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Abstract. It is shown that a packing of unit spheres in three-dimensional Euclidean 
space can have density at most 0.773055 .... and that a Voronoi polyhedron defined 
by such a packing must have volume at least 5.41848 .... These bounds are superior 
to the best bounds previously published [5] (0.77836 and 5.382, respectively), but are 
inferior to the tight bounds of 0.7404... and 5.550... claimed by Hsiang [2]. 

Our bounds are proved by cutting a Voronoi polyhedron into cones, one for each 
of its faces. A lower bound is established on the volume of each cone as a function 
of its solid angle. Convexity arguments then show that the sum of all the cone volume 
bounds is minimized when there are 13 faces each of solid angle 47~/13. 

1. Introduction 

The density of a sphere packing in a space is the percentage of  the volume of  the 
space that  lies inside the spheres. For  spaces of infinite volume the density is 
defined as a limit of the densities associated with a set of  nested, convex, finite 
subsets whose union is the entire space. In three-dimensional Euclidean space the 
vertices of the face-centered cubic lattice can be used to define the cannonball  

packing, a packing of nonoverlapping unit spheres whose density is r t /V/~  ~ 
0.7404 . . . .  This packing was known to Kepler, who conjectured that it was the 
best possible. 

Over the years a number  of  upper bounds on the density of  nonoverlapping 
packings of unit spheres in three dimensions have been established, most  recently 
0.7796 by Rogers [6], 0.77844 by Lindsey [3], and 0.77836 by Muder  [5]. Since 
[5], Lindsey [4-] has announced a bound of 0.7736 and Hsiang [2] has claimed 
to have proved Kepler's conjecture. As of this writing, the status of these claims 
is unresolved. A good general reference on sphere packings and what is known 
about them is [1]. 

Each sphere in a packing has a Voronoi  polyhedron associated with it. This is 
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the set of points in the space that lie closer to the center of that sphere than to 
the center of any of the other spheres. The Voronoi polyhedra decompose the 
space, and if the spheres are nonoverlapping each polyhedron contains its 
associated sphere. By convention, the "center" of a Voronoi polyhedron is the 
center of its associated sphere. The ratio of the volume of a sphere to the volume 
of its Voronoi polyhedron is a local measure of density, and it is well known that 
any upper bound on the local densities in a sphere packing is also an upper bound 
on the density of the packing as a whole. In this paper we prove 

Theorem. A Voronoi polyhedron defined by a packino of unit spheres in three 
dimensions has volume at least 13fl(4r~/13) ~ 5.41848 . . . .  where fl(@) is defined at 

= 4n/13 by the parametric equations 

fl, -- 5rx//]- _ 2r 2 

3,/2 
1 / /1 - 2r:~ 

+6 ~, 5 7 t -  a r c t a n / ~ ) ,  

arctan / ~ - r 2  ) ~/~ - 5  - arctan /~ZrZ ) �9 

From this theorem immediately follows 

Corollary. The density of a packing of unit spheres in three dimensions is at most 

4rt 

39fl(4rc/13) 
0.773055 . . . .  

The proof of our theorem is easy to describe: For  each face ~- of a Voronoi 
polyhedron with center A, construct the cone with base ~" and apex A. The sum 
of the volumes of these facecones is the volume of the polyhedron, and the sum 
of their solid angles at A is 4re. We find a function fl($) such that any of the 
facecones whose solid angle is ~ has volume at least fl($). We then use convexity 
arguments to show that the sum ~ fl($i) is minimized subject to the constraint 

$i = 4rt when there are 13 identical ~ all equal to 4n/13. This minimum is then 
our bound. 

2. Structure of the Proof 

Our proof has three major steps, summarized by Propositions A, B, and C. In this 
section we state these propositions and show how the theorem is proved from 
them. Sections 3, 4, and 5 prove these propositions based on Technical Lemmas 
TL1-TL8 proved in Section 6. 

We get our bounds on the volumes of facecones by comparing them with right 
circular cones and shaved right circular cones of the same solid angle. First let us 
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describe these objects. A right circular cone (RCC) is a cone whose base is a disk 
and whose apex lies on a ray which is perpendicular to the plane of the disk and 
originates at the center of the disk. The distance from the apex to the center of 
the disk is the height of the RCC and its radius is the radius of the disk. Consider 
a disk of center M and a set of chords of its boundary circle. The shaved circle 
defined by the chords is the set of all points P of the disk such that the segment 
M P  does not intersect the chords. (Equivalently, it can be thought of as the 
intersection of the disk with a polygon.) The number of chords is the order of the 
shaved circle. We say that the shaved circle is vertex-free if the defining chords 
do not intersect. It is regular of order n if it is defined by n nonintersecting chords 
of the same length. A shaved right circular cone (SRCC) is a cone whose base is a 
shaved circle and whose apex lies on a ray which is perpendicular to the plane of 
the disk and originates at the center of the disk. Its height is defined in the same 
way as that of an RCC. An SRCC has the same order as its base and is regular 
or vertex-free if its base is. The distance from center of the disk to the nearest 
chord is called the inner radius of the SRCC, and the radius of the disk is called 
the outer radius. An RCC can be thought of as a regular SRCC of any order with 
inner and outer radii equal. 

The definition of an SRCC is motivated by the following considerations: In 
[5] it was shown that the most efficient faces for constructing Voronoi polyhedra 
of small volume are regular pentagons. (An ideally efficient face would be circular, 
have a small radius, and be as close to the center of the polyhedron as possible. 
The pentagonal faces of 1-5] are the nearest possible approximation of this.) Faces 
of six or more sides are difficult to handle analytically, but are less efficient than 
pentagons because at most five edges of a face of a Voronoi polyhedron can be 
close to its center. In this paper we analyze facecones by replacing them with 
SRCCs of the same solid angle but less volume. Our construction process allows 
us to make do with SRCCs of order at most five, since at most five edges of the 
original face fall within the outer radius of the SRCC. In this way many of the 
difficulties of [5] are avoided. 

