
A new boundary element algorithm 
for modeling and simulation of nonlinear 
thermal stresses in micropolar FGA composites 
with temperature‑dependent properties

Mohamed Abdelsabour Fahmy1,2*  

Introduction

Generalized thermoelasticity theories have attracted increased attention of many research-

ers in recent years due to their applications in many fields [1–4]. Functionally graded 

materials (FGMs) are a special kind of composite materials where their properties can be 
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tailored in accordance with the mechanical-technological properties required in different 

working conditions. FGMs are excellent advanced materials that change the manufacturing 

world for the better. FGMs have received a large amount of attention due to its ability to 

produce materials with tailored properties which are suitable candidates for several high-

tech applications such as graded structures on the atomic scale, graded hip implants, struc-

tural walls, sports equipment, design attractive interference colors for automobiles, etc. 

�en, the number of publications in this area of research has been growing exponentially in 

the past 20 years [5–10].

Temperature-dependent materials are those substances where the material properties 

depending upon the temperature at which they are measured, such as ice, bitumen, asphalt 

concrete, titanium, stainless steel, silver, gold, platinum, granular materials and reverse sol-

ubility polymers which are soluble in cold water and insoluble in hot water [11–17].

Recently, research on nonlinear thermal stresses problems has become very common 

because of its useful applications in several fields such as materials science, aircraft, astro-

nautics, earthquake engineering, oceanology, geomechanics, aeronautics, plasma physics, 

nuclear reactors, Fiber-optic communication, etc. Because of mathematical challenges in 

solving these problems analytically, various numerical procedures have been developed to 

solve such problems. �e boundary element method (BEM) [18–20] presents an interest-

ing alternative to the more commonly used domain discretization methods such as finite 

difference method (FDM) [21–23], finite element method (FEM) [24–26] and finite vol-

ume method (FVM) [27–29]. �e main advantage of BEM over domain methods is that 

only the boundary of the domain needs to be discretized, so, it has a major advantage over 

other methods that require the entire domain to be discretized [30–34]. �is advantage has 

considerable importance for modeling nonlinear thermal stress problems utilizing BEM 

with very little computational cost and much less input data [35–43]. �e BEM researchers 

developed the BEM procedures [44–60] to solve complex problems using several software, 

for example, FastBEM and ExaFMM.

In the present paper, a novel boundary element algorithm is proposed for modeling and 

simulation of nonlinear thermal stresses problems in micropolar FGA composites with 

temperature-dependent properties. In the proposed BEM formulation, the residual non-

linear terms are treated by using the Kirchhoff transformation and the domain integrals are 

treated by using the CTM. �en, at each time step the nonlinear temperature, displace-

ments and thermal stresses are calculated at boundary nodes, and a few internal points 

which are considered to be utilized as initial values for another time step. �e numeri-

cal findings investigate the effects of temperature-dependent properties and functionally 

graded parameter. �ese numerical findings also confirm the validity, precision and effec-

tiveness of the proposed modeling and simulation methodology.

Formulation of the problem

Geometry of the current computational problem is shown in Fig. 1. �e governing equa-

tions for nonlinear thermal stresses in micropolar composites with temperature-dependent 

properties can be expressed as

(1)σij,j + ρFi = ρüi
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in which

BEM solution for temperature �eld

�e temperature governing equation can be reduced to a simpler form than that given in 

Eq. (3) by using Kirchhoff transformation which is defined as follows [14]

By using Kirchhoff transformation, Eq. (3) can be written as follows

where � and �0 are temperature function and thermal conductivity at T0 , respectively.

(2)mij,j + εijkσjk + ρMi = Jρω̈i

(3)∇[�(T )∇T(X , t)] + h(X ,T , t) = ρ(T )c(T )
∂

∂t
T (X , t)

(4)σij = (x + 1)m
[

Cijkleδij +
⌣
α
(

uj,i − εijkωk

)

− βij

(

θ + τ1θ̇
)

]

(5)mij = (x + 1)m
[

αωk ,kδij + αωi,j + αωj,i

]

(6)∈ij= εij − εijk(rk − ωk), εij =
1

2

(

ui,j + uj,i
)

, ri =
1

2
εiklul,k

(7)� =
T

∫
T0

�
(

T
)

�0
dT

(8)∇
2�(X , t) +

1

�0
h(X ,�, t) =

ρ(�)c(�)

�(�)

∂�(X , t)

∂t

Fig. 1 Geometry of the considered problem
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Now, the right-hand side of (8) can be decomposed into linear and nonlinear parts as

where �0, ρ0 and c0 are thermal conductivity, density and specific heat, respectively, at 

T0.

where the nonlinear term can be written as

According to [15, 16], Eq. (9) can be written as

where

�e integral equation which corresponds to Eq. (11) can be expressed as

�e fundamental solution and its normal derivative, respectively, can be written as

where a0 =
�0

ρ0c0
 and H is the Heaviside function.

