaking, the dependencies between the features
of the object are so weak for 3 < 3, that each feature ¢ is matched at L as long as there
is some image feature within the distance r from L @& M,;. This can be described as an
independent matching of features.

If 3 > [, then K > 0. In this case | M| can be either greater or smaller than K depending
on L and on the observed image. If |M;| < K then Sy = 0 and if |Mp| > K then Sg
is given by 15, = M. Recall that |My| is the number of features of the object that are
within distance 7 of the closest image feature, when the object is positioned at L. Intuitively
speaking, if the dependencies between the features of the object are strong enough then they
are matched to the image at L if and only if the image fits a sufficiently large group of these
features at a given location. This can be described as a dependent matching of features.

4.2 Models with a Local Neighborhood System

In this section we consider another example where the optimal configuration S, minimizing
H(S) can be obtained without the general graph-cut technique of Section 3. Having seen
that the generalized Hausdorff measure can be viewed in our framework as having equal
weights between all pairs of features, we now consider models where features of the object
have higher weights connecting them to features within some local neighborhood. This model
captures the fact that nearby features of an object will tend to be matched or mismatched
together.

We denote by Ay, the set of all pairs of neighboring features for a given object M. We



assume that By, ;3 = 0 + By if the features {i,j} € Ny are neighbors and Gy; j; = ( if the
features {7,j} & N are not neighbors. The coefficients § and Sy are some nonnegative
constants. It is reasonable to expect that two neighboring features are more likely to have
the same label than a pair of features isolated from each other.

We assume that the likelihood g; is defined the same way as in Section 4.1. Then equa-
tion (8) can be written as

Hi(S) = (14)

By - b(S) + h(|1s]) if 14 C M;,

s it 1¢ Z My

where b(S) = |{i,j} € Nu : S; # S;| denotes the number of pairs of neighboring features

assigned opposite labels by the configuration S. For simplicity, we will refer to b(S) as the

number of N-discontinuities in the configuration S. The rest of notation is borrowed from
Section 4.1.

We would like to show how to find a configuration Sy that minimizes Hp(S) for a fixed
location L. Note that among all configurations S with a fixed size |1g| = z and such that
1g € My, there exists some configuration that has the smallest number of N-discontinuities.
Let

br(z) = min{b(S) :1s| = =, 1SgML} for 0 <z < |My

denote the corresponding minimal number of N-discontinuities for a given location L and size
z. In general, b,(0) = 0 and bz (|My|) is a number of N-discontinuities in the configuration
S given by 1g = M. For 0 < z < |My| the exact value of by(z) can be derived analytically
only in some simple cases.

For example, consider a model with a “chain” neighborhood system, as illustrated in
Figure 3(a). The nontrivial case is when |M| < m. Let G, = {G1,Go,...,G,,} denote the
set of all connected components (or groups) in a given My. Each group G € G is a subset
of features in My connected under the neighborhood system A};. Consider the example in
Figure 3(b). The features in My, are highlighted by shading. In this case G, = {G4,...,G4}.
In general, we can assume that the groups are indexed according to their size so that
|G1| > |G2| > ... > |Gn,|- Then the configuration S that has the smallest number of
N-discontinuities given that 1g C M, and |lg| = x can be obtained as follows. The key
idea is to assign x matches (S; = 1) to features of My, so that the matched features form the
smallest number of connected components possible. Thus, the matches should fill out the
largest groups of M. Assume that z satisfies |G1|+...+|Gr-1| < < |G1|+...+|Gk|. Then
all features in the groups G; through G_; should be assigned a match while the remaining
matches can be assigned to connected features in Gj. The number of N-discontinuities in the
obtained configuration S equals 2k. Clearly, it is the smallest number of N-discontinuities
for a given x. Therefore, if |My| < m then by(z) = 2k for >} |Gi| < z < ¥F,|Gi|. In
Figure 3(c) we show the plot of b.(z) for the example of My, in part (b) of the same figure.

Minimizing H(S) in (14) is equivalent to minimizing Sy - b(z) + h(z) for 0 < z < |M|.
If the function b;(z) is known then the exact minimum can be obtained. Similarly to
Section 4.1, minimization of H(S) is reduced to a one dimensional problem in this case.

