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Abstract: Feature extraction is an important part of perceptual hashing. How to compress the robust
features of images into hash codes has become a hot research topic. Converting a two-dimensional
image into a one-dimensional descriptor requires a higher computational cost and is not optimal.
In order to maintain the internal feature structure of the original two-dimensional image, a new
Bilinear Supervised Neighborhood Discrete Discriminant Hashing (BNDDH) algorithm is proposed
in this paper. Firstly, the algorithm constructs two new neighborhood graphs to maintain the
geometric relationship between samples and reduces the quantization loss by directly constraining
the hash codes. Secondly, two small rotation matrices are used to realize the bilinear projection of
the two-dimensional descriptor. Finally, the experiment verifies the performance of the BNDDH
algorithm under different feature types, such as image original pixels and a Convolutional Neural
Network (CNN)-based AlexConv5 feature. The experimental results and discussion clearly show
that the proposed BNDDH algorithm is better than the existing traditional hashing algorithm and
can represent the image more efficiently in this paper.

Keywords: feature extraction; perceptual hashing; discrete optimization; bilinear projection;
neighborhood relationship

MSC: 68U10; 68U10

1. Introduction

A series of problems that are caused by the “curse of dimensionality” make feature
representation the core problem of the development of the visual field [1–3]. As a feature
extraction algorithm with a low computational cost, the hashing algorithm has received
more attention. The advantage of the hashing algorithm is that it uses binary hash code to
represent each image, which is different from other subspace learning algorithms whose
learned low-dimensional feature elements are floating point numbers. There is no doubt
that the operation speed of binary is better than that of real numbers, and the storage
efficiency of hash codes is higher.

Generally, hashing algorithms are divided into data-independent hashing and data-
dependent hashing, according to whether training samples are considered or not. Data-
dependent hashing has attracted much attention because it can obtain better hash codes
more efficiently. In data-dependent hashing, many hashing algorithms obtain hash codes
through linear projection, such as Spectral Hashing (SH) [4], Iterative Quantization (ITQ) [5]
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and Semi-supervised Hashing (SSH) [6]. In detail, the SH algorithm that is proposed
by Weiss et al. [4] transforms the hash codes-solving problem into the feature-solving
problem of the weighted Laplace–Beltrami operators in manifold learning by relaxing the
constraints, and defines the concept of spectral relaxation. However, this algorithm is more
suitable for the representation of dense matrices, and the data need to meet the uniform
distribution, so its application range is very limited. The ITQ algorithm that is proposed by
Gong et al. [5] is different from the Principal Component Analysis Hierarchical clustering
method (PCAH) [7], which directly uses the Principal Component Analysis (PCA) [8]
algorithm to reduce the dimension of the data, and then obtains the hash codes through
symbol function quantization. The ITQ algorithm rotates the projected data set on the basis
of PCA to reduce the loss of information in the quantization process. Therefore, the hash
codes that are learned by the ITQ algorithm are more robust than the PCAH algorithm. In
order to reduce the bad-code problem that is caused by the empirical error on the label set,
the SSH [6] algorithm uses the distance in metric space or class label to obtain the sample
relationship matrix, and constructs a regularizer using labeled and unlabeled data to reduce
the over-fitting problem, and finally obtains the hash codes through simple linear mapping.

The hashing algorithms mentioned above usually transform discrete constraints into
continuous problems without directly constraining the discrete variables. In order to
further reduce the loss of data that is projected from the original space to the Hamming
space, some more promising algorithms with performance-discrete constraints have been
proposed, such as Discrete Supervised Hashing (SDH) [9], Supervised Discrete Hashing
with Relaxation (SDHR) [10], and Supervised Discrete Discriminant Hashing (SDDH) [11].
The SDH algorithm that was proposed by Shen et al. [9] regresses the hash codes to the
corresponding label through least square regression and uses the Discrete Cyclic Coordinate
Descent (DCC) method to solve the hash codes. Obviously, the ordinary least-squares
problem cannot achieve the optimal effect of classification. Therefore, in order to further
improve the possibility of correct classification of each data point, Gui et al. [10] proposed
SDHR, which learns the regression targets from the input data in a direct way and applies
it to the learning of hash codes. Cui et al. [11] proposed the SDDH algorithm, which uses
the given label information to construct a relationship matrix to directly learn a hashing
function and effective hash codes at the same time.

One-dimensional feature extraction algorithms have apparent shortcomings because
they need to manually convert two-dimensional images into one-dimensional vectors,
resulting in the loss of image structure information. Yang et al. proposed the Two-
Dimensional Principal Component Analysis (2DPCA) [12] on the basis of PCA, which
makes it easier to accurately calculate the covariance matrix so as to obtain effective fea-
tures more conveniently. Li et al. proposed the Two-Dimensional Linear Discriminant
Analysis (2DLDA) [13] on the basis of the Linear Discriminant Analysis (LDA) [14], which
not only reduced the calculation cost, but also improved the recognition accuracy. In mani-
fold learning, similar ideas have attracted extensive attention, such as Two-Dimensional
Local Preserving Projections (2DLPP) [15–17], which effectively improve the performance of
feature extraction. These 2D feature-extraction algorithms make full use of the advantages
of matrix features, so they show stronger robustness and save more space.