�e time integrals which corresponds to (14) and (15) can be computed analytically as

(9)∇
2�(X , t) +

1

�0
h(X ,�, t) =

ρ0c0

�0

∂�(X , t)

∂t
+ Nl

(

X ,�, �̇
)

(10)Nl
(

X ,�, �̇
)

=

[

ρ(�)c(�)

�(�)
−

ρ0c0

�0

]

�̇

(11)∇
2�(X , t) +

1

�0
hNl

(

X ,�, �̇, t
)

=
ρ0c0

�0

∂�(X , t)

∂t

(12)hNl

(

X ,�, �̇, t
)

= h(X ,�, t) +

[

ρ0c0 −
�0

�(�)
ρ(�)c(�)

]

�̇

(13)

C(P)�(P, tn+1) + a0

∫

Ŵ

tn+1
∫

tn

�(Q, τ)q∗(P, tn+1;Q, τ)dτdŴ

= a0

∫

Ŵ

tn+1
∫

tn

q(Q, τ)�∗(P, tn+1;Q, τ)dτdŴ

+
a0

�0

∫

�

tn+1
∫

tn

hNl
(

Q,�, �̇, τ
)

�∗(P, tn+1;Q, τ)dτd�

+

∫

�

�(Q, tn)�
∗(P, tn+1;Q, tn)d�

(14)�∗(P, tn+1;Q, τ) =
1

4πa0(t − τ )
exp

[

−r2

4a0(t − τ )

]

H(t − τ)

(15)

q∗(P, t;Q, τ) =
∂

∂n
�∗(P, t;Q, τ) =

−r

8πa20(t − τ )2
exp

[

−r2

4a0(t − τ )

]

H(t − τ )
∂r

∂n

(16)

tn+1
∫

tn

�∗(P, tn+1;Q, τ)dτ =
1

4πa0
Ei

(

r2

4a0�t

)
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where the exponential integral function Ei() can be defined as

�e first domain integral of Eq. (13) contains the nonlinear term, that is

or

By substituting the midpoint value of hNl and finite difference expression of �̇ , we can 

write

where

Now, we implement the CTM without domain discretisation to evaluate the domain inte-

grals of (23). �us, the unknown values at M′ boundary nodes can be computed directly 

from the following system of matrix equations

(17)

tn+1
∫

tn

q∗(P, tn+1;Q, τ)dτ =
−1

2πa0r
exp

(

−r2

4a0�t

)

∂r

∂n

(18)Ei(α) =

∞∫

α

exp(−x)

x
dx

(19)I =
a0

�0

∫

�

tn+1

∫
tn

hNl
(

Q,�, �̇, τ
)

�∗(P, tn+1;Q, τ)dτd�

(20)

I =
a0

�0

∫

�

tn+1
∫

tn

{

h(Q,�, τ) +

[

ρ0c0 −
�0

�(�)
ρ(�)c(�)

]

�̇

}

�∗(P, tn+1;Q, τ)dτd�

(21)INl =
1

4π�0

∫

�

hNI
(

Q,�n+0.5, �̇n+0.5, tn+0.5

)

Ei

(

r2

4a0�t

)

d�

(22)

hNl(Q,�n+0.5, tn+0.5) = h(Q,�n+0.5, tn+0.5)+

[

ρ0c0 −
�0

�(�n+0.5)
ρ(�n+0.5)c(�n+0.5)

]

�̇n+0.5

(23)

2C(P)�(P, tn+0.5) −
1

2π

∫

Ŵ

tn+1

∫
tn

�(Q, tn+0.5)

r
exp

[

−r2

4a0�t

]

∂r

∂n
dŴ

=
1

4π

∫

Ŵ

q(Q, tn+0.5)Ei

(

r2

4a0�t

)

dŴ

1

4πa0

∫

�

hNI
(

Q,�n+0.5, �̇n+0.5, tn+0.5

)

Ei

(

r2

4a0�t

)

d�

1

4πa0�t

∫

�

�(Q, tn) exp

(

−r2

4a0�t

)

d� + C(P)�(P, tn)

(24)H�
Ŵ

= GQŴ
+ F + FNI
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where �Ŵ and QŴ are M′ dimension vectors contain boundary nodal values � and q , 

F  a vector depends on previous time step, FNI is a nonlinear term vector depends on 

unknown internal values, H and G are M′
× M

′ dimension coefficient matrices. Also, 

the unknown values at M′′ internal points may be calculated from the following system 

of matrix equations

where H , G , Ĥ and Ĝ can be computed for all time steps. Also, F , FNI , F̂ and F̂NI can be 

computed using CTM for all time steps.

�e CTM method can be implemented to transform several domain integrals into 

boundary ones [47].

Now, we consider the following two-dimensional regular domain integral

By implementing Green’s theorem as

Now, we can write

where

Since the integral in (29) cannot be determined analytically, so, we evaluate it 

numerically by the following integral equation

According to Khosravifard and Hematiyan [49], and using (30), the domain integral 

of (26) can be expressed as

where

(25)�
�

= ĜQŴ
− Ĥ�

Ŵ
+ F̂ + F̂NI

(26)I =

∫

�

p(x1, x2)d�

(27)

∫

�

∂u(x1, x2)

∂x1
d� =

∫

Ŵ

u(x1, x2)dx2

(28)I =

∫

Ŵ

P1(x1, x2)dx2

(29)P1(x1, x2) =

∫

Ŵ

p(x1, x2)dx1

(30)P1(x1, x2) =

x1
∫

α

p
(

x′

1, x2
)

dx′

1

(31)I =

�

Ŵ





x1
�

α

p
�

x′

1, x2
�

dx′

1



dx2

(32)α =
x1min + x1max

2
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where x1min and x1max are minimum x1 and maximum x1 values, respectively.

�e composite Gaussian quadrature method is applied to (26) yields

Equation (33) can be expressed as

where Jk and Jl are the transformation Jacobian for the kth interval lth interval, respec-

tively, K  is the boundary elements number, N  and J  are the Gaussian integration points 

numbers of (33) for the outer integral and inner integral, respectively, wi and wj are 

Gauss points weights.

If p described over a domain-boundary grid with irregularly spaced data. �en, by 

using the radial point interpolation method (RPIM) [50], the approximation using 

two-dimensional interpolation of the function p may be written as

in which (x1, x2) is any arbitrary point, pi is the p value at i and φi its shape function, 

M(total number) = M
′
(

boundary nodes number
)

+M
′′
(

internal grid points number
)

 . 