10
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Figure 3: Example of a model with a “chain” neighborhood system.

4.3 Spatially Coherent Matching

The solution in Section 4.2 is primarily of theoretical interest because the closed form of
function bz (z) can be obtained only in a limited number of cases. In this section we introduce
another matching method that captures the stronger dependencies between features in a local
neighborhood. We call this method spatially coherent matching (SCM) because it takes into
account the fact that feature mismatches generally occur in coherent groups (e.g., due to
partial occlusion of an object). The SCM method can be implemented as an extension to the
Hausdorff matching computation discussed in Section 4.1. We also show that that the SCM
approach is a good approximation to the neighborhood scheme presented in the previous
section.

First we describe the SCM technique. We use some of the notation from Section 4.1.
Recall that My = {i € M : di(L & M;) < r} is the subset of object features lying within
distance r of image features, when the object is positioned at location L. As we saw before,
we can think of M as a set of matchable features of the object for a given location L, because
they are object features that are within the critical distance r of some image feature. The
Hausdorff fraction is computed from the size of this set, M. In addition, we define the
complementary subset of unmatchable features of the object Uy = {i € M | di(L & M;) >
r} = M — My, also corresponding to a fixed location L. The set Uy consists of features of
the object that are greater than distance 7 from any image features. Equation (14) implies
that 1¢ C M. Thus, we note that the features in Uy, must be mismatched (i.e., Uy C 0g).

The main idea of the spatially coherent matching scheme is to require that matching
features should form large connected groups. There should be no isolated matches. Assume
for the moment the chain neighborhood model of Section 4.2, where (i, ) denotes the
number of chains in the shortest sequence {i,i1}, {i1,%2}, ..., {%—1,j} in Ny connecting
two feature 7 and j in M. Let By denote the subset of features in My that are “near” features
of Uy. Thatis, By = {i € My |3 j € Ug,v(i,j) < R}, where R is a fixed integer parameter.
We will refer to By as a boundary of the set of matchable features My. For example, in

11



Figure 4: The spatially coherent matching technique. The set of matchable features M|,
is the same as in Figure 3(b). The features of My (covered by a shade) form four groups
G = {Gi,...,G4}. The unmatchable features Uy, are white. The boundary features By, for
R = 2 are shown black. In this case S is given by 15 = G; U G since G and Go are the
only groups in Gy, that contain some non-boundary features.

Figure 4 the black features are the boundary By corresponding to My in Figure 3(b) for
R = 2. The locally coherent matching technique works as follows. The main test is

|Mr| —|BL] > K (15)

where K is the same as in (13). Note that |My| — |Br| is the number of non-boundary
features in Mp. If (15) is false then S; = 0 and there is no match. If the number of non-
boundary features is sufficiently large so that (15) holds then the matching configuration is
S = S where

l; = U G. (16)

Gegr : G¢Byg,

Note that in (16) we include groups G in My which have some non-boundary features.
Therefore, the match is assigned only to those features which belong to sufficiently large
connected components in M. For example, in the case of Figure 4 we have 1z = G; U Gs.
The groups G3 and G4 are discarded because they lie completely inside the boundary Bj.

The spatially coherent matching technique is easy to implement using morphological
dilation. In practice the boundary set By can be estimated by dilating the unmatchable
features Uy in the object’s feature space by the radius R and then collecting the matchable
featuresin My, that lie in the dilated area. That is, the boundary features are those matchable
features that lie within distance R of some unmatchable feature.

The spatially coherent matching method can be seen as a generalization of Hausdorff
matching technique explained in Section 4.1, because the SCM techniques is equivalent to
Hausdorff matching when R = 0. For R > 0 the size of the boundary |B.| is small if
the matchable features M), are grouped in large connected blobs and |Bj| is large if the
matchable features are isolated from each other. Therefore, the SCM technique (for R > 0)
is reluctant to match if the features in M are scattered in small groups even if the size of
My is large. In contrast, Hausdorff matching cares only about the size of M and ignores
connectedness.
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Figure 5: Approximating the function h(z) by h(z).

