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Abstract. The host-seeking behavior of mosquitoes is very interest-
ing. In this paper, we propose a novel mosquito host-seeking algorithm
(MHSA) as a new branch of biology-inspired algorithms for solving TSP
problems. The MHSA is inspired by the host-seeking behavior of
mosquitoes. We present the mathematical model, the algorithm, the mo-
tivation, and the biological model. The MHSA can work out the theo-
retical optimum solution, which is important and exciting, and we give
the theoretical foundation and present experiment results that verify this
fact.

Keywords: Bio-inspired algorithm, traveling salesman problem (TSP),
mosquito host-seeking algorithm (MHSA), distributed and parallel algo-
rithm.

1 Introduction

Some combinatorial optimization problems (COP) such as the traveling salesman
problem (TSP) belong to a family of NP-complete problems [1] whose computa-
tional complexity increases exponentially with the number of parameters. The
TSP is probably the best known COP and is NP-complete. The TSP is the prob-
lem to find the shortest path or circuit through n cities. The TSP and its variants
have many practical applications—e.g., robot control, mobile computing, vehi-
cle routing, automated guided vehicles scheduling, integrated circuits design,
X-ray crystallography. Therefore, the TSP has attracted many researchers from
different fields such as artificial intelligence, operations research, mathematics,
physics, biology, etc. Although the TSP is easily formulated, it exhibits all as-
pects of COP as well as has served and continues to serve as the benchmark
problem for new algorithmic ideas.

During the last decades, many algorithmic strategies have been proposed for
finding near-optimum solutions to the TSP, including genetic algorithm (GA) [2],
evolution strategies [3], evolutionary programming [4], ant colony optimization
(ACO) [5], particle swarm optimization (PSO) [6], artificial immune system
(AIS) [7], artificial neural network (ANN) [8], cellular automaton, generalized
cellular automaton, cellular neural network, reaction and growth model, simu-
lated annealing algorithm (SAA) [9] and elastic net (EN) [10]. Nature-inspired
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algorithms (NAs) are among the best algorithms to solve dynamic TSPs nowa-
days. The algorithms mentioned above are all NAs, of which SAA and EN are
physics-inspired algorithms, and the others are bio-inspired algorithms. There
are some common features shared by all NAs:

– They draw from observations of physical processes that occur in nature.
– They mimic different natural systems and processes using mathematical

models and algorithms.
– They have inherent parallelism.
– They are mainly used to solve COPs, such as the TSP.
– COPs are optimized using the NAs step by step (iteration).

In this paper, by means of the TSP, we will propose a new algorithm, called
Mosquito Host-Seeking Algorithm (MHSA), which is a bio-inspired computing
technique inspired by host-seeking behavior of mosquitoe swarms. We want to
develop the MHSA as a new, biology-based, nature-inspired approach that has
a substantive theoretical foundation, as well as the common features of NAs as
mentioned above. We hope the MHSA can describe complex, high-dimensional,
highly nonlinear, micro-evolutionary and random behaviors and dynamics arising
from interactions of entities. It turns out that the MHSA is easy to use, and its
simplicity implies greater flexibility, making the approach very easy to adapt to
a wide range of optimization problems besides the TSP.

Table 1. The main notations in TSP

Notations Meanings Related to
n total number of TSP cities problem

Ci the j-th city (i = 1, n) problem
(xi, yi) coordinates of city Ci problem

distance between city pair (Ci, Cj)
dij (i, j = 1, n) problem

dij =
√

(xi − xj)2 + (yi − yj)2

pij path between Ci and Cj

xij if xij = 1, then pij can be passed;
or else xij = 0, then dij = ∞, problem

pij cannot be passed
Z the shortest path through n cities solution

(1)if rij = 1, then Z pass pij ;
rij or else rij = 0, then Z not pass pij . solution

(2)when xij = 0, then rij = 0.

2 Problem Description for TSP

The TSP is to find the shortest path through n cities. The main notations in
any TSP instance and the TSP matrix M(t) are shown in Table 1 and Table 2,
respectively.