Inspired by the above Two-Dimensional methods, many hashing algorithms that are
based on bilinear projection have been proposed. For example, Mao et al. proposed two-
dimensional PCA hashing (2DPCAH) [18], which first uses the two-dimensional features
of the image for principal component analysis, and then quantizes the reduced features
to obtain the hash codes. Ding et al. proposed the 2D version of ITQ, Two-Dimensional
Iterative Quantization (2DITQ) [19]. Based on the 2DLDA algorithm, they also proposed
Linear Discrimination Discrete Hashing (LDDH) [19] to unify 2DLDA and SDH into one
framework. 2DITQ alternately reduces the dimension of features from row direction and
column direction by 2DPCA to project high-dimensional 2D image features into a low-
dimensional matrix. Bilinear Random Projections for Locality-Sensitive Binary Code (BLSH-
SIK) [20] proposed by Kim is a bilinear extension of LSH. Like LSH, BLSH-SIK can maintain
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the similarity between similar data, and the calculation time and memory consumption of
binary code that are required by BLSH-SIK are significantly reduced compared with linear
projection. Bilinear Projection-based Binary Codes (BPBC) [21] is a typical unsupervised
bilinear projection-hashing algorithm. It transforms a large projection matrix into two
small projection matrices to obtain better binary features with less calculating complexity.
Bilinear Discriminant Analysis Hashing (BDAH) [22] uses the 2DLDA algorithm to reduce
the dimension of features, and its performance is better than the unsupervised hashing
algorithm. Another supervised bilinear projection hash is Bilinear Supervised Hashing
(BSDH) [23], which no longer adopts the algorithm of continuous optimization quantization,
but restricts discrete variables to obtain more competitive hash codes.

However, most of the existing 2D-hashing algorithms are divided into two steps.
Firstly, the traditional 2D image-processing algorithm is used to reduce the dimension of
the input image, and then the reduced features are quantified to obtain the hash codes.
This shows that this algorithm has shortcomings, that is, directly binarizing the features
after dimension reduction will lose a lot of useful information. Although many improved
algorithms are proposed to solve this defect, such as 2DITQ, Global Similarity Preserving
Hashing (GSPH) [24], and PCA-ITQ [25], the learning hash codes are still suboptimal.
Therefore, based on the advantages of 2D image processing and the shortcomings of
existing 2D-hashing algorithms, Bilinear Projection Supervised Neighborhood Discrete Dis-
criminant Hashing (BNDDH) is proposed in this paper, in order to reduce the information
loss in the process of projection into Hamming space, and to try to maintain the original
geometric structure relationship between data, so as to obtain more efficient hash codes.
Therefore, the algorithm that is proposed in this paper uses discrete constraints rather than
continuous constraints to approximate, and in the projection process, the two-dimensional
data are no longer transformed into one-dimensional vectors, but are directly projected by
two orthogonal matrices.

Our main contributions are outlined as follows:

(1) We present a novel hashing algorithm called the BNDDH algorithm, which can
perform perceptual hashing, an optimal Laplacian graph, and supervised discrete-
discriminant preserving simultaneously in a unified strategy.

(2) We propose an optimized Laplace matrix construction strategy to maintain the neigh-
borhood structure information of samples, so as to narrow the scope of similarity
retrieval from the same object category to the same instance.

(3) We perform bilinear projection on two-dimensional images, which overcomes the
disadvantage of large amounts of calculation of high-dimensional linear projection in
the past. In addition, we use bilinear projection to better maintain the two-dimensional
features of the image.

The rest of this paper is planned as follows: Section 2 mainly presents the algorithms
that are related to this paper, including SDDH and BPBC. The objective function and
optimization algorithm of BNDDH are given in detail in Section 3. The experimental results
on the CIFAR-10, Yale-B, MINIST and AR databases show the effectiveness of BNDDH in
Section 4. Finally, Section 5 summarizes the full text.

2. Related Algorithms
2.1. Supervised Discrete Discriminant Hashing (SDDH)

To facilitate reading, the main notations that are used in this article are shown
in Table 1.

SDDH [11] is characterized by paying attention to the direct learning of hash codes.
It is a supervised hashing algorithm with direct constraints on discrete variables. For
the input sample X ∈ Rd×n, the relationship matrix S ∈ {−1, 1}n×n of the samples is
constructed according to the given label information. Sij = 1 indicates that xi and xj are of
the same class, and Sij = −1 indicates different classes. The similarity measurement matrix
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W ∈ Rb×n is defined to describe the relationship between the hash codes. The objective
function is in Equation (1), and b (b << d) is the length of the hash codes:

max
B,W,F

tr(WT BSBTW)− υ‖bi−F(X)‖2

s.t. bi ∈ {−1, 1}b
(1)

Table 1. Explanation of main notations.