We now show that the spatially coherent matching technique approximates the exact
solution for a model with a chain neighborhood system introduced in Section 4.2. We
consider the case when § > 3, so that K > 0. Then H(S) in (14) is well approximated by

1,(5) = By - b(S) + h(|15]) if 15 C Mg
o - 00 if 15 ¢ Mj.

We take h(z) = h(z) for 0 < z < K and h(z) = I(z) for K < < m where

z) = B-m-(K—2z) + m-(a—1nC))

is a line that agrees with A(z) at * = K and z = m, as shown in Figure 5(a). Figure 5(b)
illustrates that h(z) is a reasonable approximation of h(z) and, therefore, H(S) ~ H(S).

Theorem 1 Assume that the neighborhood system forms a chain and that S is defined as
in (16). Assume also that By = R-[3-m. Then the function Hy(S) is minimized by S if
(15) holds and by 0 otherwise.

The proof of Theorem 1 is split into three lemmas. Consider F(S) = By - b(S) + I(|15])-
Lemma 1 The configuration S minimizes the function F(S) over 15 C M.

PROOF: We need to minimize Sy - b.(z) + [(z). In Section 4.2 we found that for chain
neighborhood systems the function b7 (z) is determined by the sizes |G1| > ... > |G,,| of the
connected components in My. Following Figure 6, the function Sy -bz(z)+1(z) is minimized
by Z = |G1| +. ..+ |G| where k is such that |G| > %%Vl = 2R and |Ggy1| < %%Vl = 2R. Note
that the set 15 = G; U ... U G} consists of all connected components G € G which are not

inside By, that is, which have sizes > 2R. Therefore Z = |15| and b(S) = 2k = b(Z). ]

Lemma 2 The function Hi(S) is minimized by S if F(S) < h(0) and by 0 otherwise.

13
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Figure 6: The plot of Sy - br(z) +{(z) corresponding to br(z) in the example of Figure 3(c).
All intervals have the same slope —@m which is determined by the slope of the line [(z).
The vertical jumps between the intervals are all equal to 26y. In this example we have
Z = |G1] + |G2|. Note that Sm|Gsy| > 20y and fm|Gs| < 20y.

PrOOF: If z € [0, K] then h(z) > h(0). Thus, O minimizes H.(S) for 0 < |15 < K.
Let S° be a configuration minimizing Hy(S) for K < |1g| < |Mg|. If F(S) < h(0) then
[(|l15]) < h(0), and as illustrated in Figure 5(a), this implies that |15 > K. Note that
Hy(S) = F(S) for |1g] > K and 1g C M. Thus, Lemma 1 gives S° = S and H(S) =
F(S) < h(0) = Hp(0) implies that S is an optimal configuration. If F(S) > h(0) then
Hp(S°) = F(5°) > F(S) > h(0) = HL(0) and, therefore, the optimal configuration is 0. m

Lemma 3 The test F(S) < h(0) is equivalent to the inequality in (15).

Proor: We have F(S5) = By - b(S) + - m - (K — |15]) + h(0). By substituting |15| =
|G1|+ ...+ |Gk| and By = R - B - m we derive that F(S) < h(0) is equivalent to

|G4| 4+ ...+ |Gr| — R-b(S) > K. (17)
Note that 1 is a union of all groups G' € G, which are larger than 2R. Then R-b(S) = 2Rk
gives the number of boundary features inside 1. Since all non-boundary features of M, are
inside 15 then the left hand side of (17) gives the total number of non-boundary features,
that is |ML|—|BL| |

5 Monte Carlo results

In order to evaluate the recognition measures developed in this paper, we have run a series
of experiments using Monte Carlo techniques to estimate Receiver Operating Characteristic
(ROC) curves for each measure. A ROC curve plots the probability of detection along
the y-axis and the probability of false alarm along the z-axis. Thus, the ideal recognition
algorithms would produce results near the top left of the graph (low probability of false
alarm and high probability of detection).
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We use the experimental procedure reported in [7], where it was shown that Hausdorff
matching works better than a number of previous binary image matching methods including
correlation and Chamfer matching. For that reason we are mainly interested in comparing
the algorithms developed here with Hausdorff matching, because it has already been shown to
have better performance than these other techniques. Thus we contrast Hausdorff matching
with the graph cut algorithm and the spatially coherent matching techniques. In Section 5.1
we explain some extra details about implementing the new recognition schemes. In 5.2 we
discuss the Monte Carlo technique used to estimate the ROC curves and present the results.