Mathematical description for TSP is as follows:

Minimize: Z =
∑

i,j

dij · rij

s.t. 1. rij ∈ {0, 1};
2. rij = rji;
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3.
∑

i

rij = 2;

4.
∑

j

rij = 2.

Table 2. TSP Matrix M(t)

Cities C1 ··· Cj ··· Cn

C1 r11,x11,d11 ··· r1j ,x1j ,d1j ··· r1n,x1n,d1n

.

.

.
.
.
.

.

.

.
.
.
.

Ci ri1,xi1,di1 ··· rij ,xij ,dij ··· rin,xin,din

.

.

.
.
.
.

.

.

.
.
.
.

Cn rn1,xn1,dn1 ··· rnj,xnj,dnj ··· rnn,xnn,dnn

3 Mosquito Host-Seeking Model

In the real world, both male and female mosquitoes are nectar feeders, but the
female of many species is also capable of drinking blood. That is, only female
mosquitoes search the host (object) to attack. Female mosquitoes hunt their
blood host by detecting carbon dioxide (CO2) and 1-octen-3-ol (C8H16O) from
a distance. Female mosquitoes have host-seeking behavior, but male ones do
not. As shown in Fig. 1, a swarm of mosquitoes are randomly searching the host
(object) to attack. We can summarize three steps of mosquitoes host-seeking
behavior as follows (see Fig. 2):

1. The mosquito looks for carbon dioxide or smelling substance;
2. It distinguishes the smell it loves, and then seeks towards a high-concentration

location;
3. It makes a descent when it feels the radiated heat of the host.

Fig. 1. A swarm of mosquitoes Fig. 2. Steps of mosquitoes host-seeking behavior

The MHSA treats every entry of the TSP matrix M(t) as an artificial
mosquito, mij . The n-city TSP solving process is hence transformed into host-
seeking behavior of a swarm of artificial mosquitoes (n × n mosquitoes). The
mij ’s form the matrix M(t). For convenience, we let mij represent both an entry
of the matrix as well as its corresponding artificial mosquito.
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Fig. 3. Mosquito host-seeking model

As shown in Fig. 3, all artificial mosquitoes (a swarm) are evenly distributed
at an even radian surrounding a host. Each artificial mosquito is being attracted
to seek towards the host by carbon dioxide, smelling substance, and radiated
heat. The radial distance between an artificial mosquito and the host repre-
sents the corresponding artificial mosquito’s personal utility—that is, an arti-
ficial mosquito’s success value of host-seeking. The higher the consistency of
carbon dioxide and smelling substance, the faster the artificial mosquitoes try
to move towards the host. When all artificial mosquitoes stop moving, being in
an equilibrium state, we arrive at an optimum solution to the TSP.

In more details, each artificial mosquito mij has a grayscale value rij , which
will constantly change between 0 and 1 as the artificial mosquito moves. When all
mosquitoes are in an equilibrium state, all rij will be 1 or 0. rij = 1 represents
the artificial mosquito mij attacking the host, as well as the path pij being
black (the shortest path Z passes through this path). On the contrary, rij = 0
represents that mij did not attack the host, as well as pij being white (Z does
not pass through the path).

In addition, each artificial mosquito mij has a sex value xij . xij = 1 represents
mij is female, and xij = 0 represents mij is male. Only grayscale values rij of
female artificial mosquitoes will change with the motion of mij . rij of male
artificial mosquitoes will always be 0—that is, the corresponding path pij will
always be white.

Motion of mij
(1)⇔ uij

(2)⇔ rij
(3)⇔ Z.

(1)(2)(3): MHS mathematical model and MHS algorithm. They will be pro-
posed in the next section.
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(a) t = 0 (b) t = t1

(c) t = t2 (d) t = end

Fig. 4. An example of TSP (7 cities)(t1 < t2)

The solving process of an example TSP using MHSA is shown in Fig. 4.
The grayscales of all the paths between two cities change in parallel during the
computing process.

For the example TSP in Fig. 4, the solution is Z: C1 → C2 → C3 → C4 →
C5 → C6 → C7 → C1.

r12 = r21 = 1, r23 = r32 = 1, r34 = r43 = 1, r45 = r54 = 1, r56 = r65 = 1,
r67 = r76 = 1, r71 = r17 = 1, the other rij = 0.