Facecones are replaced by SRCCs of four basic types, depending on the solid 
angle of the facecone. We partition the interval [0, 2n) of possible solid angles by 

0 < ~1 < ff~2 < ~3 *(2~, 

where 

~1 = ~ 3 - x / / 8 )  ~ 0 " 3 5 9 3 ,  

~'2 = 10 arctan 
2 , ~ -  1 

n ~ 0.9424, 

2 
~3 = ~ (N//3 -- N/~)~ ~ 1.1530. 
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This partitioning seems unintuitive, but is based on simple geometric considera- 
tions. There are three easily bounded constants associated with each face: its 
height, the distance from the polyhedron's center to the face's nearest edge, and 
the distance from the polyhedron's center to the face's nearest vertex. These give 
us the height, inner radius, and outer radius of our SRCCs. Every facecone must 
have height h > 1, and facecones of small solid angle are possible only for larger 
heights, with arbitrarily~ small solid angles possible only for h > x~ .  In our SRCC 
constrUction process, g'2 is the smallest solid angle that occurs with h = 1. (This 
is what causes the convexity of fl($) to change at 62, making this the most efficient 
solid angle for an SRCC. The solid angle 4n/13 appears in the theorem because 
this is the smallest unit fraction of 4n that is greater than 62.) Our bounds on the 
distances of edges and vertices become equal at h = 2/x/~, corresponding to an 
RCC of solid angle 61- For solid angles greater than ~2, our bounding SRCCs 
have height 1, outer radius l/x/2, and an inner radius that increases with solid 
angle. Inner and outer radii become equal at 63, the solid angle of an RCC of 
height 1 and radius l/x//2. 

This replacing of facecones with SRCCs is given by 

Proposition A. A facecone of solid angle ~ has volume at least that of an SRCC 
of solid angle ~p of the form: 

(1) An RCC of height h e[2/x/3 ,  x/2 ] and radius ( 2 -  h2)/x/4 - h 2 for 
[o, 6,3. 

(2) A regular, vertex-free, order-5 SRCC of height h e [1, 2 / x ~  ], outer radius 
x/~ - h2, and inner radius (2 - h2)/x//4 - h 2 for ~k e [61, 62-1. 

(3) A regular, vertex-free, order-5 SRCC of height 1, outer radius 1/.,,/2, and 

inner radius re  [l/x/-3, l/x//2] for ~ [62, 63]. 
(4) An RCC of height 1 and radius R > 1/x/-2 for ~k ~ [63, 2;0. 

Using Technical Lemma TL1 to evaluate the volumes and solid angles of the 
objects listed in Proposition A allows us to state a more analytic version of the 
proposition. This version defines fl(r parametrically on the four subintervals of 
[0, 2r 0. A graph of fl(r is given in Fig. 1. 

Proposition A'. A facecone of solid angle ~ has volume at least fl(~) where fl(O) is 
defined by the following parametric equations: 

xh(2 - h 2 )  2 

f i b -  3(4 -- h 2) ' 

ffh = re(2 -- h x / ~ -  h 2) 

for h e [2/x/~, x//2-], in which case d/h parametrizes all values in E0, 61]; 
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Fig. 1. Graph of fl(~b). 
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fl h 
5h(2 - h2)x/4- 3h 2 

3x/~(4 - h 2) 
h(3-  2h2)( x / 4 -  3h 2"] 

+ ........ 6 . . . .  7t - 5 arctan ~ ( 2 - ~  h2))' 

a r c t a n ~ 2 - - h ~ ) ) - 2 ~ / ~ h ( z - 5 a r c t a n x / - 2 ( 2 _ h 2 , )  

for h ~ [1, 2/x//3], in which case Oh parametrizes all values in [6,, 621; 

fl 5 t x / 1 - - 2 r  2 1 ( /1 - -2r2~ 
3x//2 + 6  ~--5arctan ~/ 2r 2 ), 

( /1--2r2~ ~/~(~ 5arctan / 2 r 2 )  ~, = 2 ~ -  5 arctan V ~ - r 2  ) - 2 - ~ ' ]  

for re  [l/v/3, llx~], in which case ~, parametrizes all values in [62, 63]; 

I~R 2 

3 

ql R = 2 ~  1 

for R >_ l/w~2 , in which case ~R parametrizes all values in [63, 2n'). 
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Fig. 2. Graph of fl(~) - L(ff). 
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As might be imagined from its description above, fl(~k) is rather difficult 
to work with. In Proposition B we bound fl(ff) below with a function L(~k) which 
is linear except in the critical region between ~2 and ~3, where exactness is 
important. Numerical evidence for Proposition B is given in Fig. 2. 

Proposition B. Let 

L ( ~ )  = 

~ for ~ [0, ~,], 

~(~,) + ~(~)  - ~(~') (~, - ~,) So, ~, ~ E~,, ~ l ,  

fl(~b) for ~k e [~2, ~a], 

fl(~3) -t- fl'(1~3)(~r -- 1~3 ) for ~s e [~3, 2x). 

Then fl(~k) >_ L(~k) for all ~k ~ r0, 27z). 

The problem is now a purely analytic one which is handled by 

N Proposition C. Suppose ~i~ [0, 2n) for every i, and ~i=o ~i = 4ft. Then 

i=0 
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Proof of the Theorem. Let ~ be a Voronoi polyhedron defined by a packing of 
unit spheres. Suppose it has N faces, and that the facecones have solid angles 
qJl, . . . ,  qJu. By Proposition A' we know that the volume of U is at least ~i~ 1 fl(qJl). 
Now Propositions B, C, and the definition of L allow us to conclude 

fl(~,,) _> L(O,) > 13L = 13fl ~ . 
i=1  i=1  

[] 

3. Proof of Proposition A 

The proof of Proposition A has three main steps, corresponding to Propositions 
A 1, A2, and A3. In this section we prove these propositions in terms of the technical 
lemmas (which are found in Section 6) and show how they are used to prove 
Proposition A. 

If ~ is a planar region and A is a point out of the plane, then let ~A(~) be the 
cone with base ~ and apex A. In situations where ~ is a region in the plane of 
a face of a Voronoi polyhedron and A is the center of the polyhedron, we simplify 
the notation and write ~(~). 

