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Abstract

This paper addresses the problem of separating multi�
ple speakers from mixtures of these that are obtained
using multiple microphones in a room� A new adap�
tive blind signal separation algorithm is derived which
is entirely based on Second Order Statistics� which is
entitled �CoBliSS�� The CoBliSS algorithm can run in
o�ine or online �adaptive	 mode� One of the advan�
tages of the CoBliSS algorithm is that no assumptions
are made about the probability density functions or
other properties of the signals� Experiments with real
recordings were carried out in a normal living room�
which show that the algorithm has good performance�
As opposed to most other algorithms� no parameters
need to be tuned�

� Introduction

�������

Blind Signal Separation �BSS	 deals with the prob�
lem of recovering independent signals using only ob�
served mixtures of these� For acoustical applications�
these observed mixtures are signals of multiple micro�
phones� In this context a convolutive separation algo�
rithm is used� i�e� the separation consists of employing
Multi�Channel Finite Impulse Response �MC�FIR	 
l�
tering to these signals� Recently� several algorithms
have been developed for convolutive separation� e�g�
��� 
� ��� Some authors claim that Second Order Statis�
tics �SOS	 are insu�cient to achieve BSS ��� ��� Most
of the algorithms therefore make use of Higher Or�
der Statistics �HOS	� Among others� mutual informa�
tion and maximum likelihood approaches are followed�
The HOS algorithms contain non�linear elements that
can be tuned to the data in order to obtain a good
performance� In this paper� a new BSS algorithm is
presented� which is based only on SOS and does not
require any parameters to be tuned�

The remainder of this paper is outlined as follows� In

Section � the optimization criterion that will be used
in the BSS algorithm is described� The optimization
is done by minimizing the crosscorrelations among the
outputs of the multi�channel separating 
lter� In order
to achieve a computationally inexpensive algorithm
with fast convergence� this criterion is transformed to
the frequency domain in Section �� The 
lter coe��
cients are calculated in the frequency domain such that
the crosscorrelations become equal to zero� No restric�
tions are imposed however to ensure that the 
lter co�
e�cients correspond to real 
lters of a given length in
the time domain� This is discussed in Section � and a
method is suggested to remedy this problem� After ap�
plying this method� the crosscorrelations are no longer
zero� As there are two sets of constraints in two di�er�
ent domains an iterative method is proposed in which
the weights are adjusted iteratively in alternately one
and the other domain� The key issue to obtain a good
performance in terms of separation and convergence is
to 
nd a suitable adaptation in the frequency domain
which leaves the time domain constraint as much in�
tact as possible� This Time�Frequency Domain Com�
pliance is discussed in Section �� In order to prevent
the algorithm from whitening the signals� a normal�
ization must be applied� This is discussed in Section
�� The previously mentioned building blocks together
form the new Convolutive Blind Signal Separation al�
gorithm� CoBliSS� which is summarized in Section ��
CoBliSS has been tested using people that are speak�
ing recorded in a room� These experimental results
are discussed in Section �� The paper concludes with
conclusions and future work�

� Notation

Throughout� time and frequency signals will be de�
noted by lower case and upper case characters respec�
tively� A character which denotes a vector will be

�



underlined� Superscripts denote the vector or matrix
dimensions� a matrix with one superscript is square�
Also� A�� AT and A�� denote complex conjugate�
matrix transpose and matrix inverse respectively and
�� � ��� Element�wise multiplication is denoted
by �� The expectation operator will be denoted by
Ef�g� The N � N identity matrix and the K � L

zero matrix will be denoted by I
N and �

K�L respec�
tively� The M �M Fourier matrix FM is de
ned as

�FM 	kl � e
����kl
M and diag f�g converts the elements

on the diagonal of a matrix to a vector�

� Optimization Criterion

The MC�FIR separation 
lter will be controlled by
an algorithm that minimizes cross�correlations among
the outputs of this 
lter� The notation is in accor�
dance to Fig� � which depicts the mixing�unmixing
system� The independent sources s� � � � sJ are mixed
by the mixing system H to obtain the sensor signals
x� � � � xJ � Throughout� both the number of sources
and the number of sensors are equal to J � Time in�
dexes are not mentioned explicitly in all formulas� The