In the considered RPIM, the consistent shape functions are constructed using the radial 

basis functions. According to [50], the function p(x1, x2) can be approximated as

�e considered method is very simple for computation of regular and weakly singu-

lar domain integrals because all computations are performed in universal Cartesian 

coordinates, where kernels are defined by irregularly spaced data.

In order to create the RPIM shape functions, we apply the following Gaussian radial 

basis functions (GRBFs)

where ψi are radial basis functions (RBFs), n is the RBFs number, m is the polynomial 

basis functions number and uj(x) , the augmented monomials and αi and bj are unknown 

coefficients which can be evaluated from the following n linear system of equations.

(33)I =

K
∑

k=1

∫

Ŵk

x1
∫

α

x1
∫

α

p
(

x′

1, x2
)

dx′
dx2

(34)I =

K
∑

k=1

Jk

N
∑

i=1

wi

L
∑

l=1

Jl

J
∑

j=1

wjp
(

x1
(

ηj
)

, x2(ηi)
)

(35)p(x1, x2) =

M∑

i=1

φi(x1, x2)pi = �
T
P

(36)

p(x) =

n
∑

i=1

αiψi(x) +

m
∑

j=1

bjuj(x) = �
T (x)a + u

T (x)b =
[

�
T (x) u

T (x)
]

{

a

b

}

(37)ψi(x) = exp

[

−ac

(

Ri

dc

)2
]

(38)

n∑

i=1

αiψi(xi) +

m∑

j=1

bjuj(xi) = p(xi), i = 1, 2, . . . , n
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and the following m linear constraints

From Eqs. (38) and (39), we can write αi and bj in the following form

Based on [50], and using (40), Eq. (36) may be expressed as follows

where the matrix P is location- and geometry-dependent of boundary nodes and inter-

nal nodes.

where φ is the RPIM shape functions vector

Now, Eq. (42) can be expressed as

in which γ is the geometry- and location-dependent weight vector of grid points and p 

includes the values p at boundary nodes and internal points.

Regularization of BEM formulations and evaluation of the domain integrals

In the BEM formulation of transient nonlinear thermal stresses problems, there are sev-

eral regular and singular domain integrals with different kernels should be calculated with 

boundary-only discretization.

Now, we consider the following domain integrals which occur in the integral Eq. (23)

where the weakly singular exponential integral function Ei() in (44) can be written as

in which

(39)

n∑

i=1

αiuj(xi) = 0, j = 1, 2, . . . ,m

(40)

{

a

b

}

= BP

(41)p(x) =

[

ψT (x) u
T (x)

]

BP = φT
P

(42)I =

K
∑

k=1

Jk

N
∑

i=1

wi

L
∑

l=1

Jl

J
∑

j=1

wj

M
∑

r=1

prφr

(

x1
(

ηj
)

, x2(ηi)
)

(43)I =

M∑

q=1

γqpq = γ
Tp

(44)I1 =

∫

�

hNI
(

Q,�n+0.5, �̇n+0.5, tn+0.5

)

Ei

(

r2

4a0�t

)

d�

(45)I2 =

∫

�

�(Q, tn) exp

[

−r2

4a0�t

]

d�

(46)Ei(x) = EI(x) − ln (x)
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Now, we can write Eq. (44) as

which can be written in the following form

�e weakly singular integral in Eq. (49) can be regularized as

Now, the first two integrals in (50) are regular, while the last domain integral can be 

transformed into a boundary. �erefore, Eq. (50) can be expressed as

where

where

According to the application of CTM, the domain integral in (53) can be expressed 

as

(47)EI(x) = −0.57721566 +

∞∑

n=1

(−1)n−1
x
n

n · n!

(48)

I1 =

∫

�

hNI
(

Q,�n+0.5, �̇n+0.5, tn+0.5

)

EI

(

r2

4a0�t

)

d�

−

∫

�

hNI
(

Q,�n+0.5, �̇n+0.5, tn+0.5

)

ln

(

r2

4a0�t

)

d�

(49)

I1 =

∫

�

hNI
(

Q,�n+0.5, �̇n+0.5, tn+0.5

)

[

EI

(

r2

4a0�t

)

+ ln(4a0�t)

]

d�

+ 2

∫

�

hNI
(

Q,�n+0.5, �̇n+0.5, tn+0.5

)

ln

(

1

r

)

d�

(50)

I1 =

∫

�

hNI
(

Q,�n+0.5, �̇n+0.5, tn+0.5

)

[

EI

(

r2

4a0�t

)

+ ln(4a0�t)

]

d�

+ 2

∫

�

[

hNI
(

Q,�n+0.5, �̇n+0.5, tn+0.5

)

− hNI
(

P,�n+0.5, �̇n+0.5, tn+0.5

)]

ln

(

1

r

)

d�

+ 2hNI
(

P,�n+0.5, �̇n+0.5, tn+0.5

)

∫

�

ln

(

1

r

)

d�

(51)I1 = γ
T(p1 + p2) + I

′(P)

(52)I
′(P) = 2hNI

(

P,�n+0.5, �̇n+0.5, tn+0.5

)

D1(P)

(53)D1(P) =

∫

�

ln

(

1

r

)

d�

(54)D1(P) =

∫

Ŵ

[

ln

(

1

r

)

dx1)

]

dx2 =

∫

Ŵ

[

−r1lnr − r2tan
−1

(

r1

r2

)

+ r1

]

dx2
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where ri = (xi)Q − (xi)P and D1(P) has the same value at each iteration of each time 

step.