Notations Size Explanation

q - Total number of classes
lj (j = 1, 2, . . . , q) - Label information
kj (j = 1, 2, . . . , q) - Number of samples per class

n - Total number of samples
d1, d2 - Size of feature matrix

d - The product of d1 and d2
c1, c2 - Size of feature matrix after projection

c - The product of c1 and c2
b - Length of hash codes
o - Number of nearest neighbors

X = [x1, · · · , xn] d1 × d2 × n Input data matrix
M d1 × d2 Average value of all sample
Mj d1 × d2 Average value of sample for jth class

B = [b1, · · · , bn] b× n Binary hashing matrix
Z c× n Bilinear projection feature matrix
A b× b Similarity measure matrix
Sb n× n Between-class relationship matrix
Sw n× n Within-class relationship matrix
P b× c Projection matrix

R1, R2
d1 × c1
d2 × c2

Bilinear rotation matrix

H(X) - Hash function

The second term of the formula defines F(x) = GTΦ(x), G ∈ Rm×b as the projection
matrix, which needs continuous iterative updating to obtain a better projection effect. ν is
the penalty parameter. Like the idea of using anchors to reduce time complexity in Anchor
Graph Hashing (AGH) [26], in SDDH Φ(X) = [φ(x1), φ(x2), . . . , φ(xn)] ∈ Rm×n (m < n)
is an m-dimensional column vector, which is achieved by using Radial Basis Function

(RBF) kernel function, where φ(xi) =

[
exp

(
− ‖(xi ,a1)‖2

t

)
, . . . ,

(
− ‖(xi ,am)‖2

t

)]T
. {ai}m

i=1 are

randomly selected anchors from the training databases X, and t is the kernel bandwidth.
Experiments show that SDDH can effectively ensure the minimum feature loss when the
samples are mapped to Hamming space.

2.2. Bilinear Projection-Based Binary Codes (BPBC)

BPBC [21] is a typical unsupervised bilinear-projection hashing algorithm. Given
sample X = {x1, x2, · · · , xn}(xi ∈ Rd1×d2), these samples are projected into Hamming
space by using random rotation matrix R (R ∈ Rd1d2×d1d2).

H(x) = sgn(RTx) (2)

where sgn(·) is binary processing to learn binary codes. For positive numbers, output +1,
otherwise output −1. In order to reduce the loss from the projection process, the goal of the
BPBC algorithm is to minimize the angle θ between vec(R̂TX) and vec(sgn(R̂TX)), where
vec(·) denotes vectorization.

max
n

∑
i=1

cos(θi) =
n

∑
i=1

sgn(R̂TXi)
T
(R̂TXi)√

d1 × d2
(3)
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Then, based on Kronecker product⊗, the complete rotation is transformed into bilinear
rotation R̂ = R2 ⊗ R1(R1 ∈ Rd1×d1 , R2 ∈ Rd2×d2). Thus, the projection matrix is reduced
to reduce the computational complexity and further accelerate the projection speed. The
Equation (2) can be rewritten as:

H(x) = sgn(R1
TxR2) (4)

To obtain the low dimensional c-bits (c = c1 × c2) hash code, let R1 ∈ Rd1×c1 and
R2 ∈ Rd2×c2 , the objective function can be transformed into:

max
B,R1,R2

n
∑

i=1
cos(θi) =

n
∑

i=1

vec(sgn(R1
T Xi R2))

Tvec(R1
T Xi R2)√

c

= 1√
c

n
∑

i=1
tr(biR2

TXi
T R1)

s.t. R1
T R1 = I , R2

T R2 = I

(5)

where tr(·) denotes the trace of matrix, I is the identity matrix. bi = sgn(R1
TXiR2) and

B = [b1, b2, · · · , bn]. In order to optimize the projection, the variables B, R1 and R2 need
to be updated. SVD is used to obtain R1 and R2 for each iteration. Further details of
optimization can be found in reference [21].

3. Proposed Methods
3.1. The Objective Function

Considering the labeled image dataset X = [x1, · · · , xn] ∈ Rd1× d2×n, for each sample
xi, its corresponding label is lj (j = 1, 2, . . . , q). Our goal is to learn the binary hash code bi
to represent xi, and set B = [b1, · · · , bn].

In order to enhance the scalability of the algorithm, we obtain the binary hash codes
of each input two-dimensional image through the hash function H(X). The purpose of
our learning is to maximize the similarity between classes and minimize the similarity
within classes. In order to better measure the relationship between hash codes, we define
the similarity measurement matrix A. We hope to learn the optimal hash function H(X) by
maximizing Equation (6); the specific definition of H(X) can be found in Equation (20).

max ∑
(xi ,xj)/∈S

H(X)T MH(X) − ∑
(xi ,xj)∈S

H(X)T MH(X) (6)

