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Abstract— Pedestrian detection is a rapidly evolving area in
the intelligent vehicles domain. Stereo vision is an attractive
sensor for this purpose. But unlike for monocular vision, there
are no realistic, large scale benchmarks available for stereo-
based pedestrian detection, to provide a common point of
reference for evaluation. This paper introduces the Daimler
Stereo-Vision Pedestrian Detection benchmark, which consists
of several thousands of pedestrians in the training set, and a
27-min test drive through urban environment and associated
vehicle data. The data, including ground truth, is made publicly
available for non-commercial purposes. The paper furthermore
quantifies the benefit of stereo vision for ROI generation and
localization; at equal detection rates, false positives are reduced
by a factor of 4-5 with stereo over mono, using the same
HOG/linSVM classification component.

I. INTRODUCTION

Vision-based pedestrian detection is a key problem in

the domain of intelligent vehicles (IV). Large variations in

human pose and clothing, as well as varying backgrounds

and environmental conditions make this problem particularly

challenging.

The main contribution of this paper is to carefully quan-

tify the benefit of stereo-vision over an otherwise identical

monocular system for pedestrian detection, see Figure 1. We

do not present entirely new systems, but evaluate a variant

of the well-known HOG-based pedestrian detector, e.g. [4],

in both monocular and stereo vision set-ups. We assume our

results to generalize to other established pedestrian detectors,

e.g. [5], [7], [10], [13], [16], [17].

A second contribution involves a new large real-world

stereo dataset for pedestrian detection which is used in our

experiments. We make this dataset publicly available for non-

commercial purposes to encourage research and benchmark-

ing1. The data is based on the established monocular Daimler

Pedestrian Detection Benchmark [7], which is extended in

several ways. First, the new benchmark includes the corre-

sponding (left and right) stereo image pairs for the same 27-

minute urban test sequence as used in [7], where previously

only the left image was published. We further present a

new stereo-vision sequence not containing pedestrians for

bootstrapping. Instead of generating 3D ground-truth by

1See http://www.science.uva.nl/research/isla/downloads/
pedestrians/index.html or contact the last author.

back-projecting manually acquired pedestrian labels from the

image into the world using the ground-plane constraint, we

now derive more exact 3D ground-truth using shape informa-

tion and stereo-vision. Finally, we enrich our test sequence by

releasing vehicle data (velocity, yaw rate) estimated by on-

board sensors to develop and evaluate more robust tracking

algorithms.

Fig. 1. Pedestrian detection using the stereo-based system.

II. PREVIOUS WORK

Many interesting approaches for vision-based pedestrian

detection have been proposed. Most approaches follow a

module-based strategy comprising generation of possible

pedestrian location hypotheses (regions-of-interest, ROI),

followed by pedestrian classification and tracking ([3], [11],

[18]). A detailed review of state-of-the-art pedestrian systems

is beyond the scope of this paper. We refer the reader to

recent surveys and benchmarks, i.e. [5], [7], [10], [13], [16],

[17].

Evaluation, comparison and ranking of pedestrian de-

tection systems requires publicly available datasets which

can be used as a common reference ground to benchmark

many different systems. As a result of various systems

having different requirements in terms of data used (e.g.

gray-level appearance, optical flow, stereo, color or vehicle

data), a multitude of datasets are available. Data acquisi-

tion further varies with the actual application area of the

system, e.g. surveillance, IV or action recognition. Roughly,

pedestrian datasets can be categorized into classification and

detection datasets.
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ETH [9] 1578 490 - - 10k 2293 - 8 X 40 - stroller Zurich / city 2007

CALTECH [5] 192k 67k - 61k 155k∗ 65k ≈ 1k 7.5 - - - vehicle Los Angeles / urb. 2009

TUD-Brussels [22] 1776 1092 - 192+26 1326 508 - 8 - - - vehicle Brussels / city 2009

Daimler Mono [7] 3915 - - 6744 56k 22k 259 12 - - - vehicle Aachen / urb. 2009

CVC-02 [12] 1016 - 7650 153 7983 4634 - 6 X 12 - vehicle Barcelona / urb. 2010

Daimler Stereo (this paper) 3915 - - 7129 56k 22k 259 12 X 30 X vehicle Aachen / urb. 2011

TABLE I

SUMMARY OF THE AVAILABLE PEDESTRIAN DATASETS RECORDED FROM A MOVING PLATFORM IN AN URBAN ENVIRONMENT. ∗ TEST DATA IS NOT

PUBLICLY AVAILABLE.