�e domain integral in (45) is regularized as

�e domain integrals in (55) can be evaluated using CTM, to allow us to write (55) 

as follows

where

which can be written as

where

where the error function erf() can be expressed as

BEM solution for displacement �eld

�e partial differential Eqs. (1) and (2), may be transformed into the following integral 

equations

where

(55)I2 =

∫

�

[�(Q, tn) − �(P, tn)]exp

[

−r2

4a0�t

]

d� + �(P, tn)

∫

�

exp

[

−r2

4a0�t

]

d�

(56)I2 = γ
Tp3 + I

′′(P)

(57)I ′′(P) = �(P, tn)

∫

Ŵ

∫

exp

[

−r2

4a0�t

]

dx1dx2

(58)I
′′(P) = �(P, tn)D2(P,�t)

(59)

D2(P,�t) =

∫

Ŵ

∫

exp

[

−r2

4a0�t

]

dx1dx2

=

√

πa0�t

∫

Ŵ

exp

(

−
r22

4a0�t

)

erf

(

r1

2
√
a0�t

)

dx2

(60)erf(a) =
2

√
π

α

∫
0

exp
(

−x2
)

dx

(61)

∫

R

(

σij,j + Ui

)

u∗

i dR = 0

(62)

∫

R

(

mij,j + εijkσjk + Vi

)

ω
∗

i dR = 0

(63)Ui = ρ(Fi − üi)
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in which u∗

i
and ω

∗

i
 are weighting functions.

In the current paper, we considered the following boundary conditions

Applying integration by parts to Eqs. (61) and (62), we get

Based on Fahmy [41], we can write

By using integration by parts for the left-hand side of (71), we obtain

On the basis of Fahmy [41], elastic and couple stresses can be written as

Hence, Eq. (72) can be rewritten as

(64)Vi = ρ(Mi − J ω̈i)

(65)ui = ui on S1

(66)�i = σijnj = �i on S2

(67)ωi = ωi on S3

(68)µi = mijnj = µi on S4

(69)−

∫

R

σiju
∗

i,jdR +

∫

R

Uiu
∗

i dR = −

∫
�iu

∗

i dS

(70)
−

∫

R

mijω
∗

i,jdR +

∫

R

εijkσjkω
∗

i dR +

∫

R

Viω
∗

i dR = −

∫

S4

µiω
∗

i dS

(71)

−

∫

R

σij,ju
∗

i dR +

∫

R

(

mij,j + εijkσjk
)

ω∗

i dR +

∫

R

Uiu
∗

i dR +

∫

R

Viω
∗

i dR

=

∫

S2

(

�i − �i

)

u∗

i dS +

∫

S1

(ui − ui)�
∗

i dS+

∫

S4

(

µi − µi

)

ω∗

i dS +

∫

S3

(ωi − ωi)µ
∗

i dS

(72)

−

∫

R

σijε
∗

ijdR −

∫

R

mij,jω
∗

i,jdR +

∫

R

Uiu
∗

i dR +

∫

R

Viω
∗

i dR

= −

∫

S2

�iu
∗

i dS −

∫

S1

�iu
∗

i dS +

∫

S1

(ui − ui)�
∗

i dS −

∫

S4

µiω
∗

i dS −

∫

S3

µω∗

i dS +

∫

S3

(ωi − ωi)µ
∗

i dS

(73)σij = Aijklεkl ,mij = Bijklωk ,l where Aijkl = Aklij and Bijkl = Bklij

(74)

−

∫

R

σ ∗

ij εijdR −

∫

R

m∗

ij,jωi,jdR +

∫

R

Uiu
∗

i dR +

∫

R

Viω
∗

i dR

= −

∫

S2

�iu
∗

i dS −

∫

S1

�iu
∗

i dS +

∫

S1

(ui − ui)�
∗

i dS −

∫

S4

µiω
∗

i dS −

∫

S3

µiω
∗

i dS +

∫

S3

(ωi − ωi)µ
∗

i dS
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By applying integration by parts to the left-hand side of (74) for the second time, we 

get

�e weighting functions of Ui = �
n and Vi = 0 along el are obtained as follows:

As Fahmy put it [41], the fundamental solution may be expressed as

Also, the weighting functions of Ui = 0 and Vi = �
n along el can be represented as:

Based on Fahmy [41], the fundamental solution can be expressed in the following 

form

Now, by considering the above two sets of weight functions into (75) we obtain

�us, we can write

where

(75)

∫

R

σ
∗

ij,juidR +

∫

R

(

m∗

ij,j + εijkσ
∗

jk

)

ωidR

= −

∫

S

u∗

i �idS −

∫

S

ω
∗

i µidS +

∫

S

�
∗

i uidS +

∫

S

µ
∗

i ωidS

(76)σ
∗

lj,j + �
nel = 0

(77)m∗

ij,j + εijkσ
∗

jk = 0

(78)u
∗

i = u
∗

li
el ,ω

∗

i = ω
∗

li
el , �

∗

i = �
∗

li
el ,µ

∗

i = µ
∗

li
el ,

(79)σ
∗∗

ij,j = 0

(80)m∗∗

lj,j + εljkσ
∗∗

jk + �
nel = 0

(81)u
∗

i = u
∗∗

li
el ,ω

∗

i = ω
∗∗

li
el , �

∗

i = �
∗∗

li
el ,µ

∗

i = µ
∗∗

li
el ,

(82)C
n

li
u
n

i
= −

∫

S

�
∗

li
uidS −

∫

S

µ
∗

li
ωidS +

∫

S

u
∗

li
�idS +

∫

S

ω
∗

li
µidS

(83)C
n

li
ω
n

i
= −

∫

S

�
∗∗

li
uidS −

∫

S

µ
∗∗

li
ωidS +

∫

S

u
∗∗

li
�idS +

∫

S

ω
∗∗

li
µidS

(84)
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In order to solve (84) numerically, we use the following definitions

Substituting the above definitions and properties into (84) and discretizing the 

boundary into Ne elements yield

which can be expressed, after integration, as follows:

Taking into consideration the following definition

�erefore, depends upon the previous definition, Eq. (87) has the following form

which may be written as

�us, we obtain

A time-stepping algorithm of Fahmy [54, 55] based on communication-avoiding 

Arnoldi preconditioner is implemented in order to obtain the temperature and displace-

ment fields.