We need to define a formulation to represent the relationship between the input data.
Some hashing algorithms define the relationship matrix S ∈ {0, 1}n×n, where the value
of the matrix is equal to 1, indicating that the two samples at the corresponding position
belong to the same class, with 0 indicating different classes. Previous hashing algorithms
only care about the label information of the sample when describing or representing the
sample, so the scope of similarity retrieval is the same object label. However, in the
real world, the given labels are not always accurate, and obtaining high-quality labels
through Subject Matter Experts (SMEs) is often expensive and difficult [27,28], which
affects the effectiveness of hash-learning to a certain extent. In order to avoid the loss that
is caused by unreliable label information, we relax the relationship matrix S and define
Sb ∈ Rn×n and Sw ∈ Rn×n to represent the relationship between classes and within classes,
respectively. In this relationship matrix, we also notice the sample points with the same
label but not belonging to the nearest-neighbor relationship, and accurately describe the
geometric relationship between the samples by reducing their weight. Firstly, we define a
between-class relationship matrix graph as:

Sb =


1, xi ∈ ONo−

(
xj
)

or xj ∈ ONo−(xi)
exp

(
−
∣∣∣∣xi − xj

∣∣∣∣/ε
)
, xi ∈ No−

(
xj
)

or xj ∈ No−(xi)
0, otherwise

(7)
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where ONo−(xi) represents a set, which belongs to different classes of xi and does not
belong to the o nearest neighbor of xi; we give it the maximum weight. No−(xi) represents
the set of o nearest neighbors of xi; we reduce the weight of elements in this set. The value
of the weight is determined by calculating the direct Euclidean distance between xi and xj,
which is recorded as ‖xi − xj‖. exp(·) is an exponential function and ε is the parameter.

Similarly, the within-class relationship matrix is defined as:

Sw =

{
1, xi ∈ No+(xj) or xj ∈ No+(xi

)
exp(−||xi−xj||/ ε

)
, otherwise

(8)

where No+(xi) represents the set of o nearest neighbors belonging to the same classes of xi.
Through the above definition, Equation (6) can be converted to the following form:

max
B,U

tr(UT BSwBTU
)
− tr(UT BSbBTU)

s.t. B ∈ {−1, 1}b×n
(9)

where U is obtained by decomposing the similarity matrix A, and A = UUT .
Transform this problem into the solution of continuous variables, which brings steep

losses. In this paper, we directly constrain binary codes to obtain better hash functions and
hash codes. Our goal is to learn hash function H(X) with a good scalability. Therefore, we
need to add constraints to the above objective function and convert it into Equation (10)

max
B,U,H

tr(UT BSwBTU
)
− tr(UT BSbBTU) − υ‖B− H(X)‖2 (10)

where ν is the penalty parameter, and we hope that B and H(X) are as similar as possible.
However, in the real world, B slight differing from H(X) is acceptable.

3.2. Bilinear Projection Learning

Firstly, we define bilinear rotation matrix R1 ∈ Rd1×c1 and R2 ∈ Rd2×c2 (c1 < d1, c2 < d2);
input data X ∈ Rd1× d2× n will be converted to R1

TXR2 ∈ Rc×n.
Referring to the Fisher Discriminant Analysis algorithm (FDA), we define the between-

class scatter matrix as Equation (11), and the within-class scatter matrix as Equation (12):

Db =
q
∑

j=1
k j‖RT

1 (Mj −M)R2‖
2

= tr(
q
∑

j=1
k jRT

1 (Mj −M)R2RT
2 (Mj −M)T R1)

= tr(RT
1 (

q
∑

j=1
k j(Mj −M)R2RT

2 (Mj −M)T)R1)

(11)

Dw =
q
∑

j=1

kj

∑
i=1
‖RT

1 (Xi −Mj)R2‖
2

= tr(
q
∑

j=1

kj

∑
i=1

RT
1 (Xi −Mj)R2RT

2 (Xi −Mj)
T R1)

= tr(RT
1 (

q
∑

j=1

kj

∑
i=1

(Xi −Mj)R2RT
2 (Xi −Mj)

T)R1)

(12)
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In order to disperse the data between classes as much as possible, the data within
classes should be similar as much as possible, which equals to maximizing Db/Dw
in Equation (13).

maxDb/Dw = tr(RT
1 (

q
∑

j=1
k j(Mj −M)R2RT

2 (Mj −M)T)R1)/

tr(RT
1 (

q
∑

j=1

kj

∑
i=1

(Xi −Mj)R2RT
2 (Xi −Mj)

T)R1)

(13)

To simplify the expression, we define HQ1
b , HQ1

w , HQ2
b and HQ2

w in Equation (14),
Equation (15), Equation (16), and Equation (17), respectively.