H
�
�
�

sJ

s� x�

xJ

�
�
�

�
�
�

y�

w yJ

Figure �� Cascaded mixing�unmixing system

transfer function from the lth input to the mth out�
put of the separation 
lter is denoted as wNml� The

mth output of the separation 
lter ym is calculated
from the observations xNl

ym�n� �

JX
l��

�wNml	
TxNl �n��

with J the number of microphones� N the 
lter length
�all 
lters are of equal length for simplicity	�

wNml�

�
B�
wml�N���

���
wml���

�
CA and xNl �n��

�
B�
xl�n�N���

���
xl�n�

�
CA

The cross�correlation among the outputs can be writ�
ten as ���

ryiyj �l� � Efyi�n�yj �n� l�g

�

JX
a��

JX
c��

N��X
b��

N��X
d��

wia�b�wjc�d�rxaxc �l�b�d� ��	

with rxaxc �l� � Efxa�n�xc�n � l�g� The advantage of
this expression is that it can be used to optimize the

lters wia using the cross�correlations of the observed
data� These crosscorrelations do not do not depend
on the separation 
lters so that they do not need to
be estimated again every time the separation 
lter is
updated�

Next� a cost function can be formed directly from
��	 using for example the sum of squares of the cross�
correlation coe�cients� The straightforward mini�
mization of such a cost function is not eligible however
due to the large number of 
lter coe�cients involved�
A typical example is that two sources and two micro�
phones are used� In that case � FIR 
lters need to be
calculated� each with several hundreds to thousands
coe�cients� Furthermore� all these coe�cients are de�
pendent on each other which makes the problem even
more di�cult� Therefore� an approach is required that
solves for 
lter coe�cients subsets which are as inde�
pendent of each other as possible� In order to achieve
this� ��	 is transformed to the frequency domain�

The cross�correlations are stacked in a vector for all
lags that are considered l � l� � � � l�

rLyiyj �

JX
a��

JX
c��

RL��N��
ac A

�N���N
jc wNia �
	

with L� l��l���� rLyiyj �
�
ryiyj �l�� � � � ryiyj �l��

�T
and

A
�N���N
jc �

�
BBBBBBBBBB�

wjc��� � � � � �
���

� � �
���

wjc�N���
� � � �

�
� � � wjc���

���
� � �

���
� � � � � wjc�N���

�
CCCCCCCCCCA

RL��N��
ac �

�
B�
rxaxc �l��N��� � � � rxaxc �l��N���

���
� � �

���
rxaxc �l��N��� � � � rxaxc �l��N���

�
CA

Solutions for the MC�FIR are guaranteed to be non�
ambiguous if l���N�� and l��N��� In the sequel�
l���N�� and l��N�� so that �
	 can be written as

rLyiyj �

JX
a��

JX
c��

�IL�L�M�M 	RM
ac

�AMjc  wMia � ��	

with M � L � 
N ���  wMia �

�
wNia

�
M�N

�
and �AMjc is

formed by extending A�N���N
jc on the right such that it






becomes circulant

�AMjc�

�
BBBBBBBBBBB�

wjc��� � � � � �
� � �

���
���

� � �
��� wjc�N���

wjc�N���
� � �

� � � � �

�
� � �

� � � wjc���
���

���
� � �

���
� � � �

� � � � � wjc�N��� � � � wjc���

�
CCCCCCCCCCCA

Next� the cross correlation matrixRM
ac is approximated

by its circulant variant �RM
ac � Ef �Xa

M
� �Xc

M
	T g� with

�Xl
M

the circulant data matrix

�XM
l ��B��

�
BBBB�

xl��B�M��� xl��B� � � � xl��B�M�
�
���

� � �
� � �

���
���

� � �
� � � xl��B�

xl��B� � � � � � � xl��B�M���

�
CCCCA

� Frequency Domain Approach

In this section the crosscorrelation expression in ��	 is
transformed to the frequency domain and a 
rst step
is made towards solving the BSS problem� Replacing
RM
ac by it�s circulant approximation in ��	 makes it

possible to diagonalize the matrices in this equation
using FFT�s ���� This is done by inserting the iden�
tity matrix �FM 	��FM in between all matrices which
results in

rLyiyj � �IL�L�L�M 	

JX
a��

JX
c��

�FM 	��

�
	

�R
M

ac �
�W
M

jc � � �W
M

ia 	� � �V M 	N��



��	

with

�R
M

ac � diag
n
FM �RM

ac�F
M 	��

o

�W
M

jc � FM

�
J
NwNjc

�
M�N

�

VM �
	

� e�
��
M � � � e�

���M���
M


T

with J
N the N�N mirror matrix which has ones on its

anti�diagonal and zeros elsewhere� Note that V M and
the complex conjugate in ��	 compensate for the fact
that wNia is not !ipped upside down in  wMia as opposed
to wNjc�

Signal separation is achieved when all crosscorre�
lations among the outputs equal zero� i�e� �i �� j �
rLyiyj � �

L� Using ��	� a su�cient but not necessary

criterion to achieve uncorrelated outputs is therefore
�i �� j

JX
a��

JX
c��

�R
M

ac �
�W
M

jc � � �W
M

ia 	� � �
M � ��	

This expression has the advantage that the frequency
domain 
lter coe�cients are no longer related by the
window �IL�L�L�M 	� the expression is reduced to a
set of scalar equations� Next an approach is followed
where all the scalar equations are solved individually�

The pth elements of �W
M

ij and �R
M

ij are put in a matrix
�i� j

�W J
p �

�
BB�

� �W
M

��	p � � � � �W
M

�J	p
���

� � �
���

� �W
M

J�	p � � � � �W
M

JJ 	p

�
CCA

�RJ
p �

�
BB�

� �R
M

��	p � � � � �R
M

�J 	p
���

� � �
���

� �R
M

J�	p � � � � �R
M

JJ	p

�
CCA

In practical situations �RJ
p is full rank� so that ��	 can

be rewritten �p as

� �W J
p 	� �RJ

p � �W J
p 	T � "J

p

	 � �W J
p 	T �"J

p 	��� �W J
p 	� � � �RJ

p 	�� ��	

with "J
p a diagonal matrix� The o��diagonal zeros ele�

ments are due to ��	 and the diagonal elements deter�
mine the autocorrelations of the outputs of the BSS
in frequency bin p� Since "J

p is real by de
nition and
its inverse is also diagonal� it can be absorbed by the
weight matrices� For this reason� "J

p is set equal to the
identity matrix from now on� The impact of this will
be discussed in detail in Section �� The �RJ

p is sym�
metrical by de
nition as the circulant crosscorrelation

matrices �Rac are symmetrical� i�e� �Rac � �R
�

ca� The in�
verse of this symmetric matrix �RJ

p is also symmetric�
so that the right hand side of ��	 can be decomposed
in several ways �e�g� matrix square root	� In gen�
eral the matrix decomposition should be di�erent �p
in order to obtain the right solution� In practice these
decompositions are unknown so that initially all �RJ

p

are decomposed in the same manner�

� Convolution Constraint

Now that ��	 is solved independently �p� the following
no longer holds

�FM 	�� �W
M

jc �

�
wNjc

�
M�N

�
� ��	

�



In other words� the frequency domain 
lters no longer
correspond to real time domain 
lters of length N �
The fact that the time domain 
lters must be real is
not a problem� because the frequency domain cross
correlation vectors have the same symmetric proper�
ties as the frequency domain 
lters� The fact that the
time domain 
lters must be of length N is achieved by
doing �j� c

�W
M

jc �� FM

�
I
N

�
N�M�N

�
M�N�N

�
M�N

�
�FM 	�� �W

M

jc

��	
This means that the 
lter coe�cients that should be
zero are set to zero in the time domain� Clearly this
destroys the solution of ��	 so that there is a need
for compliance between the frequency domain solution
and the convolution constraint�

� Time�Frequency Compliance

The two sets of equations ��	 and ��	 do not have a
joint solution in closed form� Therefore an iterative
approach is followed� The weight matrices are initial�
ized once so that �W T

p
�W �
p � �R��

p � Then two steps must
be performed which destroy these equations�


 the 
lters are constraint in the time domain ac�
cording to ��	�


 the crosscorrelation matrices �Rp are updated

The key issue is to 
nd a way to adapt the weight
matrices slightly so that ��	 holds again� This weight
adaptation and ��	 can be performed iteratively until
convergence is achieved� This corresponds to 
nding
the individual decompositions of �RJ

p as discussed in
the previous section� Two methods are derived for the
weight update� one is exact and one is an approxi�
mated version that exhibits a low computational com�
plexity�

��� Exact Weight Update

In the following derivation� all matrices are of size
J�J and the corresponding superscripts will be omit�
ted� After constraining the 
lters according to ��	 the
weight matrix product becomes �W T

p
�W �
p � Bp with

Bp �� �R��
p � Also� the crosscorrelation matrices are up�

dated �Rp � �R�
p� The goal is therefore to 
nd a matrix

Cp� such that �W �T
p

�W ��
p � �R���

p with �W �
p � �WpCp� The

matrix Cp must be near to the matrix identity when

Bp is near to �R���
p � In this way� the previous solution

is preserved as much as possible and therefore fast con�
vergence is ensured� Using the decomposed matrices