If 6 r and 6g' are shaved circles in the same plane, with a common center M, 
and A is a point on the line perpendicular to the plane at M, we say that the 
SRCC C~A(Se ) is replaceable by (~tYa(,~/~t) if cgA(Se ) and CgA(Sa') have the same apex 
solid angle and VOI(~A(Se)) > vol(C~A(,JP')). The replacement process is guided by 
a simple intuition (expressed rigorously in TL3): In order for a cone to have a 
small volume in comparison with its apex solid angle, the height h should be small 
and the area of the base should be concentrated around the foot of the perpendicu- 
lar from the apex to the plane of the base. This motivates the process of 
constructing an SRCC to replace a given facecone ~(~'). We begin by drawing a 

circle of radius ~/~ - h ~ around the foot M of the perpendicular from the apex. 
This radius is small enough to ensure that all vertices and all but five edges of 
lie outside the circle. The intersection of the corresponding disk with o~ is a shaved 
circle and defines an SRCC. We account for the solid angle outside the circle by 
increasing the inner radius of the SRCC, effectively moving area from outside the 
circle to inside the circle, thereby improving the concentration of area around M. 
If the inner radius reaches the outer radius without accounting for all of the solid 

angle, we expand both, creating an RCC of radius greater than V / ~ -  h 2. Of all 
the SRCCs that can be constructed in this way from facecones of a given solid 
angle, we then choose the one of minimum height, which also turns out to be the 
one of minimum volume. 

Proposition A1, Any facecone cg(~) of heioht h > 2/~-3 is replaceable by either 

(1) an RCC of height he I-2/x//3, rain(h, x/~)] and radius (2 - h2)/x/4 - ~2; or 
(2) an RCC of height 2/x/~ and radius R > 1/v/6. 
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Proof. Let ~ be a circle in the plane of ~@, with center M and radius R such 
that r and ~g(~-) have the same solid angle. 

It follows that cg(~- _ ~ )  and ~g(~ - ~ )  have the same solid angle, which we 

denote ~o. However, all points of ~- - ~ are at least p = x / ~  + h 2 from A, while 
all points of ~ - o~- are at most p from A. Therefore TL3 allows us to deduce 

v o l ( ~ ( ~ ) )  - v o l ( C e ( ~ ) )  = v o l ( ~ e ( ~  - ~ ) )  - v o l ( ~ e ( ~  - ~ ) )  

p3 p3 

=0. 

So we see that c~(~@) is replaceable by ~(~). 

For each h e [2/v/3, hi let RCC(h) be the RCC of height/] and radius R~ = Rh/h. 
The cone RCC(h) is similar to ~g(~) but smaller and so has the same solid angle 
as r but less volume. So ~g(~) is replaceable by any RCC(h). 

By TL4, either h > x//2 or ~ contains a circle of radius (2 - h2)/x//4 - h 2 about 
M. Therefore we know R > g(h), where 

( (2 - h 2) v/~, 
~ - - / ~  for h < 

g(h) 

~0 for h > x/~. 

As h decreases so does R/,, but 9(h) increases. Therefore either there is some 

/~ e [2/x//3, min(x/~, h)) such that R~ = 9(h), or R2/~/3 > 9(2/x//-3) = 1/x/~. In the 

first case we replace ~(~)  with RCC(h) and in the second with RCC(2/x/~). These 
satisfy the two alternatives of the proposition. [] 

Proposition A2. Any facecone cg(~@) of height h e [1, 2/x/~] is replaceable by either 

(1) an RCC of height h and radius R >_ x/~ - h2; or 
(2) a regular, vertex-free, order-5 SRCC of height h, outer radius x//~ - h 2, and 

inner radius r >_ (2 --  h 2 ) / x / / 4  - h 2. 

Proof. Let ~ be the circle of radius x/~ - h2 about M in the plane of ~ .  If the 
solid angle of cg(~) is greater than that of ~ ,  then we can replace ~g(~') with an 

RCC of height h and radius greater than x/~ - h~ as in the proof of Proposition 
A1. 

Otherwise, consider ~ c~ ~-. By TL5, this is a shaved circle with at most five 

chords, one for each edge of ~ that lies within x/~ of A. By TL4, none of the 
vertices of ~- lies inside ~ ,  so ~ n ~" is vertex-free. We can construct a vertex-free 
order-5 SRCC containing ~ n ~- by shrinking the chords o f ~  n ~-, i.e., by pulling 
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the edges of  ~- away from M. In this way we can construct  a vertex-free order-5 

SRCC c~(6e) of radius x/~ - h2 such that 6: contains ~ n ~- and c~(6:) has the 
same solid angle as ~.. 

As in the proof  of Proposi t ion A1, ~,~ - 6:  lies outside the circle ~ while 6:  - 
lies inside, so c~(,ga) has less volume than ~(~-). It follows easily from TL4 that  3 e 

contains a circle of radius ( 2 -  h Z ) / x / 4 -  h 2 about  M, so 6:  satisfies all the 
requirements of the proposi t ion other than regularity. 

The volume and solid angle of an SRCC of a given height and radius are 
determined by the number  and length of the chords, not by their relative locations. 
So we m a y  assume that  the chords of 6e are positioned so that  the angles between 

them are equal. There is a unique inner radius r > (2 - h2)/~//4- h 2 such that  the 

regular order-5 SRCC 69 of height h, outer  radius x/~ - h2, and inner radius r 
has the same solid angle as :6:(6:). We may  assume that  the chords of 69 are 
positioned so as to be parallel to the chords of  ~ .  