HQ1
b =

q

∑
j=1

k j(Mj −M)T R1RT
1 (Mj −M) (14)

HQ1
w =

q

∑
j=1

kj

∑
i=1

(Xi −Mj)
T R1RT

1 (Xi −Mj) (15)

HQ2
b =

q

∑
j=1

k j(Mj −M)R2RT
2 (Mj −M)T (16)

HQ2
w =

q

∑
j=1

kj

∑
i=1

(Xi −Mj)R2RT
2 (Xi −Mj)

T (17)

Because the eigenvector with larger a eigenvalue carries more identification informa-

tion, we calculate the eigenvalue of HQ2
b

HQ2
w

and use the eigenvector corresponding to the larger

eigenvalue to form R1, and by calculating the eigenvalue of H
Q1
b

H
Q1
w

to obtain R2. After obtain-

ing the bilinear projection matrices R1 and R2, we project the high-dimensional 2D image
features to obtain a smaller two-dimensional feature matrix as shown in Equation (18). This
operation can reduce the computing cost.

zi = vec(RT
1 XiR2) (18)

Z = [z1, z2, · · · , zn] ∈ Rc×n (19)

To ensure bilinear projection, we define the embedding function in Equation (20),
where P is the projection matrix that projects Z into a lower dimensional space.

H(X) = PZ (20)

Finally, the objective function is transformed into:

max
B,U,P

tr(UT BSwBTU)− tr(UT BSbBTU) − υ‖B− PZ‖2 (21)

3.3. Optimization

In order to alternately optimize U, B and P to obtain better data representation, we
need to fix two of them and update the remaining one. The optimization process is divided
into the following steps:

1. Update U: U only depends on B. By keeping B fixed, we can achieve U by the
optimization problem in Equation (22):

max
B,U

tr(UT BSwBTU)− tr(UT BSbBTU) (22)
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U consists of the eigenvalue vector corresponding to the largest eigenvalues of
BSwBT − BSbBT , which will be simplified into the eigenvalue–eigenvectors problem.

2. Update P: Through the objective function (21), we find that the value of P is only
related to B, and can define the function L(P) as shown in Equation (23). By fixing B,
the projection matrix P can be easily calculated by regression:

L(P) = ‖PZ− B‖2 (23)

Take the partial derivative of P and set it equal to 0, then we can achieve Equation (25):

L(P)
∂P

= 2(PZ− B)ZT = 0 (24)

PZZT = BZT (25)

We can easily obtain:

P = BZT(ZZT)
−1

(26)

3. Update B: By keeping Z and U constant, we make the objective function transform
into the following problem to optimize:

tr(UT BSwBTU)− tr(UT BSbBTU)− νtr((B− PZ)T(B− PZ))
= tr(BT(UUT B(Sw − Sb)) + νPZ)

(27)

In the t-th iteration, we define the learned hash codes as Bt. Then, we can update Bt+1

from Equation (28):

Bt+1 = sgn((UUT BtSw −UUT BSb)− νPZ) (28)

Algorithm 1 gives the concrete steps of BNDDH:

Algorithm 1 BNDDH

Input: Training databases X = {xi}n
i=1, label information li, bilinear projection rotation size c1

and c2, number of iterations t1 and t2, hash bits b, parameter ν.

1. Compute M and Mj, respectively. Initialize diagonal matrix R1.
2. Repeat the following steps t1 times:

Compute HQ1
b by Equation (14);

Compute HQ1
w by Equation (15);

Update R2 by solving the eigenvalue–eigenvector problem of HQ1
b

HQ1
w

;

Compute HQ2
b by Equation (16);

Compute HQ2
w by Equation (17);

Update R1 by solving the eigenvalue–eigenvector problem of HQ2
b

HQ2
w

.

3. Initialize B randomly. Compute Z by Equation (18).
4. Repeat the following steps t2 times:

Update U by Equation (22);
Solve P by Equation (26);
Solve B by Equation (28).

Output: Rotation matrix R1 and R2, the hash encoding matrix B = {bi}n
i=1.

The optimization process is mainly divided into two parts. First, update R1 and R2,
with a computational complexity of O(d1

3) and O(d2
3). The second part can be divided into

three sub processes, in which the time complexity of updating U is O(bn2), the time com-
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plexity of updating P is O(c2n), and the time complexity of updating B is O(bn2). Therefore,
the total time complexity of the optimization process is O(t1(d1

3 + d2
3) + t2(2bn2 + c2n)).

4. Experiment and Discussion

In order to verify the effectiveness of the BNDDH algorithm, we first introduce three
experimental databases, including CIFAR-10 and Yale-B, MNIST and AR database. Then,
we provide evaluation indexes to evaluate the effects of different algorithms. Finally, for
each database, we give the experimental results and corresponding analysis.