4 Mathematical Model of MHS

We define in this section the mathematical model of MHS for the TSP that
involves n cities.

Firstly, we introduce a variable cij , which is weight of city pair (Ci, Cj).

– When t = 0, cij(t = 0) = max
i,j

dij − dij ;

– When t > 0, cij(t > 0) ∈ [0, 1].

In the mosquito host-seeking model, cij represents the relative strength of
artificial mosquito mij . The larger cij , the stronger the artificial mosquito mij ,
and the easier it seeks and attacks the host.
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cij and rij will evolve with the motion of artificial mosquitoes.
Let uij(t) be the radial distance between an artificial mosquito mij and the

host at time t, and let J(t) be the utility sum of all artificial mosquitoes, which
we define as follows.

uij(t) = exp ( −cij(t)rij(t)xij(t) ) ;

J(t) =
n∑

i=1

n∑

j=1

uij(t) (1)

At time t, the attraction function, P (t), which is caused by the host is defined
by

P (t) = ε2 ln
n∑

i=1

n∑

j=1

exp[−u2
ij(t)/2ε2] − ε2 ln nn (2)

where 0 < ε < 1. The larger P (t) is, the better.
The attraction of host causes the artificial mosquitoes to move to increase the

corresponding artificial mosquitoes’ minimal personal utility.
At time t, artificial mosquitoes’ interaction behavior function, Q(t), is defined

by

Q(t) =
n∑

i=1

|
n∑

j=1

rij(t)xij(t) − 2 |2 −
∑

i,j

∫ uij

0

{[1 + exp(−10x)]−1 − 0.5}dx (3)

Artificial mosquitoes can move towards the host along their own radial orbit
under the the influence of these factors:

– the personal host-seeking behavior,
– the aggregate host-seeking behavior,
– the attraction of the host,
– the motion that is related to social coordinations among the swarm of arti-

ficial mosquitoes.

The four kinds of attraction factors can all contribute to the artificial
mosquitos’ movements towards the host. What is more, these factors produce
hybrid attraction forces of the host. The general hybrid attraction function for
artificial mosquito mij , Eij(t), can be defined by

Eij(t) = −λ1uij(t) − λ2J(t) − λ3P (t) − λ4Q(t) (4)

where 0 < λ1, λ2, λ3, λ4 < 1 .
In order to dynamically solve the TSP, the artificial mosquito mij may alter-

nately modify rij and cij , respectively, as follows:

dcij(t)/dt = −λ1
∂uij(t)
∂cij(t)

− λ2
∂J(t)
∂cij(t)

− λ3
∂P (t)
∂cij(t)

− λ4
∂Q(t)
∂cij(t)

(5)

drij(t)/dt = −λ1
∂uij(t)
∂rij(t)

− λ2
∂J(t)
∂rij(t)

− λ3
∂P (t)
∂rij(t)

− λ4
∂Q(t)
∂rij(t)

(6)

where ∂Q(t)
∂uij(t)

= −{[1 + exp(−10(t)uij(t))]−1 − 0.5}.
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The motion equations for artificial mosquito mij are defined by
⎧
⎪⎨

⎪⎩

duij(t)/dt = Ψ1(t) + Ψ2(t)
Ψ1(t) = −uij(t) + γvij(t)

Ψ2(t) = [−λ1 − λ2
∂J(t)

∂uij(t) − λ3
∂P (t)

∂uij(t)
− λ4

∂Q(t)
∂uij(t) ]{[∂uij(t)

∂rij(t) ]
2 + [∂uij(t)

∂cij(t)
]2}

(7)

where γ > 1. And vij(t) is a piecewise linear function of uij(t) defined by

vij(t) =

⎧
⎪⎨

⎪⎩

0 if uij(t) < 0
uij(t) if 0 ≤ uij(t) ≤ 1
1 if uij(t) > 1,

(8)

5 The Parallel MHS Algorithm for TSP

Given the coordinates of n cities and xij , our mosquito host-seeking algorithm
(MHSA) is as follows.