N o w  69 - 6: and 6: - 69 are each unions of  infinitesimal chordal  bands like 
those described in TL6. The bands of 69 - 60 all have distance at most  r f rom M 
while those of 6: - 69 have distance at least r from M. Therefore TL6 implies that  
~(69 - 6:) has less volume than <r e - 69). [ ]  

Proposition A3. Any regular, vertex-free, order-5 SRCC ~(6, ~) of height 
h E [1, 2/x//3], outer radius R >_ ~ - h 2, and inner radius r > (2 - h2)/ 4x//-~ - h 2 is 
replaceable by either 

(1) a regular, vertex-free, order-5 S R CC of height [~ E (1, hi, outer radius x/~ - [~2, 
and inner radius (2 - h2 ) /x /4 - /~2 ;  or 

(2) a regular, vertex-free, order-5 SRCC of height 1, outer radius 1/x/~, and inner 

radius r e  (l/x//3, 1/x/~];  or 

(3) an RCC of height 1 and radius R >_ 1/x/~. 

Proof. First we show that  we can reduce to the case R = n / ] -  h 2 "  If 

R > x/~ - h2, then le t /~  be the smallest element of [x/~ - h2, R) such that  the 
RCC of height h and rad ius /~  has solid angle at least that  of c~(~). Select ~ < / ~  
so that  the regular, vertex-free, order-5 SRCC c~(69) of height h, outer radius/~,  
and inner radius f has the same solid angle as cr (Clearly, R > / ~  > ~ > r.) 
Then 69 - 6: lies inside the circle of radius/~ about  M while 6: - 69 lies outside. 
So TL3 allows us to deduce that  :r e) is replaceable by <r Thus we arrive 

either a t /~  = x/~ - h2 or ~(69) being an RCC of radius greater than x /~  - h2" In 
the latter case let 

/~ = m a x ( l ,  h~2(h2 3+/~2)) 

and consider the RCC ~ ( g )  of  height/~ that  is similar to c~(69). It is easy to check 
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that /] < h so that :~(5 ~) replaces c~(re). Now cg(5~) is either an RCC of height 

1 and radius greater than l /x /~  (conclusion (3)), or it has/] > 1 and radius x / )  - / ]2.  

Thus we can assume R = x/~ - h2. 

If h = 1 we have conclusion (2), so assume h > 1. If r = (2 - h2)/x//4 - h 2 we 

have conclusion (1), so assume r > (2 - h 2 ) / x / - ~  - h 2. Define a set of coordinates 
such that A = (0, 0, 0) and M = (h, 0, 0). For  any /] ~ [1, hi, define the regular, 
vertex-free, order-5 shaved circle S,~ to be the image of 6: under the linear 
transformation 

f g ( x , y , z ) = \ X / 3 _ 2 h  2 x ' ~ / 3 - 2 h  2 y ' ~ z  . 

We easily see that ~(/]) = cg(Se(/])) has height/] and outer radius x/3 - / ]2 .  
TL7 establishes that <g(/]) has solid angle at least that of <g(5:), and that the 

volume-to-solid-angle ratio of <g(/]) is at most that of <g(5:). Construct an SRCC 
c~(/]) by reducing the inner radius of oK(/]) until the solid angle is equal to that of 
c~(~). By TL8 this lowers the volume-to-solid-angle ratio even further, so that the 
volume of ~(/]) is no greater than that of cg(S:). 

If the inner radius of ~(1) is greater than 1/x/~, then we use this SRCC to replace 
oK(5:) and arrive at conclusion (2). If not, then there is some h e [1, h] such that 

the inner radius of Cg(h) is exactly (2 - h2)/x/~ - / ]2 .  Using this SRCC to replace 
~(S:) gives us conclusion (1). [] 

Proof  o f  Proposition A. Consider a facecone of height h > 2/V/3. By Proposition 
A1 we see that either it can be replaced by an SRCC described in (1) of Proposition 

A, or by an RCC of height 2/x/~ and radius R > l/x//6. In the latter case we can 
describe the RCC as a regular, vertex-free, order-5 SRCC with inner and outer 

radius equal and both greater than 1/x/~. This allows us to apply Proposition 
A3. The three possibilities of Proposition A3 correspond to (2)-(4) of Proposition 

A. So Proposition A holds for all facecones of height at least 2/x/3. 

For  facecones of height h < 2/x/~, we can apply Proposition A2. Again an RCC 
can be described as a regular, vertex-free order-5 SRCC with equal inner and outer 
radii. Thus either possibility in Proposition A2 allows us to apply Proposition A3. 
We conclude as in the previous case. [] 

4. Proof of Proposition B 

A function that is convex down in an interval can be bounded below by the linear 
function that agrees with it at the endpoints of the interval. A function that is 
convex up on an interval can be bounded below by a linear function that agrees 
with it at the left endpoint and has slope equal to its derivative at the left endpoint. 
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These are the ideas used to cons t ruc t  L(~,). This  section proves  P ropos i t i ons  B1, 
B2, a n d  B3 f rom the technical  l emmas  and  uses them to prove  P ropos i t i on  B. 

Proposition B1. The function fl(~k) is convex down on (0, ~1). 

Proof. F r o m  P r o p o s i t i o n  A'  we can calculate 

dfl n(2 - h2)(8 - 18h 2 + 3h 4) 

dh 3(4 -- ha) 2 ' 

dEft 2 h ( - 1 4 4  + 148h 2 - 36h 4 + 3h 6) 
- -  z . . . . . . . . . . . . . . . . . . . . . . . . . .  

dh 2 3(4 - h2) 3 ' 

d@ - 2 n ( 2  - h E) 

dh ~ ' 

and  

Now 

d2@ 2nh(6 -- h 2) 

dh 2 (4 - -  h 2 )  3 / 2  " 

dEft dO dfl d2O 2n2h(2 - h2)2(40 - 10h 2 + h a) 

dh 2 dh dh dh 2 ( 4 -  hE) 7/2 

This clearly has  the same sign as 40 - 10h 2 + h 4. Since h < x / 2  on  this in terva l  

we have 

40 - 10h 2 q- h 4 >_ 40 - 10h 2 _> 40 - 20 > 0. 

Since d~/dh < O, we can  comple te  the proof  by q u o t i n g  TL2. [ ]  

^ ^ 

The function fl(~k) is convex down on (~kl, ~k2). Proposition B2. 