4.1. Databases and Setting

As shown in Figure 1, the CIFAR-10 database involves 10 different classes, including
birds, deer, cats, automobiles, airplanes, etc., all of which are 32 × 32 RGB, 60,000 pictures
in total. The database is used to verify the ability of the BNDDH algorithm to classify the
common coarse-grained label data in real life.
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At present, facial recognition is widely used, and it is very useful to process high-
dimensional face data. Therefore, we choose the Yale-B face database to evaluate the
performance of the proposed algorithm. As shown in Figure 2, this database includes 15
people, and each of them has 11 pictures, which is used to study facial expression changes.
Each image is 50 × 50 pixels, and 165 pictures in total.
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The other database we selected is the handwritten numeral set, as shown in Figure 3.
The MNIST database is composed of 10 different categories of pictures, which are hand-
written numerals 0 to 9, and the size of each picture is 28 × 28 pixels. If the handwritten
data set can be recognized quickly and accurately by a computer, it will liberate the labor
force of the need for manual input.
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The accuracy of facial recognition in the real world will be affected by expression,
occlusion, and lighting conditions. The AR face database is used to verify the robustness of
the proposed algorithm. As shown in Figure 4, the database contains 120 people, each with
26 pictures. The size of each picture is 50 × 40 pixels.
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For the sake of verifying the effectiveness of the BNDDH algorithm that is proposed
in this paper, we select several classical hashing algorithms for performance comparison,
including SH [4], PCAH [7], SDDH [11], 2DITQ [19], LDDH [19], BPBC [21], BSDH [23],
LSH [29], SKLSH [30], SP [31], and DSH [32]. During the experiment, different hash code
lengths are set and tested on five different hash code lengths: 8, 16, 32, 48 and 64. To ensure
that the results are reliable in our experiment, we set t1 = 10 and t2 = 5. The iteration of
other comparison algorithms adopts the convergence times that are set in the experiment
of the original paper.

In the experiment, the Hamming radius is uniformly set to 2. That is, within the
range of Hamming radius 2, judge whether the nearest data are retrieved correctly. We
evaluate the difference between the classification of the algorithm and the ground truth.
The precision rate, recall rate, precision–recall curves and mean average precision (MAP)
are used to evaluate the performance of the algorithm.

4.2. Experimental Results
4.2.1. Experiment on the CIFAR-10 Database

In this part, we test the proposed algorithm on the CIFAR-10 database. Inspired by
reference [8], we extract the depth two-dimensional features of the CIFAR-10 database
and extract the image features by a Convolutional Neural Network (CNN) [33]. The two-
dimensional AlexConv5 feature (256× 36) is used to replace the original 32× 32 RGB image
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in the experiment. This paper selects 10,000 data as the training set and 1000 data as the
test sample. The precision–recall curve of the experiment is shown in Figure 5 below. The
BNDDH algorithm shows good performance on different hash bits. Although the hash code
is short, the BNDDH algorithm is still better than other comparative hashing algorithms.
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Figure 6 shows the results of the precision and recall rate of the experiment on different
hash bits from 8 to 64. When the hash bit is 32, the effect of BNDDH algorithm reaches
its best; the precision rate is about 60%, and the recall rate is close to 60%. Among all the
comparison algorithms, the hash codes that are learned by the PCAH algorithm are the
worst, possibly because the PCAH algorithm relaxes the discrete constraint in the learning
process, transforms the hash codes-solving problem into a continuous function-solving
problem, and obtains the suboptimal hashing representation. Therefore, it is necessary to
consider the direct constraint on discrete hash codes.

The MAP results are shown in Table 2. It can be found that the MAP of the BNDDH
algorithm is optimal under different hash bits and is about 10% higher than that of SDDH
and 2% higher than that of LDDH. The SDDH algorithm is a supervised hashing algorithm.
It learns binary hash codes according to class label, which is better than the unsupervised
hashing algorithm that was compared in the experiment. Because the same category label in
the CIFAR-10 database is not the same object, its effect is inferior to the BNDDH algorithm.
We believe that the retrieval of the BNDDH algorithm is more accurate. LDDH adopts the
idea of 2DLDA to reduce the dimension of two-dimensional images and discretizes the
hash codes with reference to SDH. From the experimental results, it can be seen that LDDH
is better than other comparison algorithms; the results prove that it is effective to consider
the two-dimensional features.
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Table 2. MAP of different hash code lengths on the CIFAR-10 database.

Method 8 bits 16 bits 32 bits 48 bits 64 bits

MAP

LSH 0.0819 0.1240 0.1792 0.2232 0.2589
AGH 0.0917 0.1421 0.1922 0.1544 0.1675
DSH 0.1516 0.1959 0.3185 0.2971 0.3717

PCAH 0.1202 0.1164 0.1057 0.1020 0.1117
SH 0.1151 0.1306 0.1889 0.2137 0.2490

SKLSH 0.0653 0.0900 0.1434 0.2711 0.2926
SDDH 0.3270 0.4472 0.4228 0.4093 0.4801
LDDH 0.4204 0.4842 0.5337 0.5459 0.5526

BNDDH 0.4375 0.5030 0.5519 0.5624 0.5644

4.2.2. Experiment on the Yale-B Database

Different from CIFAR-10, the same object in the Yale-B database is marked with the
same label. On this database, we analyze the performance of the BNDDH algorithm. The
accuracy and recall under different hash bits are shown in Figure 7. It can be seen that
when the hash code is equal to 8, the accuracy of the BNDDH algorithm is not as good as
the SDDH algorithm and the 2DITQ algorithm. However, the BNDDH algorithm is better
than other comparison algorithms in general.

Mathematics 2022, 10, x FOR PEER REVIEW 13 of 19 
 

 

  
(a) (b) 

Figure 6. Precision and recall on the CIFAR-10 database (a) precision (b) recall. 