Classification datasets, e.g. [4], [6], [8], [14], [17], [19],

[20], are mainly used to evaluate a combination of a feature

set and a pattern classifier using a given set of pedestrian

(positive) and non-pedestrian (negative) cut-out samples.

For pedestrians, such samples are typically extracted from

manually labeled image data resulting in accurately aligned

pedestrian cut-outs. Non-pedestrian cut-outs can be extracted

randomly or by some pre-processing method from images

not containing pedestrians. In this context, pre-processing is

used to focus on application-relevant “difficult” samples. A

fixed set of positive and negative training and test samples

is supplied for benchmarking. To allow for classifier boot-

strapping, additional negative images are often provided.

Detection datasets, e.g. [1], [5], [7], [9], [12], [22], [23],

[24], containing cut-outs for training and full images for test

data are used to benchmark integrated pedestrian detection

systems. Although the pedestrian classifier is the most impor-

tant module of most systems, differences in relative perfor-

mance can also arise from varying hypotheses generation or

tracking modules. Further, the extended scanning of an image

skews the relation of pedestrian and non-pedestrian windows

used for testing - typically, the test images only contain

a few pedestrians, whereas many thousands of regions not

corresponding to pedestrians may be scanned per image.

Although a classification dataset allows the isolated perfor-

mance analysis of a classification module, results do not nec-

essarily generalize to the performance of a fully integrated

pedestrian detection system, as noted above. On the other

hand, evaluating the classification module of an integrated

system in an isolated brute-force (monocular) sliding window

detection setting, e.g. [5], does not necessarily correspond

to the actual application context either. Both evaluation

methdologies have their justification and the choice strongly

depends on the application and evaluation context.

In the context of advanced driver assistance systems

(ADAS) in the intelligent vehicles domain, video sequences

acquired in a realistic urban traffic environment are crucial

for an adequate evaluation of state-of-the-art systems. De-

pending on the design of the systems under consideration,

different image cues may be required. Systems utilizing op-

(a) Mono System

(b) Stereo System

Fig. 2. Comparison of the processing steps for the stereo and mono system.

tical flow require a sufficiently large frame rate while stereo

based systems need additional image data to derive depth

information. Table I shows an overview of available pedes-

trian detection datasets recorded from a moving platform, as

well as their main properties. Manually annotating video data

is a time-consuming and tedious work. In [5], an interactive

procedure where the system generated intermediate labels by

interpolation between manually assigned labels is proposed.

Especially for sequences recorded with a large frame rate this

approach can reduce the costs for labeling at the expense of

accuracy [12].

In the remainder of this paper, we introduce the systems

used for benchmarking, present our new stereo-based bench-

mark dataset and present our experimental evaluation.

III. SELECTED PEDESTRIAN DETECTION SYSTEMS

In our experiments, we compare the performance of two

state-of-the-art baseline systems. The first system solely

depends on a monocular camera setup for detection and



Fig. 3. Pedestrian distance estimation using weighted disparity values.

tracking, see [7]. In contrast, the second system utilizes

stereo data for hypotheses generation and refined pedestrian

localization, i.e. an adapted version of [11]. Stereo data is

computed using the “Semi-Global Matching” (SGM) algo-

rithm [15] algorithm which provides dense disparity maps.

Figure 2 illustrates the processing steps of the selected

systems.