Proof Let 

7(h) = n -  5 a r c t a n (  ~ - -  3h2 ~. 
\ x / ~ ( 2  - h2); 

The in te rva l  in  ques t ion  is h e (1, 2/v/3),  so it is easy to see tha t  x / 4  - 3h 2 _< 2 - h 2, 

and  so ~(h) > 0 th roughou t .  
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F r o m  P r o p o s i t i o n  A'  we can  ca lcu la te  

dff _ - 2 x / ~  ( 5 x / ~ x / 4  - 3h 2 + (4 - h2)7(h)), 
dh x/~(  4 _ h 2) 

d21~ 2 0 h ( 2 0 -  13h 2 - 3h 4) 

dh 2 x / ~ x / ~ -  3h2(3 - 2h2)(4 - h2)2 ' 

aft _ 1_ (5x/~x/ /4  - 3h2(8 - 18h 2 + 3h 4) + 3(1 - 2h2)(4 - h2)27(h)) , 
dh 6(4 h2) 2 

a n d  

d2/~ 
dh 2 

-2h(5x/ / -2(432 - 836h 2 + 522h 4 - l l l h  6 + 9h8)) 

3 x / f 4 -  3h2(3 - 2h2)(4 - h 2 )  3 
- 2 h ? ( h ) .  

N o w  

d2 fl dd/ aft dE~k 2h 

dh 2 dh dh dh 2 x / 4  _ 3h2(3 _ 2h2)(4 - -  h2) 4 
(%(h)+~x(h)~(h)+~2(h)7(h)2), 

where  

%(h) = 2 5 x / ~ x / / 4 -  3h2(1568 - 2880h2 + 1818h4 - 459h6 + 45ha) 

~i(h) = 
5(4 - h2)(3 - 2h2)(1264 - 1512h / + 519h 4 - 63h 6) 

,AT 

ct2(h ) = 6x//2( 4 - h2)4(3 - 2h2)x/4  - 3h 2 

Since d~k/dh < 0 a n d  y(h) > 0, we need  on ly  s h o w  tha t  all  cq(h) > 0 for  h e [1, 2/x//3] 
to  be  ab le  to  c o m p l e t e  the  p r o o f  by  q u o t i n g  TL2.  

I f  we let  w = 4 -  h 2, x = 4 -  3h 2 , y  = h 2 - 1, a n d  z = 3 - 2h 2, then  it is easily 
checked  t ha t  w, x, y, z > 0, a n d  

%(h) = 2 5 x / ~ ( 1 4  + 9x  + 2y 2 + 69x 2 + 83xy 2 + 5x2y 2) _> O, 

cq(h) = 5wz(21 + 153x + 34x 2 + 3y 2 + 21xy  z) > 0, 
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and 

~2(h) = 6,~2xw4z >_ O. [] 

Proposition B3, The function fl(O ) is convex up on (~2, 2n). 

Proof. From TL9 we see that/3(0) is convex up on (~2, ~3), and that the le•hand 
derivative of/3 at ~3 is x/~. 

From Proposition A' we can easily calculate 

fl'(O) = dqR-'/dR = ~( R2 + 1) 3/2 
dOR/dR 

for 0 e (~s, 2n). From this and the geometrically obvious fact that 0s  is increasing 
with R, we see that /3'(0) is increasing on (03, 2~z). In addition, we see that the 
right-hand derivative of fl at ~3 is x/-~, which equals the left-hand derivative. [] 

^ 

Proof  o f  Proposition B. It is easy to check that L(0) agrees with fl(~r) at 0, 01, 
and 02. Because it is linear on each of the intervals (0, ~1) and (01, 02), the 
convexity results of Propositions B1 and B2 allow us to conclude that fl(O) > L(0) 
for all 0 -< t~z- Since L(O) = fl(O) on [~z, t~3], we need only check what happens 
on [~3, 2z0. Here L(f) is linear and its graph is tangent to that of fl(0) at 03. So 
the conclusion follows from the convexity established by Proposition B3. []  

5. Proof of Proposition C 

Once the convexity of L(0) is known, it is intuitively clear that the sum ~ L(01 ) 
is minimized by having all solid angles greater than 02 be equal and eliminating 
all but at most one of the solid angles less than ~2. It is also clear that increasing 
the number of solid angles above ~2 allows each of them to be smaller, closer 
to the ideal solid angle ~2. The only suspense in the calculation is whether the 
minimal configuration will be 13 solid angles of measure 4n/13, or 13 of measure 
~2 and one of 47t - 13~2. Evaluation shows that the former is minimal. 

Proposition C1. L(O) is convex down on (0, ~2). 

Proof On (0, ~,), L(~J)is linear with slope fl(CJl)/CJa. This can be evaluated (using 
the formulas of Proposition A') to yield 

1 
L'(O) = 6x/~(3 _ 2x/~ ) ~ 0.5608 

on (0, ~,). 
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Similarly, we can deduce 

 (61) 
L'(~k)- 62 -- 61 

5x/~ + (3x / / 3 -  2 ) n -  15x/~ arctan(1/v/-2 ) 
= 

( 2 4 x / 6 -  3 6 x / 2 -  30x/3)n + 180x/2 arctan(1/x/2) 

0.3465 

for ~k E (61, 62)" Therefore L(r is convex down on (0, 62). [] 

Proposition C2. Let k < 13 be a positive integer, let ~o . . . . .  ~'N be as in C, and 
define 

for all ~k ~ [0, rain(62, 4~ - k62)). Then 

N 
y~ L(q,,) _> V,((q,) 

i=0 

for some K < min(N, 13) and ~ ~ [0, min(62, 47r - K62)). 

Proof Suppose 0 < ~k o < ~1 < ~2. Since L(~k) is convex down on (0, ~2), ~o and 
ffl are replaceable by ~k o - t and ~1 + t, where t = min(ff o, ~2 - ~kl). Repeated 
use of this technique, along with the possible adding or deleting of zeros from 
(~o . . . . .  ~N), leads us to a solid angle decomposi t ion that has precisely one element 
(say fro) in the interval [0, ~2) and K elements in [~2, 2n). Since 14~2 > 4~ we 
see that K is at most  13. 