Dp � sqrtm�Bp	� 	 DT
p D

�
p � Bp

D�
p � sqrtm�R���

p 	� 	 D�T
p D��

p � �R���
p ��	

with sqrtm��	 the matrix square root� i�e� A �
sqrtm�B	 	 AHA � B� such that AH � A� with
B a complex symmetric matrix� i�e� BH � B� The
transform matrix Cp can be found from

Bp � DT
p �D�T

p 	�� �R���
p �D��

p 	��D�
p

	 �W T
p

�W �
p � DT

p �D�T
p 	�� �W �T

p
�W ��
p �D��

p 	��D�
p

	 �Wp � �W �
p�D�

p	
��Dp

	 �W �
p � �Wp�Dp	

��D�
p� ���	

So� Cp � �sqrtm�Bp	�	��sqrtm� �R���
p 	�� In an o�ine

implementation of the algorithm the crosscorrelations
would 
rst be estimated and sqrtm� �R��

p 	� would only
have to be calculated once� In an online implemen�
tation however� the crosscorrelations estimates change
in time and require that the Cp is recomputed every
update� The matrix square root involved is compu�
tationally demanding when there are many signals to
separate �large J	� In the next subsection a method is
derived with a low computational complexity that is
suitable for online implementation�

��� Fast ApproximatedWeight Update

A fast weight update is proposed in this subsection
which does not use the matrix square root� Advantage
is taken of the fact the the crosscorrelation matrices
change only slowly in time�

As in the previous subsection� �W T
p

�W �
p �� �R��

p af�
ter the time domain constraint is applied ��	� Also
the crosscorrelation matrices are updated so that �Rp

changes to �R�
p� Now �p must be found such that

�W �T
p

�W ��
p � �R���

p with �W �
p � �I � �p	 �Wp ���	

So� new weight matrices must be derived from the pre�
vious ones so that their product becomes equal to the
inverse of the updated crosscorrelation matrices� De�
note # �Rp � �R�

p � �Rp so that

�WH
p �I � �p	

H�I � �p	 �Wp � � �Rp � # �Rp	
��

�WH
p

�Wp � �WH
p ��Hp � �p	 �Wp � �R��

p � �R��
p # �Rp

�R��
p

	 �WH
p ��Hp � �p	 �Wp � � �R��

p # �Rp
�R��
p

	 �Hp � �p � �� �W��
p 	H �WH

p
�Wp# �Rp

�WH
p

�Wp
�W��
p ��
	

The approximation corresponds to neglecting higher
order terms of �R��

p # �Rp in the series expansion of �I�
�R��
p # �Rp	

��� Now� �p must be chosen in accordance

with ��
	 and such that the changes to �Wp are small
so that fast convergence is ensured� Both the left and
right hand side of ��
	 are symmetric by de
nition�
It follows from the triangle inequality that the the �p
with the smallest l� norm satisfying �
 is

�p � �Hp � � �
�

�Wp# �Rp
�WH
p

�



In accordance with ���	 the weight update becomes

�W �
p � �I� �

�
�Wp# �Rp

�WH
p 	 �Wp

� �Wp�I�
�
�
# �Rp

�WH
p

�Wp	 ���	

	 Normalization

In Section � the constraint matrices "J
p are set equal

to the matrix identity� The impact of this is discussed
in this section� The elements on the diagonal of "J

p

prescribe the power of the outputs of the separation

lter at the corresponding frequency� First� the e�ect
of choosing the constraint matrices equal to the matrix
identity is discussed for sources that have equal energy
distributions as a function of frequency� Typically for
real world signals like speech the energy decays signi
�
cantly for higher frequencies� When the BSS algorithm
is forced to yield outputs with equal energy for all fre�
quencies this will result in energy boosting for frequen�
cies where the signals are weak� Also� energy will be
lowered for frequencies where the signals are strong�
For speech for example� this leads to unwanted signal
equalization where the low frequencies are suppressed
and high frequencies are boosted resulting in arti
cial
sounding recovered speech� This problem cannot be
solved directly as the ideal "J

p depend on the unknown
original sources� Therefore the following approach is
followed� First� the �W J