5.1 Implementation of Recognition Techniques

In this section we provide some details of our implementation of the general graph cut
solution introduced in Section 3 and the SCM technique from Section 4.3.

Section 3 describes the graph cut technique that can be used to find a configuration S
minimizing H(S) in (8) for a fixed location L. This method is general and applies to any
recognition problem that can be expressed within the framework of Section 2.

The method requires finding a min cut on a graph, illustrated in Figure 1. For the
experiments presented in this paper we used the push-relabel algorithm [4] to find such a
cut. For objects with around 100 features this approach produced an optimal configuration
Sy, for a fixed location L in milliseconds. Since the best match {SA’, E} has to be chosen over
all L € £, we have to run the min cut algorithm for all possible locations of the object in
the image. In the experiments below the value of L specifies the translation of the object
in the image. For an image of size 100 x 100 pixels, with integral translations at the pixel
values, there are 10000 different values of L. Thus, the running time adds up to several
seconds per image. This performance of the general graph cut algorithm is acceptable for
our purposes. However, given that the Monte Carlo simulation requires processing a large
number of images we further accelerate the running time of our experiments by skipping
locations L in each image where the number of matchable features is less than 50% of the
total number of object features. The number of matchable features, My, can be computed
quickly using morphological techniques as explained below.

For our experiments we apply the general graph cut approach using the neighborhood
system described in Section 4.2. This allows us to evaluate the the exact solution of our
framework in this case. As was shown in Section 4.3, the spatially coherent matching is
closely related to this exact solution. The Monte Carlo results presented in the next section
support this.

The SCM technique is simple to implement using image morphology. Given the set of
model features, M, and location, L, the set of matchable features M are those within
distance r of image features. This can be computed by dilating the set of image features /
by radius r (replacing each feature point with a disc of radius 7). Now the set M, is simply
the intersection of M with this dilated image. The next step is to compute the boundary By
which is the subset of features in My that are within distance R of some feature in Up, the
set of unmatchable features. Recall that U, = M — M. Again, we can find features in one
set near the features in some other set using dilation. Dilating the set Uy by R, and taking
the intersection with My yields By, the points of My within distance R of points in Uy.
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Figure 7: Monte Carlo experiments.

The quality of the match produced by the spatially coherent matching technique at
each location L is determined by the number of non-boundary matchable features, that is,
by |Mr| — |Br|- Note that the search for the best match over all values of L € £ can
be accelerated using the same pruning techniques that were developed for the Hausdorff
measure [11]. This follows from a simple fact that if the Hausdorff measure gives no match
at L then the spatially coherent matching technique can not match at L either. It is easy to
see that | M| < K implies that the test in (15) is necessarily false.

5.2 ROC Curves

We have estimated ROC curves for the measures described above by performing matching
in synthetic images and using the matches found in these images to estimate the curve over
a range of possible parameter settings. 1000 test images were used in the experiments, and
were generated according to the following procedure. Random chains of edge pixels with a
uniform distribution of lengths between 20 and 60 pixels were generated in a 150 x 150 image
until a predetermined fraction of the image was covered with such chains. Curved chains
were generated by changing the orientation of the chain at each pixel by a value selected
from a uniform distribution between —§ and +%. An instance of the object was then placed
in the image, after rotating, scaling, and translating the object by random values. The scale
change was limited to +10% and the rotation change was limited to +{5. Occlusion was
simulated by erasing the pixels corresponding to a connected chain of the model image pixels.
Gaussian noise was added to the locations of the model image pixels (¢ = 0.25). The pixel
coordinates were finally rounded to the closest integer. This procedure was also used in [7].