Numerical results and discussion

In the current paper, we considered the temperature-dependent pure copper material 

with the following physical data [61]:

(85)

(86)

(87)

(88)H
ij =

{

Ĥ
ij if i �= j

Ĥ
ij + C i if i = j

(89)

(90)HQ = GP

(91)

AX = B
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�e thermal conductivity is

�e temperature dependent specific heat and density are shown in Tables  1 and 2, 

respectively.

�e proposed BEM technique implemented in the current paper should be applicable 

to a wide range of nonlinear thermal stresses problems in micropolar FGA structures 

with temperature-dependent properties.

In the BEM modelling of the considered problem, the boundary has been discretized 

using 84 linear boundary elements and 404 internal points as shown in Fig. 2.

�e effect of functionally graded parameter on the time distributions of the nonlinear 

displacements and thermal stresses plays an important role during the modeling process.

Figure  3 shows the time distribution of the nonlinear temperature for two differ-

ent cases called temperature dependent (TD) and temperature independent (TID) 

� = 400

(

1 −

T

6000

)

Table 1 Temperature dependent specific heat of pure copper [61]

T (◦C) 0 100 300 500 700 900

c(J/kg ◦K) 385 397 417 433 451 480

Table 2 Temperature dependent density of pure cupper [61]

T (◦C) 0 500 900

ρ
(

kg/m3
)

8930 8686 8458

Fig. 2 BEM modelling of the considered problem
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properties of micropolar FGA structures. It can be seen from this figure that it inves-

tigates the effect of temperature-dependent properties on the nonlinear temperature 

distribution.

Fig. 3 Variation of the nonlinear temperature with time τ

Fig. 4 Variation of the nonlinear displacement u1 with time τ for different values of functionally graded 

parameter m 

Fig. 5 Variation of the nonlinear displacement u2 with time τ for different values of functionally graded 

parameter m 
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Figures 4 and 5 show the time distributions of the nonlinear displacements u1 and u2 

for homogeneous (m = 0) and functionally graded (m = 0.3, 0.6 and 0.9) micropolar 

structures with temperature-dependent properties. It is clear from these figures that the 

Fig. 6 Variation of the nonlinear thermal stress σ11 with time τ for different values of functionally graded 

parameter m 

Fig. 7 Variation of the nonlinear thermal stress σ12 with time τ for different values of functionally graded 

parameter m 

Fig. 8 Variation of the nonlinear thermal stress σ22 with time τ for different values of functionally graded 

parameter m 
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functionally graded parameter has a tremendous impact on the displacements through 

the micropolar structures with temperature-dependent properties.

Figures 6, 7 and 8 show the time distributions of the nonlinear thermal stresses σ11 , 

σ12 and σ22 for homogeneous (m = 0) and functionally graded (m = 0.3, 0.6 and 0.9) 

micropolar structures with temperature-dependent properties. It can be shown from 

these figures that the functionally graded parameter has a considerable effect on the 

nonlinear thermal stresses through the micropolar structures with temperature-depend-

ent properties.

�e main characteristics of BEM over FDM or FEM, which make it the most appropri-

ate numerical method, for dealing with the considered problem that has been performed 

are as follows [38, 41]:

• BEM does not need the internal domain to be discretized. But both FDM and FEM 

require the discretization of the whole domain. �erefore, BEM is more efficient and 

easy to use than FDM or FEM.

• BEM integration is a smoothing operation and is more numerically stable than differ-

entiation operation of FDM or FEM. �erefore, all variables of the considered prob-

lem at any point are more precise than FDM or FEM.

• For the solution of the considered open boundary problem, BEM programmers deal 

with real geometry boundaries, while, FDM or FEM programmers deal with artificial 

boundaries, which are far away from the real problem. In addition, it is difficult for 

them to deal with the considered problem.

�e efficiency of our proposed technique has been developed by using the commu-

nication-avoiding versions of the Arnoldi (CA-Arnoldi) preconditioner for solving the 

resulting linear systems arising from the BEM to reduce the iterations number and com-

putation time.

�e communication-avoiding versions of the Arnoldi (CA-Arnoldi) of Hoemmen [62] 

that also implemented by Fahmy [41], adaptive smoothing and prolongation algebraic 

multigrid (aSP-AMG) of Magri et al. [63] that also applied by Fahmy [43] and the regu-

larized of Badahmane [64] which is also used by Fahmy [65] were compared with each 

other in Table 3. �is table reports the iteration number (IT), CPU time, relative residual 

(RES) and error (ERR) of the tested iteration methods with respect to different values of 

Table 3 Numerical results for the tested iteration methods

Time step Method IT CPU RES ERR

0.005 CA-Arnoldi 30 0.0426 3.46e−07 3.65e−09

aSP-AMG 60 0.0896 7.38e−07 3.97e−07

Regularized 70 0.1032 8.79e−07 4.76e−06

0.05 CA-Arnoldi 40 0.0876 1.38e−06 4.18e−08

aSP-AMG 90 0.3241 2.95e−05 6.73e−06

Regularized 110 0.4950 2.32e−05 2.63e−05

0.5 CA-Arnoldi 50 0.2068 4.38e−05 3.56e−07

aSP-AMG 260 0.8483 3.97e−04 5.76e−05

Regularized 280 0.9235 2.94e−03 6.49e−04
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time step. �e results of this table show a superior efficiency of the CA-Arnoldi to other 

iterative methods.