1. Initialize the number of artificial mosquitoes to be n × n. Initialize the sex
of all artificial mosquitoes to be xij . Initialize all grayscale values rij of arti-
ficial mosquitoes mij to be the average values. Initialize all weight cij to be
dij . Select the related coefficients ε, λ1, λ2, λ3, λ4 to be 0.8, 0.05, 0.05, 0.9, 0.9,
respectively.

2. Calculate the uij(t) of each mij by Equation (1) in parallel, and duij(t)/dt.
3. For each artificial mosquito mij , calculate drij(t) by Equation (6) and dcij(t)

by Equation (5) in parallel.
4. For each artificial mosquito mij , update in parallel the grayscale value rij(t)

by rij(t + 1) = rij(t) + drij(t)/dt; update in parallel the weight cij(t) by
cij(t + 1) = cij(t) + dcij(t)/dt.

5. If all duij(t)/dt = 0, then finish successfully. Otherwise, go to step 2.

6 Proving the MHS Model

In the following, we derive some formal properties of the mathematical model
presented above.

Proposition 1. Updating the weights cij and grayscale values rij by Eq. (5)
and Eq. (6) respectively amounts to changing the speed of artificial mosquito
mij by Ψ2(t) of Eq. (7).

Denote the j-th terms of Eq. (5) and Eq. (6) by 〈 dcij(t)
dt 〉j and 〈 drij(t)

dt 〉j ,
respectively. When rij is updated according to (6), the first and second terms
of (6) will cause the following speed increments of the artificial mosquito mij ,
respectively:

〈duij(t)/dt〉r1 = ∂uij(t)
∂rij(t)

〈drij(t)
dt 〉1 = λ1[

∂uij(t)
∂rij(t)

]2; (9)

〈duij(t)/dt〉r2 = ∂uij(t)
∂rij(t)

〈drij(t)
dt 〉2 = λ2

∂uij(t)
∂rij(t)

∂J(t)
∂rij(t)

= λ2
∂uij(t)
∂rij(t)

∂J(t)
∂uij(t)

∂uij(t)
∂rij(t)

= λ2
∂J(t)

∂uij(t) [
∂uij(t)
∂rij(t)

]2 (10)
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Similarly, the third and the fourth term of Eq. (6) will cause the following speed
increments of the artificial mosquito mij :

〈 duij(t)/dt 〉r3 = −λ3
∂P (t)

∂uij(t)
[∂uij(t)
∂rij(t)

]2 ;

〈 duij(t)/dt 〉r4 = −λ4
∂Q(t)

∂uij(t)
[∂uij(t)
∂rij(t)

]2.

Similarly, for Eq. (5), we have 〈duij(t)/dt〉cj , j = 1, 2, 3, 4. We thus obtain
4∑

j=1

[ 〈 duij(t)/dt 〉cj + 〈 duij(t)/dt 〉rj ]

= [−λ1 − λ2
∂J(t)

∂uij(t)
− λ3

∂Pt)
∂uij(t)

− λ4
∂Q(t)

∂uij(t) ]{[∂uij(t)
∂rij(t) ]

2 + [∂uij(t)
∂rij(t)

]2} = Ψ2(t).

Therefore, updating c
(j)
ij and r

(j)
ij by (5) and (6), respectively, gives rise to the

speed increment of artificial mosquito mij that is exactly equal to Ψ2(t) of Eq. (7).

Proposition 2. The first and second terms of Eqs. (5) and (6) will enable the
artificial mosquito mij to move towards the host, that is, the personal utility of
the artificial mosquito mij increases, in direct proportion to the value of (λ1+λ2).

According to Eqs. (9) and (10), the sum of the first and second terms of Eq. (5)
and (6) will be
〈duij(t)/dt〉r1 + 〈duij(t)/dt〉r2 + 〈duij(t)/dt〉c1 + 〈duij(t)/dt〉c2

= [λ1 + λ2
∂J(t)

∂uij(t)
]{[∂uij(t)

∂rij(t)
]2 + [∂uij(t)

∂cij(t)
]2}

= (λ1 + λ2)x2
ij(t)[r

2
ij(t) + c2

ij(t)][−uij(t)]2

≥ 0.
Therefore, the first and second terms of (5) and (6) will cause uij(t) to mono-
tonically increase.