For the experiments reported here, we performed recognition using the 56 x 34 object
shown in Figure 7(a). This object contains 126 edge features. An example of a synthetic
image generated using this object and the procedure described above is shown in Figure 7(b).
In each trial, a given matching measure with a given parameter value was used to find all
the matches of the object to the image. A trial was said to find the correct object if the
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a) Clutter =3% b) Clutter = 5%
Occlusion = 20% Occlusion = 20%

¢) Clutter =3% d) Clutter  =5%
Occlusion = 40% Occlusion = 40%

Figure 8: ROC curves for various levels of image clutter and occlusion of the object. The
black curve corresponds to the best result obtained by the general graph approach. The gray
curves correspond to the spatially coherent matching technique for various values of R: 0, 1,
2,4,7,10, 13,17, 21, 25. The best curves for the spatially coherent matching correspond to
R in the range of 17-25. The Hausdorff matching (R = 0) corresponds to the lowest curve
in all of the plots shown above.

position (considering only translation) of one of the matches was within three pixels of the
correct location of the object in the image. A trial was said to find a false positive if any
match was found outside of this range (and that match was not contiguous with a correct
match position). Thus note that the test images were formed by slight rotation and scaling of
the object model, but the searched was only done under translation. Any non-translational
change to the object was not modeled by the matching process.

Figure 8 shows the ROC curves corresponding to experiments with different levels of
occlusion and image clutter. The black curve shows the best results we could obtain from
the general graph approach. The gray curves correspond to the spatially coherent matching
technique for various values of R € [0,25]. As R gets larger, up to 20 or 21, the results
improve, so the curves closer to the top left are for larger values of R. For even larger values
of R, which we do not show, the ROC curves rapidly deteriorate. It is interesting to note
that given this particular object, a distance of R = 25 corresponds approximately to the
height of the object. Thus the performance does not deteriorate until the coherence region
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begins connecting together disconnected pieces of the object.

The case of R = 0 corresponds to Hausdorff matching. Thus the spatial coherence
approach plays a large role in improving the quality of the match, because R = 0 has the
worst matching performance. Note that in [7], using the same Monte Carlo framework, it
was shown that Hausdorff matching works better than a number of other methods including
binary correlation and Chamfer matching. Thus these results indicate that spatially coherent
matching is a substantial improvement over several commonly used binary image matching
techniques.

It should be noted that the value of R does not make a big difference for lower clutter
or occlusion cases (top row of the figure), but makes a very large difference when these are
larger (bottom row of the figure). Thus we see that for “easy” recognition problems, the
spatial coherence of the matches is less important (though still offers a slight improvement).
However as the object becomes more occluded and as there are more distractors, it becomes
quite important to consider the spatial coherence of the matches. It should also be noted
that in real imaging situations there would likely be small gaps in the instance of an object
for which it would be undesirable that the SCM technique penalize such gaps. Recall that
the parameter r can be used to cause features of the object model to match across small
gaps in the image. Any larger gaps would then be subject to penalty based on the value of
R.

6 Conclusion

We have presented a new Bayesian approach to object recognition using Markov random
fields (MRF’s). The central idea underlying this approach is to explicitly capture depen-
dencies between individual features of an object. Markov random fields provide a good
theoretical framework for representing such dependencies between features. These MRF’s
can be solved efficiently in practice, moreover we present fast approximation methods that
do not require solving the MRF estimation problem.

Our approach contrasts with most feature-based object recognition techniques, as they
do not explicitly account for dependencies between features of the object. It is desirable to
be able to account for such dependencies, because they occur in real imaging situations. For
example, a common case occurs with partial occlusion of objects, where features that are
near one another in the image are likely to be occluded together. Our framework represents
only pairwise dependencies between features of the object, however these are rich enough to
model effects such as partial occlusion.

We showed that the generalized Hausdorff matching technique can be viewed as a special
case of our approach, where the dependencies between all pairs of features in the object
are equally strong. We then suggested a closely related method, which we call spatially
coherent matching (SCM). This method requires that matching features be more than some
critical distance from features that do not match, thus ensuring spatially contiguous sets
of matching features. Monte Carlo experiments demonstrate that this SCM approach is a
substantial improvement over Hausdorff and other previous matching techniques, in cases
where the image is cluttered with many irrelevant features and there is substantial occlusion
of the object to be recognized.
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