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Abstract 

We present a simple bound on the finite horizon 
L2 [0, TI-induced norm of a linear time-invariant 
(LTI), not necessarily stable system which can be 
efficiently computed by calculating the X, norm 
of a shifted version of the original operator. As 
an application, we show how io use this bound to 
perform model reduction of unstable systems over 
a finite horizon. The technique is illustrated with 
a non-trivial physical example relevant to the ap- 
pearance of time-irreversible phenomena in statisti- 
cal physics. 

1 Introduction 

Many problems of practical interest entail bound- 
ing the induced L2 norm of a not necessarily sta- 
ble system over a finite time interval [O,T]. Ex- 
amples include the worst-case identification of un- 
stable plants [8], and obtaining low-order approxi- 
mations to Hamiltonian systems common in physics 
such as large collections of coupled oscillators [ 13. 

In principle, such a bound can be obtained by con- 
sidering a slight extension of the Bounded Real 
Lemma, leading to a differential Riccati inequality 
or, equivalently, to a differential Linear Matrix In- 
equality. However, these differential inequalities are 
computationally expensive to solve, except in low 
dimensional cases. 

In this paper, we present a simple new bound that 
can be readily obtained from the ‘FI, norm of a 
shifted version of the system. We can then use this 
bound to develop a framework for model reduction, 
over a finite interval; of non-Hurwitz LTI systems. 

‘This work was supported in part by NSF, under grants ECS- 
9907051, ECS-0115946 and Caltech’s Institute for Quantum In- 
formation, and by AFOSR, under MURI “Uncertainty Manage- 
ment in Complex Systems” and grant F4962(MO-1-0020. 

This framework is illustrated with an example from 
statistical physics showing that incomplete obser- 
vation of microscopically time-reversible conserva- 
tive laws can consistently lead to apparently irre- 
versible macroscopic behavior. 

The paper is organized as follows. Section 2 intro- 
duces notation and some preliminary results. In sec- 
tion 3 we present the derivation of the new bound. ~ 

In Section 4 we illustrate how to apply this bound to 
model reduction of non-Hurwitz LTI systems. Fi- 
nally, Section 5 contains some concluding remarks 
and points to some open research directions. 

2 Preliminaries 

2.1 Notation 
L, denotes the Lebesgue space of complex val- 
ued matrix functions essentially bounded on the 
j w  axis, equipped with the norm llG(s)11, = 
ess supw iT (G(jw)), where iY is the largest singular 
value. E ,  denotes the subspace of functions in L ,  
with a bounded analytic continuation in R ( s )  2 0. 

&[O,T] denotes the space of vector valued 
real functions essentially bounded in the inter- 

f ’ ( t ) f ( t ) d t .  Let L represent the space of LTI, 
causal, bounded operators in L2 [0, TI. The induced 
norm of an operator M E L is given by 

val [O,T], equipped with the norm ~ ~ f ~ ~ ~ z ~ o , T l  2 - 

It is a standard fact that the &[O, eo)-induced norm 
of a LTI stable operator G coincides with the peak 
value of its frequency response, i.e., 

Given a stable, finite dimensional operator 
G:Lz[O,m) -+ Lz[O,eo) with a state space 
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realization G = (-+), its associated Hankel 

operator rG:&(-m,O]  -+ C2[0,03) is defined 
as: 

This operator can be thought off as mapping past 
inputs in (-00, 01 to the corresponding output in 

Let I';7:.&[0,m) + .&(-m,O] denote the adjoint 
operator of r G .  The Hankel singular values OF 
of G are defined as the square roots of the eigen- 
values of the operator l?;I'G. A well known re- 
sult (see for instance [6] ,  Chapter 6)  establishes that 
these eigenvalues coincide with the eigenvalues of 
W,W,, the product of the controllability and ob- 
servability Gramians of G. 

io, 00). 

2.2 Preliminary Results 
In this section, we provide some preliminary results 
that relate the &-induced norm of a finite dimen- 
sional LTI operator to the existence of positive defi- 
nite solutions to an algebraic or a differential matrix 
inequality. These results will be used to obtain a 
bound on the L2 [0, TI-induced norm. 