Both systems utilize an initial set of ROIs generated for

various detector scales and image locations using a flat-world

assumption and ground-plane constraints. For the stereo-

based system, ROIs at a certain distance are only generated

if the number of depth features for the distance exceeds

a percentage of the ROI area. ROIs are then passed to

the classification module which uses histograms of oriented

gradients (HOG) features [4] on gray-scale image data.

Extracted features are classified by a linear support vector

machine (linSVM). To speed-up the feature computation, we

implemented the integral histograms of oriented gradients

approach e.g. [25], which does not allow for the inclusion

of tri-linear interpolation steps, as described in [4]. The

resulting computational speed-up comes at the cost of a lower

detection performance [25].

Multiple detector responses at near-identical locations and

scales are addressed by applying confidence-based non-

maximum suppression to the detected bounding boxes using

pairwise box coverage. Two system detections ai and aj are

subject to non-maximum suppression if their coverage

Γ(ai, aj) =
A (ai ∩ aj)

A (ai ∪ aj)
, (1)

the ratio of intersection area and union area, is above θn. For

the following experiments θn = 0.5 has been selected.

To allow possible collision mitigation maneuvers, the

pedestrian position with respect to the vehicle is required.

From the available stereo data, the pedestrian position is

estimated by averaging the weighted disparity values in the

detected box in the image and back-projecting the foot-

point into 3D world coordinates onto the ground-plane using

known camera geometry, see [11]. With manually labeled

pedestrian shapes, a mask has been derived for importance

weighting of disparity values depending on their location, as

shown in Figure 3. Pedestrian positions for the monocular

system are computed with the assumption that pedestrians are

standing on the (flat) ground-plane (ground-plane constraint).

Lateral (x) and longitudinal (z) pedestrian positions are

tracked using a Kalman filter [2] with measurement vector

Fig. 4. Single-Track model used for ego-motion compensation.

z =
(

x, z
)T

and the state vector xk =
(

x, z, vx, vz

)T
, with

vx and vz denoting the pedestrian velocity. We assume no

abrupt velocity changes of the pedestrian and consequently

use a constant velocity (CV) model. With vehicle velocity

ve and yaw-rate ψ̇e, estimated from on-board sensors, the

vehicle ego-motion is compensated. As a possible extension,

visual measurements could additionally be incorporated at

this point. Figure 4 illustrates the simplified motion of the

vehicle using the one-track vehicle model [21]. Ego-motion

compensation is integrated into the prediction step of the

Kalman filter. Between time-step t and t + ∆t the vehicle

travels the distance
(

∆x,∆z
)

with orientation change ∆ψe.

Moving on the curve radius r = ve
· ψ̇e following translation

and rotation parameters apply:

∆ψe = ψ̇e∆t (2)

∆x = ve(ψ̇e)−1[1 − cos(∆ψ)] (3)

∆z = ve(ψ̇e)−1sin(∆ψ) (4)

So the predicted pedestrian state x̂k|k−1 in the vehicle

coordinate system for t+ ∆t is computed using

x̂k|k−1 = F [x̂k−1 − xcog] + [xcog −









∆x
∆z
0
0









] (5)

with xcog describing the translation to the vehicle center-
of-gravity and F describing the state transition matrix re-
specting the vehicle ego-orientation change.

F =

0

B

@

cos(∆ψ) sin(∆ψ) cos(∆ψ)∆t sin(∆ψ)∆t
−sin(∆ψ) cos(∆ψ) −sin(∆ψ)∆t cos(∆ψ)∆t

0 0 cos(∆ψ) sin(∆ψ)
0 0 −sin(∆ψ) cos(∆ψ)

1

C

A

Measurement to track associations in the track manage-

ment are handled using the global nearest neighbor algo-

rithm [2] with prior rectangular gating on the predicted

pedestrian position. New tracks result from measurements

that can not be assigned to an existing track. Starting

in the state hidden, new tracks enter the state confirmed



Fig. 5. Overview of the detection benchmark dataset: a) pedestrian training samples. b) non-pedestrian training images. c) annotated test images.

after n measurement to track associations. After m missed

associations confirmed tracks are terminated. Here we use

n = 2 and m = 2 for the track management. Only confirmed

tracks are regarded as valid system outputs.