Numerical examples

Due to the innovative character of the proposed technique, there are no available pub-

lished results in the literature at present for comparison with the obtained BEM results. 

But, there are some literature can be considered to be special cases of our considered 

complex problem. Two numerical examples were studied to demonstrate the computa-

tional validity, accuracy and efficiency of the proposed BEM technique by comparing the 

numerical BEM outcomes with the FDM and FEM outcomes.

Example 1 Temperature and displacements of a square with a circular hole

In the considered special case, the boundary element model of the considered exam-

ple, the boundary has been discretized using 84 linear boundary elements and 404 

internal points as shown in Fig. 2, and the results of temperature and displacements are 

plotted in Figs. 9, 10, and 11. It can be seen from these figures that the BEM outcomes 

Fig. 9 Variation of the nonlinear temperature with time τ for FDM, FEM and BEM

Fig. 10 Variation of the nonlinear displacement u1 with time τ for FDM, FEM and BEM
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Fig. 11 Variation of the nonlinear displacement u2 with time τ for FDM, FEM and BEM

Fig. 12 Boundary element model of a thick hollow cylinder

Fig. 13 Variation of the nonlinear thermal stress σ11 with time τ for FDM, FEM and BEM
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are in very good agreement with the FDM outcomes of Awrejcewicz and Krysko [66] 

and FEM of Shakeriaski and Ghodrat [67].

Example 2 Nonlinear thermal stresses in a thick hollow cylinder

In the boundary element model of the considered example, the boundary has been 

discretized using 44 boundary elements and without internal points as shown in Fig. 12, 

and the results of nonlinear thermal stresses are plotted in Fig. 13. It can be seen from 

this figure that the BEM outcomes are in very good agreement with the FDM outcomes 

of Ahmad et al. [68] and FEM outcomes of Ibrahim and Gadisa [69].

Conclusion

A new boundary element modeling and simulation algorithm is developed based on 

time-dependent fundamental solutions in order to calculate the nonlinear thermal 

stresses in micropolar FGA composites, where material properties such as thermal con-

ductivity, density and specific heat are assumed to be temperature-dependent. In the 

proposed BEM formulation, the boundary is subdivided into boundary elements, and the 

domain must be subdivided into internal cells, without any connectivity to increase the 

accuracy of the computation. �ere is no need to specify particular solutions for evalu-

ating domain integrals, where the Galerkin meshfree method can be used to approxi-

mate the integral kernels of the domain integrals. �e domain integrals are assessed 

effectively by the CTM integration weights which are chosen to be constant over each 

time step. �e temperatures at the boundary nodes are the unknowns of the resulting 

equations system, whereas the internal points temperatures are calculated over all time 

steps without solving the whole equations system. �e proposed iterative algorithm con-

verges quickly and provides highly accurate numerical solution of the nonlinear with-

out need of complex calculation. Comparing the results of the BEM with the FDM and 

FEM shows that BEM is effective and convenient. Also, it is predicated that BEM can 

be used in the analysis of strongly nonlinear thermoelastic problems accurately. During 

our treatment of the problem under consideration, we applied CA-Arnoldi, aSP-AMG 

and regularized preconditioners. �e obtained numerical results demonstrate that CA-

Arnoldi preconditioner has better performance than aSP-AMG and regularized precon-

ditioners. �e computational validity, accuracy and efficiency of the proposed technique 

were demonstrated. Hence, this paper demonstrates that, the proposed BEM technique 

based on CTM is faster and more accurate than FDM and FEM. Also, the proposed 

technique can be used in a wide variety of applications.

Nowadays, the knowledge of nonlinear thermal stresses in micropolar structures with 

temperature-dependent properties can be utilized by mechanical engineers in modeling 

of the solid composites, porous media and suspensions. As well as for chemists to detect 

the chemical reactions including adsorption and desorption.

Abbreviations
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depending on geometry and location; c: Specific heat; c0: Specific heat at T0; Cijkl: Constant elastic moduli; C(P)
: Local geometry coefficient; dc: Average spacing of grid points; erf (): Error function; e: Dilatation; Ei(): Exponential 

integral function; Fi: Mass force; h: Heat source function; H  and G: Coefficient matrices; J : Micro-inertia coefficient; 

Mi: Mass couple; mij: Couple stress; m: Functionally graded parameter; m: Number of polynomial basis functions; n

: Number of radial basis functions; Nl: Nonlinearity; P: Collocation point; Q: Field point; q: Normal derivative of �; q∗

: Normal derivative of �
∗

; R
i
: Distance from field point to grid point; r: Euclidian distance between P and Q; t: Time; T : 

Temperature; T0: Reference temperature; ui: Displacement; x: Field point; xi: Grid point.

Acknowledgements

None.

Authors’ contributions

The author read and approved the final manuscript.

Funding

None.

Availability of data and materials

All numerical setting data are presented in the article.

Declartions

Competing interests

The author declares no competing interests.

Author details
1 Jamoum University College, Umm Al-Qura University, Alshohdaa 25371, Jamoum, Mecca, Saudi Arabia. 2 Faculty 

of Computers and Informatics, Suez Canal University, New Campus, 4.5 Km, Ring Road, El Salam District, Ismailia 41522, 

Egypt. 