Similarly, Proposi t ion B3 and the definition of L allow us to deduce that L(~b) 
is convex up on (~2, 2n). Therefore we can replace ffl . . . . .  CK with K identical 
angles of size (4n - r N o w  

K 

L(~k,) = Vt((~ko). 
i=0 

[] 

Proposition C3. IfK < 13, then VK(~) >- VK+I(0). 

Proof Define 

f f l (~2)  ~// for  
g(~,) = ~ ~,2 

l L(~k) for 

~ [o, ~ , ] ,  

~' ~ [~2, 2~). 
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Because g is linear on [0, r and agrees with L at the endpoints, the fact that L 
is convex down on this interval allows us to deduce that g(~k) < L(O) on [0, ~2], 
and thus g(~k) < L(0 ) everywhere. 

We see from Proposit ion A' that 

g'(O) /~(r 5x/~ + 3n - 15 arctan(1/x/2 ) 

- -  ~ 2  - -  6(1 - 2x/6)n + 60V/6 arctan(1/,,/2) ~ 0.4282 

on (0, r We can also use Proposit ion A' and TL9 to see that 

g ' ( r  = g'(~,,.) = fl '(r - 
1 - t - r  2 

for ~ = t~, 6 (~ 2, ~3)(i.e., r e ( l /x/3,  1/,,/2)). Thus g'(O)increases on (~z, ~3) from 

x/8/27 ~ 0.5443 to x / ~  ~ 0.6124, and remains constant thereafter. Thus we see 
that g(~b) is convex up on (0, 2n) and 

.. f a n  - ~'~ 
> 

(4~+1) >__ (K + 1)g 

^ 

Because K < 13, it follows that 4n/(K + 1) > ~2, and therefore 

47r ) _ _  = 
( K  + 1)g ~ = (K + 1)L( 4n "~ V~+ 1(0). 

\ K  + 1] 
[ ]  

Proposition C4. The function V13(~/) is increasing. 

Proof. By definition 

f 4 n  - r  , [ 4 n  - r  
_ -  - 

The function V13(~) is defined on ~, e [0, 4n - 131~ 2 ~ 0.3156] c [0, ~1]. We have 
previously (during the proof  of Proposit ion C2) calculated 

1 
L'(~k) = 6x/~(3 _ 2V/~ ~ ~ 0.5608 
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on this interval. Since (4~ - ~)/13 e [~2, 4M13] c [~2, ~3], TL9 shows 

fl,[4n -- r 1 + r 2 

The value of r corresponding to 4rr/13 is less than 0.59, so it follows that 

, 4~- r  
fl ( - ~ - - )  < 0.5504. 

Therefore V'~3($) > 0 throughout the interval. 

Proo f  o f  Proposition C. The propositions above establish that 

M 

i=0 ~ L(r > VK(r _> V, 3(0) = 13L_13_.i--/\ Jf4n'X 

D. J. Muder 

[] 

[] 

h( 
fl.(h, r, R) = ~ nr~fR ~ -  r 2 

and solid angle 

6. Technical Lemmas 

The section contains proofs of Technical Lemmas TLI-TL8.  

TL1. Let  0 < h, r; r <_ R; and let n be a positive integer such that 

fR 2 _ r 2 
n arctan ~ - ~ - -  _< n. 

Then the vertex-free regular S R C C  o f  order n, height h, inner radius r, and outer 
radius R has volume 

- -  ( 
+ R 2 7z - -  n a r c t a n  ~/ r2 j j  

( (A ~b.(h, r, R )  = 2 ~ - n a r c t a n  2 + h 2 ~ / ~ j j  

arctan N / ~ j .  

Proof. The face of the SRCC consists of 2n identical right triangles with legs of 
length r and x / ~  - r 2, together with n circular sectors of radius R, such that the 
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total angle at M adds up to 2n. The total area of the triangles is nrx /R  2 - r 2 and 
their angles at M add up to 

R/~ - r 2 
2n arctan r2 

The total area of the circular sectors is therefore 

~R 2 
2~z - 2n arctanx/(R 2 - r2)/r 2 

2re 
( = R 2 n -  n a r c t an /  r2 f 

The volume calculation follows immediately. 
The solid angle of the cone over each of the 2n triangles is the surface area of 

the projection of the triangle onto a unit sphere about the apex. The surface area 
of a spherical triangle is the sum of the angles on the sphere minus n. From this 
we calculate that each of these triangles has solid angle 

R2fR2----R 2 _ r z f r 4 R  ~ + h2"~ 
- ~ + arctan / ~- + arctan|\h~/R2%~2~2 I _  r2J 

= arctan r2 arctan R2 + h2 ~/ r2 f 

The solid angle of an RCC of height h and radius R is the surface area of a unit 

spherical cap of height h / x / ~  + h E, or  

The solid angle formula follows quickly. [] 

TL2. Suppose that fl(d/) is described in the interval (a, b) in terms of  the parameter 
t. Then fl(d/) is convex up on (a, b) if 

de d2~ d~b 

dt 2 \ dt,] - dt dt 2 dt 

and convex down if 

dfl dE~k d~k 

dt  2 \ dt , /  - d t -d t  2 dt 

for all t such that ~b(t)~ (a, b). 
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Proof. A simple application of the chain rule shows that 

dt,I dill 2 dt 2 d~ dt dt 2 " 

Therefore d2fl/d@ 2 has the same sign as 

de (d2  de d2 ) 
dt \ dt 2 dt dt dt 2]' 

and the result follows. [] 

TL3. Let ~ be a plane and let A be a point of distance h from ~.  Let M be the 
perpendicular projection of A into ~.  Define a set of rectangular coordinates (x, y) 
in ~ such that M = (0, 0). Let ~(x, y) be the infinitesimal rectangle [x, x + dx] x 
[y, y + dy]. Then the cone ~(x, y) with base ~(x, y) and apex A has volume 

V(x, y) = _h dx dy 
3 

and solid angle 

O(x, y) = 
h dx dy 

(h 2 + X 2 + y2)3/2" 

Moreover, the ratio 

V(x, y) _ ~(h2 q- x2 -t- y2)3/2 _ p3 
O(x, y) 3 ' 

where p = p(x, y) is the distance from (x, y) to A. 