IV. DATASET OVERVIEW

We extend the benchmarking dataset of [7] to contain

stereo image pairs to allow the computation of distance data

using different stereo algorithms. Stereo video data not con-

taining pedestrians is additionally supplied to allow training

and bootstrapping of different classification algorithms.

Test data has been recorded with 15 frames per second

(fps) enabling the computation of optical flow data. Vehicle

velocity and yaw-rate measurements from on-board sensors

are provided for each frame to enable integration into a

tracking and decision making system. All sequences are

recorded in an urban environment representing a realistic

challenge for todays pedestrian detection systems. Example

images from training and testing data are given in Figure 5.

A summary of the dataset statistics is given in Table II.

By shifting and mirroring, 15660 pedestrian training samples

are created from 3915 unique pedestrian samples. A training

sample resolution of 48×96 pixels with a border of 12 pixels

around the pedestrians is used. Negative training samples (≈

15600) are randomly cropped from the bootstrapping image

Training

# unique pedestrians 3915
# pedestrian samples 15660
# neg. frames (stereo pairs) 7129

Testing

# frames (stereo pairs) 21790
# labels 56484
# pedestrian traj. 259

TABLE II

DAIMLER STEREO-VISION PEDESTRIAN BENCHMARK DATASET

STATISTICS.

sequence using ground-plane constraints.

In [7], 3D ground truth from camera geometry in ad-

dition to bounding box labels has been provided. The 3D

ground truth data has been revised. We use 3D ground

truth from stereo data because of its robustness to vehicle

pitch variations and violations of the flat-world assumption.

Figure 6 illustrates the ground truth generation. To increase

precision of estimated 3D positions, unoccluded pedestrians

in the required detection area (see Section V) have manually

been shape labeled. Pedestrian distance is derived from the

median of disparity values located on the pedestrian body.

In combination with the pedestrian foot-point determined

from the shape center-of-gravity (COG) and known camera

parameters the 3D position is computed.

V. EXPERIMENTS

In the following the performance for the classifier modules

and complete system configurations of the two selected

baseline systems is compared. System setup and evaluation

parameters are described in detail to allow reproducibility of

the results.

Fig. 6. Pedestrian 3D world position derived from manual labeled
pedestrian shaped and dense stereo data



A. System Configuration

Parameters for the ROI generation have been chosen to

correspond to pedestrians at a longitudinal distance of 10m
to 25m in front of the vehicle and ±4m in lateral direction.

Pedestrians with a height of 1.6m up to 2.0m standing on

the ground are searched in the detection area. To cover

the detection area, ROIs ranging from hmin = 72px to

hmax = 206px are required. ROIs with an aspect ratio of

2:1 are generated in a multi-scale sliding window fashion on

the ground-plane using a flat world assumption with a pitch

tolerance of ±1◦. Given the pitch tolerance, ROIs are located

at most 11px above or below the ground plane. With a scale

step factor ∆s = 1.1 a total of 12 scales are generated. ROI

locations are shifted at fractions ∆x = 0.1 of their height

and ∆y = 0.25 of their width resulting in a total of 5920
generated ROIs, see [7].

The HOG/linSVM classifiers are trained and iteratively

bootstrapped, as in [7], [17]. Gradients for the HOG features

are computed with
(

−1, 0, 1
)

masks. Orientation histograms

with 8 bins are generated from cells with a size of 8 × 8
pixels. Overlapping descriptor blocks (2× 2) are normalized

using the L2-norm. An initial classifier (iter0) has been

trained with the positive and negative training samples de-

scribed in Section IV. For both systems, this initial classifier

is iteratively applied to the set of non-pedestrian images to

collect additional false positives for the next round of classi-

fier training. This process is repeated until (test) performance

saturates.