Lemma 1 (Bounded Real) Consider a strictly 
propel; finite dimensional, LTI, stable system G 
with state space realization: 

G =  (-*) 
Then the following statements are equivalent: 

1.  The &[O,co)-induced gain is bounded by 
'Y > O: 11GllL2(o,a),ind < 'Y 

2. The following L M I  admits a positive definite 
solution X > 0: 

A'X + X A  + C'C X B  [ B'X - 7 2 1  

Lemma 2 (Bounded Real, Differential version) 
Consider a strictly proper, finite dimensional, not 
necessarily stable LTI system G with state space 
realization: 

G =  (e) 
Assume that the following diferential matrix 
inequality admits a positive definite solution 

1181 

X ( t ) ,  V t  E [O,T]: 

A ' X + X A + X + C ' C  X B  
B'X - 7 2 1  

Let U E L2 [0, TI denote an arbitrary input and z the 
corresponding output. Then the following holds: 

T lT z'zdt < y2 1 u'udt (3) 

Corollary 1 If  the inequality (2) holds, then 
IIGll&[0,T], ind < 7, 

3 A Simple Bound of the L2 [0, 2'1-induced norm 

In this section, we show that a bound on the 
CZ [0, ?']-induced norm can be obtained by simply 
computing the 'H, norm of a shifted version of the 
system under consideration. 

Formally, the L2 [0, TI-induced norm of a given LTI 
operator G is equivalent to the &[O, co) induced 
norm of a time-varying system with convolution 
kernel: 

where W (  .) is a step window of the form 
G(t ,T )  W( t )G( t  - T ) ,  (4) 

1 O l t L T  
0 otherwise ' 

W ( t )  = 

However, as mentioned above, there are no com- 
putationally efficient procedures for performing this 
calculation. To circumvent this difficulty, one can 
approximate the step window W ( t )  by an exponen- 
tial window of the form e-a t ,  where the time con- 
stant a is such that e-at << 1 for t > 2'. The ad- 
vantage of this approach is that the resulting kernel, 
e-atG(t)  can be associated with a new LTI opera- 
tor, whose frequency response is a shifted version of 
the frequency response of the original system. If a 
is chosen such that this new LTI operator is stable, 
computing its &[O, m)-induced norm (i.e., its IH, 
norm) is now a standard problem. These observa- 
tions motivate the following result: 

Theorem 1 Consider a strictly propeqfinite dimen- 
sional, LTI, (not necessarily stable system) G with 
state space realization 

G =  (-+). 
If there exists a > 0 such that 

G,= (*) 



is stable, with ~lGal~m < y, then the following 
bound holds: 

Proof: Since by hypothesis lleaTG,II,, < yeaT,  it 
follows from Lemma 1 that there exists X, 2 
0 such that: 

-y’e’aT~ 

(6) 
< O  

where A ,  = A - a1. Define X ( t )  = 
e-2atXa and consider t E [O,T]. Multiply- 
ing (6) by e-2atI(n+,)x (n+m) we have: 

X a B  1 ALX, + X , A ,  + eaTC‘CeaT 
B’X,  i 

O >  

-y’e’aT~ X B  1 A’X + X A +  x + C’C [ B’X 

where the last inequality relies on a > 0 and 
t I T.  The proof now follows immediately 
from Lemma 2. 

4 Application: Model Reduction of Unstable 
Systems 

In this section, we use the bound ( 5 )  to solve the 
problem of model reduction of non-stable systems 
over a finite horizon. This problem is relevant, for 
instance, in the context of classical physics, where 
fundamental models arise from Hamiltonians with 
all the eigenvalues of A purely imaginary. In this 
framework, the algorithm developed here, with up- 
per bounds on the approximation error, provides an 
alternative to uncontrolled, formal approximation 
procedures currently used in the physics literature. 