Received: 3 August 2020   Accepted: 9 March 2021

References

 1. Sherief HH, Ezzat MA. Solution of the generalized problem of thermoelasticity in the form of series of functions. J 

Therm Stress. 1994;17:75–95.

 2. Ezzat MA. Fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect 

conductor cylindrical region. Int J Eng Sci. 2004;13–14:1503–19.

 3. Ezzat MA, Awad ES. Constitutive relations, uniqueness of solution, and thermal shock application in the linear theory 

of micropolar generalized thermoelasticity involving two temperatures. J Therm Stress. 2010;33:226–50.

 4. Ezzat MA, El-Bary AA. Memory-dependent derivatives theory of thermo-viscoelasticity involving two-temperature. J 

Mech Sci Technol. 2015;10:4273–9.

 5. Fahmy MA. Implicit–explicit time integration DRBEM for generalized magneto-thermoelasticity problems of rotating 

anisotropic viscoelastic functionally graded solids. Eng Anal Bound Elem. 2013;37:107–15.

 6. Fahmy MA. A computerized DRBEM model for generalized magneto-thermo-visco-elastic stress waves in function-

ally graded anisotropic thin film/substrate structures. Latin Am J Solids Struct. 2014;11:386–409.

 7. Fahmy MA. A new LRBFCM-GBEM modeling algorithm for general solution of time fractional order dual phase lag 

bioheat transfer problems in functionally graded tissues. Numer Heat Transfer A Appl. 2019;75:616–26.

 8. Fahmy MA. Generalized magneto-thermo-viscoelastic problems of rotating functionally graded anisotropic plates 

by the dual reciprocity boundary element method. J Therm Stress. 2013;36:1–20.

 9. Fahmy MA. A three-dimensional generalized magneto-thermo-viscoelastic problem of a rotating functionally 

graded anisotropic solids with and without energy dissipation. Numer Heat Transfer A Appl. 2013;63:713–33.

 10. Fahmy MA. Shape design sensitivity and optimization of anisotropic functionally graded smart structures using 

bicubic B-splines DRBEM. Eng Anal Bound Elem. 2018;87:27–35.

 11. Tauchert TR. Thermal stresses in an orthotropic cylinder with temperature dependent elastic properties. Dev Theor 

Appl Mech. 1976;8:201–12.

 12. Sugano Y. Analysis of transient thermal stresses in an orthotropic finite rectangular plate exhibiting temperature-

dependent material properties by finite difference method. Trans Jpn Soc Mech Eng Ser A. 1983;49:1315–23.

 13. Ezzat M, Zakaria M, Abdel-Bary A. Generalized thermoelasticity with temperature dependent modulus of elasticity 

under three theories. J Appl Math Comput. 2004;14:193–212.

 14. Othman MIA, Lotfy K, Farouk RM. Generalized thermo-microstretch elastic medium with temperature dependent 

properties for different theories. Eng Anal Bound Elem. 2010;34:229–37.

 15. Wang Y, Zhang X, Liu D. Asymptotic analysis of generalized thermoelasticity for axisymmetric plane strain problem 

with temperature-dependent material properties. Int J Appl Mech. 2013;5:1350023.

 16. Fahmy MA, Shaw S, Mondal S, Abouelregal AE, Lotfy K, Kudinov IA, Soliman AH. Boundary element modeling for 

simulation and optimization of three-temperature anisotropic micropolar magneto-thermoviscoelastic problems in 

porous smart structures using NURBS and genetic algorithm. Int J Thermophys. 2021;42:29.

 17. Demirbaş MD, Ekici R, Apalak MK. Thermoelastic analysis of temperature-dependent functionally graded rectangular 

plates using finite element and finite difference methods. Mech Adv Mater Struct. 2020;27:707–24.



Page 22 of 23Fahmy  Adv. Model. and Simul. in Eng. Sci.             (2021) 8:6 

 18. Matsumoto T, Guzik A, Tanaka M. A boundary element method for analysis of thermoelastic deformations in materi-

als with temperature dependent properties. Int J Numer Meth Eng. 2005;64:1432–58.

 19. Goto T, Suzuki M. A boundary integral equation method for nonlinear heat conduction problems with temperature-

dependent material properties. Int J Heat Mass Transf. 1996;39:823–30.

 20. Amado JM, Tobar MJ, Ramil A, Yáñez A. Application of the Laplace transform dual reciprocity boundary element 

method in the modelling of laser heat treatments. Eng Anal Bound Elem. 2005;29:126–35.

 21. Peng HS, Chen CL. Hybrid differential transformation and finite difference method to annular fin with temperature-

dependent thermal conductivity. Int J Heat Mass Transf. 2011;54:2427–33.

 22. Demirbas MD. Thermal stress analysis of functionally graded plates with temperature-dependent material proper-

ties using theory of elasticity. Compos B Eng. 2017;131:100–24.

 23. Carollo LFS, Silva ALFL, Silva SMML. A dierent approach to estimate temperature-dependent thermal properties of 

metallic materials. Materials. 2019;12:2579.

 24. Rüberg T, Cirak F, Aznar JMG. An unstructured immersed finite element method for nonlinear solid mechanics. Adv 

Model Simul Eng Sci. 2016;3:22.

 25. Habib F, Sorelli L, Fafard M. Full thermo-mechanical coupling using eXtended finite element method in quasi-tran-

sient crack propagation. Adv Model Simul Eng Sci. 2018;5:18.

 26. Sowmya G, Gireesha BJ, Madhu M. Analysis of a fully wetted moving fin with temperature-dependent internal heat 

generation using the finite element method. Heat Transf. 2020;49:1939–54.