Proposition 3. For MHS, if ε is very small, then decreasing the attraction forces
P (t) of the host (Eq. (2)) amounts to increasing the minimal utility of artificial
mosquitoes.

Supposing that H(t) = max
i,j

{−u2
ij(t)}, we have

[exp(H(t)/2ε2)]2ε2 ≤ [
n∑

i=1

n∑

j=1

exp(−u2
ij(t)/2ε2)]2ε2 ≤ [nn exp(H(t)/2ε2)]2ε2 .

Taking the logarithm of both sides of the above inequalities gives

H(t) ≤ 2ε2 ln
n∑

i=1

n∑

j=1

exp(−u2
ij(t)/2ε2) ≤ H(t) + 2ε2 ln nn.

Since nn is constant and ε is very small, we have

H(t) ≈ 2ε2 ln
n∑

i=1

n∑

j=1

exp(−u2
ij(t)/2ε2) − 2ε2 ln nn = 2P (t).

It turns out that the attraction force P (t) at time t represents the maximum
of −u2

ij(t) among all the artificial mosquitos mij , which is the minimal personal
utility of the artificial mosquitoes at time t. Hence the increase of the attraction
function P (t) will result in the increase of the minimum of uij(t).
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Proposition 4. Updating cij and rij according to Eqs. (5) and (6) amounts to
increasing the minimal utility of the artificial mosquitoes in direct proportion to
the value of λ3.

The speed increment of artificial mosquito mij , which is related to the attraction
function P (t), is given by

〈 duij(t)
dt 〉3 = 〈 duij(t)/dt 〉r3 + 〈 duij(t)/dt 〉c3

= λ3
∂P (t)

∂uij(t)
{[∂uij(t)

∂rij(t) ]
2 + [∂uij(t)

∂cij(t)
]2}.

Denote by 〈dP (t)
dt 〉 the differentiation of the attraction function P (t) with

respect to time t arising from using Eqs.(5), (6). We have

〈dP (t)
dt 〉 = ∂P (t)

∂uij(t)
〈duij(t)

dt 〉3
= λ3[

∂P (t)
∂uij(t)

]2{[∂uij(t)
∂rij(t)

]2 + [∂uij(t)
∂cij(t)

]2}.
= λ3ω

2
ij(t)u

2
ij(t)x

2
ij(t)[r

2
ij(t) + c2

ij(t)][uij(t)]2

≥ 0.
where,

ωij(t) = exp[−u2
ij(t)/2ε2]/

n∑

i=1

n∑

j=1

exp[−u2
ij(t)/2ε2].

It can be seen that using Eqs. (5) and (6) give rise to monotonic increase of
P (t). Then by Proposition 3, the increase of P (t) will result in the increase of
the minimal utility, in direct proportion to the value of λ3.

Proposition 5. Updating cij and rij by Eqs. (5) and (6) gives rise to monotonic
increase of the whole utility of all artificial mosquitoes, in direct proportion to
the value of λ2.

Similar to Proposition 2, it follows that when an artificial mosquito mij mod-
ifies its cij and rij by Eqs. (5) and (6), differentiation of J(t) with respect to
time t will not be negative—i.e., 〈dJR(t)

dt 〉 ≥ 0, and it is directly proportional to
the value of λ2.

Proposition 6. Updating cij and rij by Eqs. (5) and (6) gives rise to monotonic
decrease of the artificial mosquitoes’ behavior interaction function Q(t), in direct
proportion to the value of λ4.

As in the above, we have

〈duij(t)
dt 〉4 = −λ4

∂Q(t)
∂uij(t)

{[∂uij(t)
∂rij(t)

]2 + [∂uij(t)
∂cij(t)

]2}; and

〈dQ(t)
dt 〉 = ∂Q(t)

∂uij(t)
〈duij(t)

dt 〉4
= −λ4[

∂Q(t)
∂uij(t)

]2{[∂uij(t)
∂rij(t)

]2 + [∂uij(t)
∂cij(t)

]2}
≤ 0.