4.1 A Simple Algorithm for Model Reduction in 

Consider a finite dimensional LTI system G(s) with 
McMillan degree n. A well known result [4] states 
that a rank T approximation G ,  to a stable G can 
be obtained by considering a balanced realization of 
G( s )  and discarding the states associated with the 
smallest n - T Hankel singular values OF, i = T + 
1, . . . , n. The corresponding approximation error is 
then bounded by IlG - GTllm L 2 

cz [O, TI 

a?. 

On the other hand, few results are available for 
the case where G is not necessarily Hurwitz and it 
is only desired to find approximations (in the La- 
induced sense) over a finite time interval. Model 
reduction of unstable systems in the 13, (Hankel) 
sense has been addressed in [9]. However, contrary 
to the stable case, C, approximation error bounds 
do not lead to bounds in the CZ [0, T ]  sense when G 
is non Hurwitz. In principle, model reduction in the 
132 (0, TI sense can be accomplished by treating the 
system as LTV (setting A ( t ) ,  B(t ) ,  C( t ) ,  D( t )  = 0 
for t > T )  and using the results in [7] or [5]. How- 
&er, they both pose practical difficulties: the for- 
mer requires solving two differential Lyapunov in- 
equalities subject to an additional constraint on the 
structure of the solutions, while the latter applies 
to discrete-time systems, with no continuous-time 
counterpart presently available. 

These problems can be circumvented using the fol- 
lowing simple algorithm, motivated by Theorem 1: 

Algorithm 1 

0.- Take as inputs a state space realization 
G ( s )  = C(s1- A ) - l B  + D, and a number 
a E R+ such that G(s + a)  E ’&,. 

1.- Find a stable reduced order approximation 

G,, = (w) to the shifed system 

G, 4 (.*). 

2.- Use the system G, --I (-*) 
as aa approximation t o  G in the ‘inter& 
10, TI. 

Remark 1 Since G ,  is stable, an approximation 
G,,, can be readily obtained using standard model 
reduction techniques. In particular, using bal- 
anced truncations leads to the error bound: llGa - 
GT,,Ilm 5 2 ~ ~ = , + ,  .Ei , where uzi denotes the 
Hankel singular values of G ,  (ordered in decreas- 
ing order). Now, from Theorem I it follows that 

n 

Remark2 From equation (7) it follows that the 
proposed algorithm gives error bounds comparable 
to those of the stable LTI case when a N 1/T. An 
intuitive explanation of this relationship is given in 
the next section. 
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4.2 A Nontrivial Example: Coupled-oscillator 
Models of a Thermal Bath 
To illustrate its usefulness, we have applied our 
general framework to a widely studied model (see 
for example [2, IO]) that describes the dynamics of 
a harmonic oscillator coupled to a thermal bath- 
itself modelled as a very large collection of har- 
monic oscillators with a distribution of frequencies. 
This model, shown schematically in Figure l(a), 
has been proposed as a particularly simple example 
of the means by which microscopic conservative, 
time-reversible laws can give rise to irreversible, 
dissipative macroscopic behavior [2, 101. 

0 5 10 15 20 25 
Time (Oscillation Periods) 

Figure 1: (top) Harmonic oscillator in a thermal bath. 
(bootm) Impulse response for R = l , y  = 
0.1,N = l O O , W ,  = 10. 

A state-space realization of this model is given by: 

4 = PI" 

~ = -mR2q + gi (wiqi - giq/mi) + ~ ( t )  

qi = Palmi 

Y = Pl (8) 

N 

a= 1 

2 pi = -miwi qi + QiWiq 

where the variables q1 p, q i ,  pi describe, respec- 
tively, the position and momentum of the harmonic 
oscillator with frequency R, and of the N bath os- 
cillators with frequencies wi. The generality of (8) 
resides in the freedom to choose the distribution of 
wi and the coupling strengths gi. Here, we con- 
sider a standard ohmic bath with frequencies evenly 
spaced in the interval (0, U,], such that wi = iw,/N 

with w, a cut-off frequency, and with constant cou- 
pling g;/mi = 4mI'w,/nN. In this case, stan- 
dard results [2, 101 establish that in the limit of 
N l w c  --+ 00, the harmonic oscillator should be- 
have like a damped oscillator with frequency R and 
damping rate I'. However, is i t  worth emphasizing 
that most approximation techniques through which 
this result is derived in the physics literature are ad 
hoc, with no error bounds and often requiring for- 
mal limits with some infinite scaling. 