B. Evaluation

For evaluation, we follow the well-established methodol-

ogy of [7], [11]. To compare system output with ground-

truth, we need to specify the localization tolerance, i.e. the

maximum positional deviation that still allows to count the

system detection as a match. This localization tolerance is

the sum of an application-specific component (how precise

does the object localization have to be for the application?)

and a component related to measurement error (how exact

can we determine true object location?). Object localization

tolerance is defined (see [7], [11]) as percentage of distance,

for longitudinal and lateral direction (Z and X), with respect

to the vehicle. For our evaluation of the video sensing

component, we use Z = 30% and X = 10%, which means

that, for example at 10m distance, we tolerate a localization

error (including ground truth measurement error) of ±3m
and ±1m in the position of the pedestrian, longitudinal and

lateral to the vehicle driving direction, respectively. Partial

visible pedestrians are matched in 2D with a box coverage of

θn = 0.25. Pedestrians outside the detection area or partial

visible are regarded as optional and are neither credited

nor penalized. For this application we allow many-to-many

correspondences, i.e. a ground truth object is considered

matched if there is at least one system detection matching it.

1) Classification Performance: Figure 7 and 8 illustrates

the performance of the two systems after each bootstrapping

iteration. Both classifiers improve with additional bootstrap-

ping iterations. For the monocular system (Figure 7) per-
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Fig. 7. Classification performance of the mono system for different
boostrapping iterations.
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Fig. 8. Classification performance of the stereo system for different
boostrapping iterations.
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Fig. 9. Performance comparison of the mono and the stereo system.

formance saturates after three iterations. By augmenting the

set of negative training samples with “difficult” examples

performance is pushed by a factor of 14 at similar detection

rates (60%). Because the stereo system generates ROIs only

at highly structured locations the benefit of bootstrapping

is less evident. After the first bootstrapping iteration perfor-

mance does no longer improve.

A direct comparison of the monocular system with the

stereo system (Figure 9) shows the benefit of the stereo-based

ROI generation and improved localization. For a detection

rate of 60% the number of false positives is reduced by

a factor of 4. We attribute this to the reduced number of



F A B

Mono System
Detection Rate (all) 66.58% 70.21% 78.72%
Precision (all) 39.45% 32.50% 39.19%
FA frame, min 0.11 13.12 11.82

Stereo System
Detection Rate (all) 58.75% 53.19% 72.34%
Precision (all) 62.14% 50.0% 56.10%
FA frame, min 0.02 3.05 2.68

TABLE III

SYSTEM PERFORMANCE OF THE MONO SYSTEM VS. THE STEREO

SYSTEM AFTER TRACKING.

generated ROIs containing random structures. Figures 11

and 12 illustrate some typical false positive examples of the

detectors.

2) System Performance: Overall detection performance

of the systems including the tracking module is given in

Table III. Classifier thresholds are selected from Figure 9

using a common reference point of 60% detection rate. For

additional insight, we consider detection rate and precision

(percentage of system detections that are correct) on both the

frame- and trajectory-level. For the latter, we distinguish two

types of trajectories: “class-a” and “class-b” which have 50%

and 1 frame entries matched. Thus, all “class-a” trajectories

are also “class-b” trajectories; the different classes of trajec-

tories represent different quality levels that might be relevant

for particular applications. At comparable detection rate

levels, the stereo system has a significant higher precision

(approximately 20%). False alarms are reduced by a factor of

4−5 over the mono system, similar to the previous evaluation

of the classification modules (see Figure 9).

VI. CONCLUSION

This paper introduced the Daimler stereo-vision pedestrian

detection benchmark, and associated evaluation methodol-

Fig. 10. Examples of correct detections of the mono and stereo system.

Fig. 11. Examples of false detections of the stereo system.

Fig. 12. Examples of false detections of the mono system.

ogy. The paper furthermore quantified the benefit of stereo

vision for ROI generation and localization; at equal detection

rates, false positives are reduced by a factor of 4-5 with stereo

over mono, using the same HOG/linSVM classification com-

ponent.
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