7 Simulations

We give the experimental results here which demonstrate the effectiveness of
the MHSA in handling large-scale TSP problems. We show the actual times
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and iterations used to solve TSP problems on a cluster, which can verify the
efficiency and parallelism of our MHSA. All the experiments presented in this
section were carried out on a cluster where each machine has a Pentium 4 2.0
GHz CPU with 512 Kbytes of L2 cache and 512 Mbytes of DDR SDRAM, and
the machines are interconnected via Fast Ethernet.

7.1 Effectiveness of MHS Algorithm

We pick a number of TSP problems of different scales to test our MHS algorithm.
No matter how large the scale is, the MHSA can always converge and obtain the
solution to the TSP.

In the real world, there is little collaboration among mosquitoes. Each
mosquito seeks the host all by itself. In our mosquito host-seeking model, each
artificial mosquito evolves and moves in parallel almost without information ex-
change. Therefore, the MHSA has inherent parallelism, but only approximate
solutions can be obtained. As shown in Fig. 5 and Fig. 6, even if the MHSA can
converge and obtain better solutions to the TSP, the MHSA is easy to jump into
local optima.

Fig. 5. The results of 20-city and 50-city TSPs using MHSA

Fig. 6. The results of 100-city and 300-city TSPs using MHSA

7.2 Efficiency and Parallelism of MHS Algorithm

The MHS algorithm provides a valuable alternative to traditional methods be-
cause of its inherent parallelism. The grayscale values and weights, rij , cij , can
be computed and updated in parallel without any information exchange, which
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Table 3. Convergence times and speeds of MHSA with scale

Scale 16 parallel nodes 8 parallel nodes 1 parallel node
cities time(s) iterations time(s) iterations time(s) iterations

110 0.983 242 1.90 166 16.767 176
160 2.583 600 5.74 348 58.827 393
200 5.453 1046 12.62 602 169.793 816
225 10.8 1759 25.87 973 343.651 1312
250 15.868 2227 42.034 1293 569.017 1832
275 29.419 3327 63.617 1722 1044.953 2842
300 38.901 4159 99.039 2276 1571.968 3711
320 63.718 5711 130.258 2679 2113.836 4351
340 84.762 6806 183.987 3410 3358.083 5839
360 118.984 8404 247.028 4122 4276.371 6758
375 155.671 9816 336.842 4988 5839.789 8245
390 262.693 12544 446.898 5834 8130.714 9963
405 307.017 13909 578.865 6845 9729.199 11014
420 374.298 15629 699.978 7718 13528.261 13064
435 425.01 17180 861.57 8609 15294.553 14319
450 594.781 19854 997.091 9528 18108.043 15921
465 698.079 21922 1641.718 11881 25035.577 18459
480 774.948 23927 1418.417 11523 27951.384 20024
495 987.354 26780 2122.651 13738 37178.713 22961
510 1332.217 30418 2196.459 14275 38786.457 24314

is the foundation of the MHSA’s parallelism. The experimental results have veri-
fied the good parallelism of the MHSA (see Table 3). We use 1, 8, 16 computing
nodes of the cluster, respectively.

As shown in Table 3, the convergence time and the number of iterations in-
crease steadily when the TSP scales up. Table 3 includes the sequential version
which comes from our experimental results using one computing node of the
cluster. The other parts are for the parallel version, with using 4 and 16 com-
puting nodes of the cluster. “Iterations” and “time” are the number of iterations
and the time the MHSA takes to converge.

Fig. 7. Convergence times of MHSA with scale

As shown in Fig. 7, the convergence time of the sequential version increases
exponentially with the scale, which is similar to all existing exact methods. When
parallelized, the convergence time drops significantly, which speaks for the high
parallelism of MHSA.
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8 Conclusion

In this paper, we propose a novel mosquito host-seeking algorithm as a new
branch of nature-inspired algorithms for solving TSP problems. The MHS al-
gorithm is inspired by the host-seeking behavior of mosquitoes. We discuss the
mathematical model, the algorithm, the motivation, and the biological model,
and give experimental results of the MHSA being applied to the TSP. The MHSA
can work out the theoretical optimum solution, which is important and exciting.
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