Proof. The volume formula is elementary, and the solid angle formula follows 
quickly from the ratio formula. 

Consider the ball ~ of radius p about A. Let ~(x, y) be the projection from A 
of ~(x, y) onto the surface of ~ .  Let C~(x, y) be the set of all points between A and 
~(x, y) (i.e., the "cone" over ~(x, y)). 

Clearly, Cg(x, y) has the same solid angle at A as C~(x, y), and the difference in 
volumes is a third-degree infinitesimal, which can be ignored. The volume-to-solid- 
angle ratio of ~(x, y) is the same as that of ~ ,  i.e., pa/3. [] 

TL4. Let ~ be a face of a Voronoi polyhedron ~ e~ with center A. Let h be the 

distance from ~ to A, and suppose h <_ x/~. Then no vertex of ~t/ is closer than x ~  

to A and no edge of ~ is closer than 2/x/4 - h 2 to A. 
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Proof. By definition a vertex of f is the intersection of ~/F with three or more 
of its neighbors, and the centers of these polyhedra lie on a sphere centered at the 
vertex. The smallest sphere that contains a set of four or more points of minimum 
distance 2 is the sphere superscribing a regular tetrahedron of side 2. The radius 

of this sphere is x/~" Thus any vertex of the Voronoi polyhedron about A is at 

least x/~ from A. 
Similarly, an edge of f is the intersection of ~e" with two or more neighbors 

whose centers all lie in a circle with A. The radius of the circle is the distance from 
each of the centers to the line containing the edge. Let B be the center of the 
polyhedron that meets ~/f at ~ .  Let C be a third center on the circle. By assumption 
AB = 2h while AC, BC > 2. It is easy to see that the smallest circle containing 

such a configuration has radius 2 / x / 4 -  h 2. [] 

TL5. Let ~,~ be a face of a Voronoi polyhedron ~e ~ with center A. At  most five edges 

of ~ are less than x~7 from A. 

Proof Let B be the center of the Voronoi polyhedron that intersects ~e" in the 
face J~, and let M be the midpoint of AB. Let h = M A  = MB,  and note that we 

can assume that 1 < h < x//~. 
Next we observe that M e ~ .  If not, then it is part of some other Voronoi 

polyhedron with center C, so M C  < h. Now 

7~ 
min(/__ CMA,  1_ CMB) <_ ~, 

so the law of cosines and the fact that AC, BC > 2 forces h > x/~, contradicting 
our assumption. 

Let d~ 1 . . . . .  8 ,  be the edges of ~ that are less than x/~ from A. Let E 1 . . . . .  E, 
be the centers of Voronoi polyhedra CI . . . . .  C,  such that ~ c~ ~ - =  g~. The 
convexity of Voronoi polyhedra ensures that all the ~ (and hence all the E~) are 
distinct. Let ~ i  be the plane containing A, B, and Ev 

If n > 6, then there are i and j such that the angle between ~ and ~ j  is z~/3 or 
less. We complete the proof by showing that this forces E~Ej < 2, an impossibility. 

Let c~ be the circle containing {A, B, E~}, let Ci be its center and let R~ be its 

radius. By assumption, R~ < v/~ since it is the distance from A to 8~. Let c~ be 

the circle of radius x//~ in ~i  that contains {A, B} and whose center t~ i lies on 
MC i. Let/~i = C~ n M E  i and let E i be the projection o f / ~  onto MCi. Let tpi be 
the angle /__:Ei~E~. Let #~ = MEv This notation is shown in Fig. 3. Define 
analogous notation for the subscript j. 

Let l~ = ME~ and li = M/~v It is easy to see that Ii > li. Let r /=  / E i M E j  = 
L~iMff~j. The Law of Cosines says that 

EiE j = 12 + 12 - 2lilj cos r/. 
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Fig. 3. 

Differentiation shows that  the right-hand side increases with l~ iff I~ > l~ cos q. It 
is easy to see that this is always true: If l~ _< lj cos q, then / M E ~ E  i is at least n/2 
and so 

However,  

l y > 12 + (E,E~) 2 > 4. 

lj = M E j  < M C j  + C j E j  = ~ - -  h 2 + R j  < - -  

Therefore 

1+,/3 
< 2 .  

Consequently it will suffice to prove that/] / /~j  < 2. We observe that 

Substituting 

< ~(sin q~ + sin ~oj) z +/~2 + py _ 2#~tj cos 0 

< ~sin ~o~ + sin q3~) 2 + p~ +/~Y - p~pj. 

pi = ~ /~  - h ~ + X/~ COS ~oi 

yields 

(/~i/i~) 2 < ~ + 3 sin q~i sin q~j -- ~ cos q~ cos q~ + - ~  (cos qh + cos r 

(E/E~) 2 = 12 + 12 - 2l, lj cos t / <  ~2 + ~z _ 21/lj cos q = (/~i/~j)2. 
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Differentiating the right-hand side with respect to ~01 gives 

3 sin q~j cos ~ol + ~ cos 40j - sin q~i, 

which we claim is always positive because cos cOj > 1/.,/3. To see this observe that 
q~j^is maximized when h and A/~ are as small as possible. Using h >_ 1 and 
AEj > AEj > 2 gives 

5 
q~j < n -  3 arcsin(, ,f~)= arccos(  - - f ~ ,  

5 1 
cos 4o, > ~ > ~ .  

Therefore the bound on (/~fl~j)2 is maximized when ~o~ and q~j are as large as 

possible. Using 4o i, q~j < a rccos(5 /v /~)  yields 

(/~i/~S) 2 < 4 

as desired. [] 

TL6. Let ~ ,  A, M, h, and the coordinate system (x, y) be as in TL3. Let ~ be a 
disk of radius R in ~ with center M. For any x ~ I - R ,  R] let ~(x) be the infinitesimal 
chordal band 

r = {(~, g ) e ~ l ~ e  [x, x + dx]}. 