Table 2. MAP of different hash code lengths on the CIFAR-10 database. 

 Method 8 bits 16 bits 32 bits 48 bits 64 bits 

MAP 

LSH 0.0819 0.1240 0.1792 0.2232 0.2589 
AGH 0.0917 0.1421 0.1922 0.1544 0.1675 
DSH 0.1516 0.1959 0.3185 0.2971 0.3717 

PCAH 0.1202 0.1164 0.1057 0.1020 0.1117 
SH 0.1151 0.1306 0.1889 0.2137 0.2490 

SKLSH 0.0653 0.0900 0.1434 0.2711 0.2926 
SDDH 0.3270 0.4472 0.4228 0.4093 0.4801 
LDDH 0.4204 0.4842 0.5337 0.5459 0.5526 

BNDDH 0.4375 0.5030 0.5519 0.5624 0.5644 

4.2.2. Experiment on the Yale-B Database 
Different from CIFAR-10, the same object in the Yale-B database is marked with the 

same label. On this database, we analyze the performance of the BNDDH algorithm. The 
accuracy and recall under different hash bits are shown in Figure 7. It can be seen that 
when the hash code is equal to 8, the accuracy of the BNDDH algorithm is not as good as 
the SDDH algorithm and the 2DITQ algorithm. However, the BNDDH algorithm is better 
than other comparison algorithms in general.  

As shown in Table 3, when the hash codes are 8, 16, 32, 48 and 64, the MAP of 
BNDDH exceeds 0.65; when the hash code is 48, the MAP value is close to 0.8. The perfor-
mance of the ITQ algorithm is generally consistent with that of the 2DITQ algorithm, and 
the MAP value of the 2DITQ algorithm is higher than that of the ITQ algorithm, except 
when the hash code is 48. We think it is useful to consider the two-dimensional character-
istics of the image. 

  
(a) (b) 

Figure 7. Precision and recall on the Yale-B database (a) precision (b) recall.

As shown in Table 3, when the hash codes are 8, 16, 32, 48 and 64, the MAP of BNDDH
exceeds 0.65; when the hash code is 48, the MAP value is close to 0.8. The performance of
the ITQ algorithm is generally consistent with that of the 2DITQ algorithm, and the MAP
value of the 2DITQ algorithm is higher than that of the ITQ algorithm, except when the
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hash code is 48. We think it is useful to consider the two-dimensional characteristics of
the image.

Table 3. MAP of different hash code lengths on the Yale-B database.

Method 8 bits 16 bits 32 bits 48 bits 64 bits

MAP

LSH 0.3808 0.4698 0.5696 0.6811 0.6133
DSH 0.4593 0.6309 0.6150 0.6222 0.6755

PCAH 0.2850 0.2647 0.3239 0.3080 0.2959
SH 0.2573 0.2637 0.2872 0.3444 0.3064

SKLSH 0.2460 0.3854 0.5456 0.6031 0.7194
SP 0.5285 0.6001 0.6436 0.6699 0.6507

ITQ 0.5630 0.6480 0.6490 0.6916 0.7011
2DITQ 0.5736 0.6493 0.6784 0.6632 0.7124
SDDH 0.5891 0.6302 0.694 0.6786 0.6851

BNDDH 0.6595 0.6776 0.6934 0.7923 0.7687

4.2.3. Experiment on the MNIST Database

The experimental results on the MINST database are shown in Table 4. It can be seen
that when the length of the hash code is short, the algorithm advantage of the BNDDH
algorithm is obvious. When the hash bit equals 8, the MAP of the comparison algorithm
is lower than 0.3, while the MAP of the BNDDH that is proposed in this paper is close
to 0.6. When the number of hash bits increases, the algorithm advantage of BNDDH is
slight, which may be because the size of each picture in the MNIST database is 28 × 28,
while the BNDDH algorithm is more suitable for a high-dimensional database. Among all
the comparison algorithms, the best performance is from the BPBC algorithm, which is an
unsupervised hashing algorithm based on bilinear projection. We believe that it is rational
to integrate the idea of bilinear projection into a hashing algorithm, and the experimental
results support this point of view.

Table 4. MAP of different hash code lengths on the MNIST database.