p are calculated from ��	 with

"J
p � I

J � Then the weight matrices are normalized
using

�Wp ��
�Wp

jj �Wpjj
���	

A norm that can be used and gives a good perfor�
mance is the l� norm� The idea behind this is that all

lter coe�cients are of the same order of magnitude
after this normalization is applied� Ideally all�pass 
l�
ters are produced that leave the timbre of the signals
una�ected� Another issue is that the powers of the
source signals do not evolve similarly as a function of
frequency� In that case unwanted equalization still oc�
curs despite the scalar normalization� In that case a
more sophisticated procedure could be followed where
the "J

p are estimated from the separated signals� This
approach is not considered here in detail�


 A New Adaptive Algorithm

In this section the CoBliSS algorithm is presented
which consists of the building blocks discussed earlier
in this paper� The adaptive procedure consists of the
following steps�

�� Transform blocks of input data to the frequency
domain �a �

XM
a � FM

�
B�
xa�nB �M � ��

���
xa�nB�

�
CA

The blocks are of length M and are overlapping�
only B new samples are used per block�


� Update crosscorrelation estimates e�ciently in
the frequency domain �a� c �
�R
M

ac �� � �R
M

ac � ��� �	
�
�XM

a 	� �XM
c

�
The forgetting factor � may vary from � to � de�
pending on the application� Usually � is chosen
near to �� e�g� � � �����

�� When the crosscorrelation matrices are updated
several times the weights are initialized by decom�
posing ��	 using the matrix square root
�p � �W J

p � sqrtm�� �RJ
p 	��	�

Note that � �RJ
p 	a�c � � �R

M

ac	p�

�� The weights are changed such that ��	 holds again
�all matrices are of size J � J	
�p � �Wp �� �WpCp with

Cp � �sqrtm� �W T
p

�W �
p 	�	��sqrtm� �R��

p 	�

Note� this step can omitted at initialization�

�� The weight matrices are normalized using
�Wp ��

�Wp

jj �Wpjj

�� The weights are constraint according to ��	 �p �

�W
M

jc �� FM

�
I
N

�
N�M�N

�
M�N�N

�
M�N

�
�FM 	�� �W

M

jc

Note that � �W J
p 	ac � � �W

M

ac	p�

�� The 
ltering is performed e�ciently in the fre�
quency domain using the overlap�save method ���
to obtain the separated outputs

yB
j

� ��B�M�B
I
B	�FM 	��

PJ

a���XM
a � �W

M

ja	

�� All steps are repeated iteratively except for the
initialization in item ��

Note that the 
ltering and the update can be calcu�
lated independently� Reducing the update rate lowers
the computational complexity at the cost of a slower
convergence�

� Experiments

Experiments were done with audio recorded in a real
acoustical environment� The room which is used for
the recordings was ��� x ��� x ��
 m �height x width x
depth	 and is depicted in Figure 
� Two persons read
� sentences aloud� Also� far end speech was introduced
by playing the French news over a small loudspeaker�
The resulting sound was recorded by two microphones

�



which were spaced �� cm apart� The recordings are
�� bit� 
�kHz� The separation 
lters are of length ��

and are controlled by the CoBliSS algorithm� The far
end speech was used as a third input for the BSS� For
the sake of computational complexity� only one update
per every 
��� samples is done� In this experiment�

��cm

�m

��cm

���m

���m

���m

Figure 
� Recording setup

the algorithm converges to a good solution within ��
�
second� An additional advantage of this approach is
that is gives good $echo cancellation$ and it is not
hampered by double talk� Clearly� CoBliSS can be ex�
tended using the knowledge that the far end speech
readily is a source signal ��� ��� The experimental re�
sults can be played from

http���www�esp�ele�tue�nl��daniels�

Also music signals have been separated successfully us�
ing CoBliSS� The algorithm can process more than two
microphone signals at a modest increase in computa�
tional power� In addition� it facilitates for the integra�
tion of acoustical echo cancellers which now can op�
erate in double talk situations without complications
��� ��� This makes it suitable for applications like tele�
conferencing� hands free telephony� etc�

�� Conclusions 
 Future Work

A new blind signal separation algorithm is presented
which is based on second order statistics� Experiments
show that the algorithm has a good performance when

applied to real world audio problems involving speech
and music� Future work includes incorporating prior
knowledge about the room acoustics and the sources
into the algorithm� Also� acoustical echo cancelling
will be included explicitly in CoBliSS�
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