Then the cone with base ~(x) and apex A has volume 

2h 
V(x) = 7 ~ - x~ dx 

and solid angle 

2h /_R2 - x 2 
~(x) - h2 + x2 x/ R~ + h2 dx. 

Moreover, the ratio is given by 

V(x) _ ~(h2 + x2)x / /~  + h2" 
O(x) 
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Proof  The volume formula is elementary and the ratio formula is simple division, 
so we need only establish the solid-angle formula. Applying TL3 gives us 

O(x) = I O(x, y) 
d #r (x) 

= 2h dx (h 2 + x 2 + y2)a/2 

2h d x (  i \  Y ~ "/R~- ~'~ 
h 2 + x2 )N/h  2 + X 2 + y2,]O 

2h / R  2 - x 2 

-- h2 + xZ ~/ R ~ +  h z dx. 
[] 

TL7. Let ~l be a region in a plane ~ .  Let h e (1/x/~, x//~), and suppose that ~l lies 

inside a disk with center M and radius R = x/~ - h~" Let  A be a point o f  distance 
h from ~ ,  and suppose that M is the point o f ~  closest to A. Let cff be the cone over 
~1 with apex A. 

Choose a set o f  coordinates such that A = (0, O, O) and M = (0, O, h). For any 

/~ e (l/x//2, h], let 

) f i(x,  y, z) = kx/3  - 2h 2 x, X / ~  Y'h z . 

Then fg(cg) has solid angle at least that o f  cg, and the volume-to-solid-angle ratio of 
j~(cg) is at most that o f  off. 

Proof  If (x, y, h) e ~ ,  then 

[(x, y, h)l 2 - [fg(x, y, h)l 2 = (x 2 + y2)(1 

_ (h 2 - /~2)(1 

3 - 2h2"~ 
3 -- 2h~,] + (h2 - ~2) 

x 2 + y2,~ 
/ > o .  

Therefore J~ moves each point of ~ closer to A. 
Let l~(x, y) and ~,~(x, y) be the volume and solid angle, respectively, of 

the image under f~ of the cone over the infinitesimal rectangle [x, x + dx] x 
[y, y + dy] x {h}. By TL3 we know that  

3 Vi(x, y) 3 V~(x, y) 
O~(x, y) - > 

] j~ (x ,  y ,  h)l  3 - [(x, y, h)l 3" 
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Therefore the solid angle hug of j~(~g) is given by 

hug = I ~g(x, y)> f ~  3V~(x,y) 
- i(x,y,h)l 3" 

However,  

/](3 - 2/] 2) 
l~(x, y) - Vh(X , y), 

h(3 - 2h 2) 

SO 

/](3 - 2/] 2) ( '  3 ~ (x ,  y) /](3 - 2t] 2) 
huh > h(3 2 h  2) J~ I(x, y, h)l 3 h(3 - 2h 2) huh. 

Since 3 x -  2x 3 is a decreasing function for x > 1/xf2, it follows that  hug > u7 h. 
Since f~ is the identity, u/h is the solid angle of cal. 

If  ~//~g is the volume of J~(Cd), then 

/](3 - 2h z) "Uh 

hug h(3 - 2h 2) h u h -  huh 
[] 

TL8. Let ~ and ~ be regular order n SRCCs of height h, outer radius R, and inner 
radii r and ~, respectively, with ~ < r. Then the volume-to-solid-angle ratio of c~ is 
no greater than that of ~. 

Proof. We can assume that  the chords of the base of (g are equally spaced a round  
the circle. Cut  the base of cd into 2n identical central sectors in the following way: 
Consider the rays from the center M that bisect the n chords, and for each such 
ray construct  the two rays that  make an angle of measure  n/n with it. The 
volume-to-solid-angle ratio of (d is the same as that of cones over  each of these 
2n central sectors. 

Consider a single central sector of cal. Define a set of coordinates on the plane 
of the base such that  M = (0, 0) and the midpoint  of the chord is (r, 0). Following 
TL3, the volume and solid angle of the sector are given by 

~f~intxtantn/n)'g2"~rs~2)hdydx=f~v(x)d x 
V ( r )  = 

and 

f~foi~Cxtan(,~/n).~)hdydx j.r 
O(r) = (h 2 + X2 + y2)3/2 = o g0(x) dx, 
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where 

( -hxtan~ for 0 < x < R c o s  -~, 

- - x  2 for Rcos-  <_x <_r, 
n 

and 

7~ f (  )hfsin(rc/n) for 0 < x < R c o s - ,  
h 2 + x  2 x 2 + h  2cos2(rc/n) n 

~ ~  - h - -  R ~  ~2-~-x~ for Rcosn-<x<r.  
\ h  2 + x 2 X/R 2 q- h z n 

Those points which are in cg but not ~ are precisely those with x-values in 
(f, r'l. It will suffice to prove that this region has a higher volume-to-solid-angle 
ratio than does the whole of ~. This will follow if we can show that v(x)/~o(x) is 
increasing. However, 

0 x  cos 
v(x) _ n 

q,(x) ( h  z + x ~ , f ~  ,~ 
T -l-h2 for Rcos-<x<r.n 

It is immediate that this is increasing. [] 

TL9. Let ~r ~ [~2, ~3] be as in Proposition A'. Then 

/r(~,) = (~) ,=, ,  
1 + r  2 

Proof This result can be calculated directly from Proposition A', but a geometric 
approach is less tedious. For ~k, ~ [~z, ~3], fl, and ~,, are the volume and solid 
angle, respectively, of a regular, vertex-free, order-5 SRCC of height 1, outer radius 

l/x//2, and inner radius r. Comparing these with the SRCC corresponding to 
r + dr, we see that the difference consists of the cones over five identical in- 

finitesimal bands like those described in TL6, with h = 1, R = 1/x/~, and x = r. 
The derivative fl'(~br) is simply the volume-to-solid-angle ratio of these cones, which 

is (1 + r2)/x/~. [] 
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