In contrast, we approach this problem as that of 
obtaining low-order approximations, over a finite 
time horizon, of an input-output system with high- 
dimensional, linear Hamiltonian dynamics. Indeed, 
the impulse response shown in Figure l(b) strongly 
suggests that the observed dynamics of the sys- 
tem at early times may be very close to that of a 
damped oscillator even for a moderate number of 
bath modes. However, since the model is Hamilto- 
nian, the corresponding matrix A has all its eigen- 
values on the jw-axis, and thus standard infinite 
horizon model reduction techniques cannot be di- 
rectly applied. On the other hand, any u > 0 renders 
the shifted system A, stable. This allows the appli- 
cation of Theorem 1, bound (7), and Algorithm 1 
to obtain reduced order models of (8), with guaran- 
teed approximation error bounds, over a finite time 
horizon T. 
In Figure 2, we present a plot of the Hankel singular 
values of the shifted system G, for several values 
of N .  It shows that the system has only two sig- 
nificant Hankel singular values with the remaining 
ones typically several orders of magnitude smaller 
and tailing off rapidly. This is so even for moderate 
numbers of oscillators, far from any infinite N limit- 
ing behavior commonly invoked in the physics liter- 
ature. In essence, this is an algorithmic derivation of 
the fact that the best model (in a rigorous sense) of 
the dynamics over a finite horizon is a damped oscil- 
lator. This is corroborated in Figure 3, which shows 
the approximation error incurred when using a sec- 
ond order (dissipative) approximation in [0, TI, and 
in Figure 4, which compares the impulse responses 
of system (8) with N = 100 modes and its second 
order approximation. The reduced model we obtain 
for these parameters has the following state-space 
realization: 

G, = 
1.01 0.05 

and even for this relatively small number of oscilla- 
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tors the error over a time horizon T is bounded by 

]IG - G ~ 1 1 ~ 2 [ ~ , ~ ] ,  ind - < 0.12e0.1T. (10) 

100 200 3.00 400 500 
Number of Oscillators 

Figure 2: Hankel singular values for the shifted cou- 
pled oscillator system. The circles, crosses, 
plus signs, stars, squares and diamonds corre- 
spond to N = 100,150,200,250,350,500, 
respectively. The other parameters are R = 1, 
r = 0.1, a 0: N - ' f 3  and wc 0: N I f 3 .  

These results are quite independent of the particular 
choice of parameters. Consistent numerical experi- 
ments indicate that the approximation error is small 
as long as a N 1/T. This is intuitive: if the time 
horizon T is to lead to significant simplification of 
the dynamics, the weighting exp( -aT) should en- 
sure that times beyond T do not contribute signif- 
icantly to the norm. We also investigated the ap- 
proximation error of the second order reduced mod- 
els as N,w, and T are varied. It is expected that 
if the above approximation scheme is valid, then by 
increasing the cut-off frequency and the number of 
oscillators it should be possible to consider arbitrar- 
ily long time horizons. Indeed, this is the case, as 
shown in Figure 3 where we plot the bounds on the 
approximation error as N ,  T,  w, -+ 00 such that 
w,/Na -+ 0 and aw,/R2 is held constant. We 
remark that, by using the bound on the induced 
norin (5), it is possible to show analytically that, 
with these scalings, the error in replacing the full 
system by the second order Langevin equation may 
be made arbitrarily small. 

5 Conclusions 

In this paper we have presented a simple bound on 
the &[O,  TI-induced norm and exploited it to per- 
form model reduction of not necessarily Hurwitz 
systems over a finite time interval. A salient fea- 
ture of the proposed algorithm is its modest com- 
putational complexity, similar to that of obtaining 

Figure 3: Upper bound on the approximation error as a 
function of the number of oscillators. 