Method 8 bits 16 bits 32 bits 48 bits 64 bits

MAP

LSH 0.0812 0.2103 0.3220 0.4586 0.5015
DSH 0.0840 0.1968 0.3916 0.5540 0.6500

PCAH 0.1987 0.3524 0.3833 0.3654 0.3427
SH 0.1410 0.2971 0.4077 0.4573 0.4624

SKLSH 0.0583 0.0557 0.2134 0.2265 0.3093
SP 0.2055 0.4763 0.6382 0.6811 0.7356

BPBC 0.2533 0.5158 0.6829 0.7365 0.7783
2DITQ 0.2731 0.3653 0.3715 0.4598 0.4641

BNDDH 0.5859 0.6676 0.6934 0.7409 0.7686

We choose an unsupervised algorithm with relatively good MAP and the BNDDH
algorithm to analyze the running time. The training time and testing time are shown in
Figure 8. It can be seen that the training time of all algorithms increases with the increase
in hash code. The training time of the DSH algorithm is the shortest, probably because the
method is relatively simple. The DSH algorithm uses K-means to partition data, and learns
projection vectors through the geometric structure of the data to obtain hash codes. The
training time of the BNDDH algorithm is similar to that of another unsupervised bilinear
projection BPBC algorithm, but the testing time of BNDDH is relatively long.
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4.2.4. Experiment on the AR Database

On the AR face database, we test the performance of the proposed algorithm BNDDH.
BSDH and LDDH are selected as the comparison algorithms. These two comparison
algorithms are both supervised hashing algorithms based on two-dimensional image
learning. The experimental results are shown in Figure 9. Under different hash bits, the
MAP of BNDDH is higher than that of the two comparison algorithms. However, the
MAP of the three algorithms is not good, which may be due to many interference factors in
the AR database, such as facial expression, illumination, and facial occlusion. It is worth
mentioning that the training time of BNDDH is significantly better than that of BSDH
and LDDH. With the increase in hash-code length, the training time of BSDH and LDDH
increases significantly, while the training time of BNDDH increases very little. This may
be because both BSDH and LDDH use the Discrete Cyclic Coordinate Descent method
when learning hash codes, which only updates one bit hash code at a time, thus, it takes a
lot of time when the hash code is long. It can be said that the time advantage of BNDDH
algorithm isobvious.
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Image feature extraction is crucial in the fields of pattern recognition and machine
learning. The above experimental results and analysis show that the BNDDH algorithm
that is proposed in this paper performs well in feature extraction. Using compressed binary
hash codes that are learned by the BNDDH algorithm to represent images is very useful in
image storage and retrieval.

4.3. Friedman Test

In order to more intuitively represent the performance of each algorithm, we conducted
a Friedman test and Nemenyi post-hoc test on three databases, respectively, and the results
are shown in Figure 10. δ = qα

√
k(k + 1)/6N is the critical threshold, where k represents

the number of all hashing algorithms and N = 5 represents the number of different hash
codes. The test level α of 0.05, so we can achieve qα1 = 3.031 (k = 8) and qα2 = 3.164
(k = 10). For each algorithm, dots represent the average value of the MAP in different hash
codes, and the length of the horizontal line represents the value of critical threshold δ , so
we achieve δ1 = 4.696 and δ2 = 3.498.
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4.4. Parameter Analysis

There are three important parameters: c1, c2 and ν in this paper. We choose to analyze
and compare the influence of these parameters when the hash code length is 8, 16, 32, 48
and 64 on CIFAR-10.

In order to reconcile the computational efficiency and performance of the BNDDH
algorithm, we compare the relationship between size c1 and c2 of the projected characteristic
matrix and the value of MAP under different hash bits. Since the size of the AlexConv5
feature of CIFAR-10 is 36 × 256, the experimental setting c1 is much smaller than c2.
Theoretically, we hope to learn the optimal hash code when c1 and c2 are as small as
possible. The smaller c1 and c2 indicate the lower complexity of the algorithm, but the
MAP value of the algorithm is often lower. As can be seen from Figure 11a,e, the MAP
increases with the increase in c1 and c2, but when the value of c1 is greater than 16 and the
value of c2 is greater than 48, the MAP is basically stable. In practical application, it is quite
straightforward to find such critical values to ensure that learning is better.

Figure 11f shows the change of MAP of the BNDDH algorithm on the CIFAR-10
database when ν in [10−8 10−6 10−4 10−2 10−1 101 102 103 104]. We can observe that when
ν is equal to 103 and 104, the hash-learning ability decreases significantly. When α is 102

to 10−8 the change of map value is not obvious. This finding shows that in practical
application, ν can be controlled slightly without significant parameter tuning.
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5. Conclusions

This paper proposed a Bilinear Supervised Neighborhood Discrete Discriminant
Hashing algorithm, namely the BNDDH algorithm, which overcomes the shortcomings of
the traditional manual transformation of two-dimensional pictures into one-dimensional
vectors and applies the idea of bilinear projection to the supervised discrete discriminant
hashing. Compared with one-dimensional projection, the projection matrix of bilinear
projection is smaller, so the calculation memory is also smaller. Different from other
supervised hashing, the proposed BNDDH algorithm maintains the relationship between
the original data sample graphs by constructing the visual features of the data graph, and
effectively solves the problem where different objects are marked as the same label. In
order to reduce the projection loss from Euclidean space to Hamming space, the BNDDH
algorithm directly restricts the binary hash code. Experimental results on four different
databases show that compared with other hashing algorithms, the BNDDH algorithm
performs better in similar image retrieval. However, the advantages of the BNDDH
algorithm are not obvious in low dimensional data. In the future, we will explore the
self-supervised learning of the BNDDH algorithm to further improve the application scope
of the algorithm.
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