' 1  I 

5 10 15 20 25 
Time (Oscillation Periods) 

Figure 4: Impulse response of the coupled oscillator 
system (8) with Q = l,r = 0.1,N = 
1 0 0 , ~ ~  = 10. Dashed: full system, Dot- 
ted: Low order approximation with a = 0.1 
(T = 10). 

reduced order models of stable LTI plants of com- 
parable size. 

These results were illustrated with a non triv- 
ial physical example showing how microscopic 
reversible dynamics can lead to macroscopic 
dissipative-like behavior. From this perspective, 
the origin of dissipation is no particular mystery: it 
arises as a parsimonious description of incomplete 
observations of the dynamics over a finite horizon. 
Important to the above analysis is that the small 
number of degrees of freedom of the system that can 
be driven and observed result in a state space model 
with strongly observable and strongly controllable 
subspaces that are nearly orthogonal. Thus, in a sys- 
tematic search for simple descriptions of finite hori- 
zon LTI systems, dissipative dynamics will usually 
arise, unless conservation of energy is artificially 
enforced. In fact, such a conservative description 
will typically be of higher order. Remarkably, the 
algorithmic results above are robust to changes in 
the parameters of the system (8) (such as the damp- 
ing I', the cut-off frequency w, and the number of 
bath modes N ) ,  the horizon T and the shifting fac- 
tor a, as long as some general scaling ratios hold. 
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Indeed, a key feature of our approach is that it of- 
fers the possibility of unravelling the dependence of 
the approximation error on all of those parameters, 
an analysis hitherto beyond the abilities of currently 
used statistical physics techniques. 

Finally, we would like to briefly comment on some 
interesting open issues. The first concerns the con- 
servativeness of the bound (5). It can be shown that 
this bound is tight in some cases. Consider the case 
of a time delay G,(s) = e--sT, T < T.  Clearly, 
I(G,(IE2[D,T], ind = 1. On the other hand, for any 
a > 0, 

eaTJIGa(s)llm = eaTJ(e-aTe-STJ( m -  - 

and direct application of Theorem 1 yields: 

Hence the bound can be made arbitrarily tight by 
taking T --t T .  In other cases, however, there 
is a non-zero gap. Consider the case G(s) = 
l/s. It can be shown that the worst case signal is 
U = cos(rt/22’) and, therefore, IIGIl,210,TI, ind = 
2T/r. Now, application of Theorem 1 leads to: 

Optimizing over a to obtain the tightest bound 
yields UT = 1 and eaT1)Ga)loo = T e. There- 
fore, in this case the ratio of the best bound to the 
actual norm is r e / 2  N 4.27. Clearly, it would be 
of interest to obtain conditions relating the size of 
the gap to properties of the plant or, alternatively, to 
identify classes of plants where the bound is tight. 

The second open issue is related to finding the value 
of a that yields the tightest bound for a given plant. 
Note that from the maximum modulus theorem it 
follows that I I G ( s ) ~ ~ ~ ~  is a non-increasing function 
of a. Thus, in general, the bound (5) is the product 
of an increasing (eaT) and a decreasing function of 
a and there is usually an optimal value of the pa- 
rameter. In simple cases such as the integrator con- 
sidered above, this value can be found by solving an 
optimization problem. However, it is not known at 
this point whether this problem is tractable in more 
complicated cases. A similar situation arises in con- 
nection with the bound (7): typically Cy=T+l uti 
is a decreasing function of a,  and thus, for given G 
and T there exists a value of a that minimizes the 
right hand side of the bound. 

Finally, in the case of model reduction of stable sys- 
tems it is well known that the approximation error is 

bounded below by ((G - GTllm 2 ~ 7 % ~ .  No com- 
parable lower bound is available at this time for the 
approximation error when using Algorithm 1 to per- 
form model reduction over a finite horizon. 
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