 27. Sobamowo G, Ogunmola BY, Nzebuka GC. Finite volume method for analysis of convective longitudinal fin with 

temperature-dependent thermal conductivity and internal heat generation. Defect Diffus Forum. 2017;374:106–20.

 28. Gong J, Xuan L, Ying B, Wang H. Thermoelastic analysis of functionally graded porous materials with temperature-

dependent properties by a staggered finite volume method. Compos Struct. 2019;224:111071.

 29. Dilip DG, John G, Panda S, Mathew J. Finite-volume-based conservative numerical scheme in cylindrical coordinate 

system to predict material removal during micro-EDM on Inconel 718. J Braz Soc Mech Sci Eng. 2020;42:90.

 30. El-Naggar AM, Abd-Alla AM, Fahmy MA, Ahmed SM. Thermal stresses in a rotating non-homogeneous orthotropic 

hollow cylinder. Heat Mass Transf. 2002;39:41–6.

 31. Abd-Alla AM, El-Naggar AM, Fahmy MA. Magneto-thermoelastic problem in non-homogeneous isotropic cylinder. 

Heat Mass Transf. 2003;39:625–9.

 32. El-Naggar AM, Abd-Alla AM, Fahmy MA. The propagation of thermal stresses in an infinite elastic slab. Appl Math 

Comput. 2003;12:220–6.

 33. Eskandari AH, Baghani M, Sohrabpour S. A time-dependent finite element formulation for thick shape memory 

polymer beams considering shear effects. Int J Appl Mech. 2019;10:1850043.

 34. Soliman AH, Fahmy MA. Range of applying the boundary condition at fluid/porous interface and evaluation of 

beavers and Joseph’s slip coefficient using finite element method. Computation. 2020;8:14.

 35. Fahmy MA. A new BEM for fractional nonlinear generalized porothermoelastic wave propagation problems. In: 

Computers materials and continua. Encino: Tech Science Press; 2021.

 36. Fahmy MA. Shape design sensitivity and optimization for two-temperature generalized magneto-thermoelastic 

problems using time-domain DRBEM. J Therm Stress. 2018;41:119–38.

 37. Fahmy MA. Boundary element algorithm for modeling and simulation of dual-phase lag bioheat transfer and bio-

mechanics of anisotropic soft tissues. Int J Appl Mech. 2018;10:1850108.

 38. Fahmy MA. Modeling and optimization of anisotropic viscoelastic porous structures using CQBEM and moving 

asymptotes algorithm. Arab J Sci Eng. 2019;44:1671–84.

 39. Fahmy MA. Boundary element modeling and simulation of biothermomechanical behavior in anisotropic laser-

induced tissue hyperthermia. Eng Anal Bound Elem. 2019;101:156–64.

 40. Fahmy MA. Design optimization for a simulation of rotating anisotropic viscoelastic porous structures using time-

domain OQBEM. Math Comput Simul. 2019;66:193–205.

 41. Fahmy MA. A new boundary element strategy for modeling and simulation of three temperatures nonlinear gen-

eralized micropolar-magneto-thermoelastic wave propagation problems in FGA structures. Eng Anal Bound Elem. 

2019;108:192–200.

 42. Fahmy MA. A new convolution variational boundary element technique for design sensitivity analysis and topology 

optimization of anisotropic thermo-poroelastic structures. Arab J Basic Appl Sci. 2020;27:1–12.

 43. Fahmy MA. Boundary element algorithm for nonlinear modeling and simulation of three temperature ani-

sotropic generalized micropolar piezothermoelasticity with memory-dependent derivative. Int J Appl Mech. 

2020;12:2050027.

 44. Brebbia CA, Telles JCF, Wrobel L. Boundary element techniques in engineering. New York: Springer; 1984.

 45. Wrobel LC, Brebbia CA. The dual reciprocity boundary element formulation for nonlinear diffusion problems. Com-

put Methods Appl Mech Eng. 1987;65:147–64.

 46. Partridge PW, Brebbia CA. Computer implementation of the BEM dual reciprocity method for the solution of general 

field equations. Commun Appl Numer Methods. 1990;6:83–92.

 47. Hematiyan MR. Exact transformation of a wide variety of domain integrals into boundary integrals in boundary ele-

ment method. Commun Numer Methods Eng. 2008;24:1497–521.

 48. Mohammadi M, Hematiyan MR, Marin L. Boundary element analysis of nonlinear transient heat conduction prob-

lems involving non-homogenous and nonlinear heat sources using time-dependent fundamental solutions. Eng 

Anal Bound Elem. 2010;34:655–65.

 49. Khosravifard A, Hematiyan MR. A new method for meshless integration in 2D and 3D Galerkin meshfree methods. 

Eng Anal Bound Elem. 2010;34:30–40.

 50. Liu GR, Gu YT. An introduction to meshfree methods and their programming. New York: Springer; 2005.

 51. Fahmy MA. Thermoelastic stresses in a rotating non-homogeneous anisotropic body. Numer Heat Transf A Appl. 

2008;53:1001–11.

 52. Abd-Alla AM, Fahmy MA, El-Shahat TM. Magneto-thermo-elastic problem of a rotating non-homogeneous aniso-

tropic solid cylinder. Arch Appl Mech. 2008;78:135–48.



Page 23 of 23Fahmy  Adv. Model. and Simul. in Eng. Sci.             (2021) 8:6  

 53. Fahmy MA, El-Shahat TM. The effect of initial stress and inhomogeneity on the thermoelastic stresses in a rotating 

anisotropic solid. Arch Appl Mech. 2008;78:431–42.

 54. Fahmy MA. A time-stepping DRBEM for magneto-thermo-viscoelastic interactions in a rotating nonhomogeneous 

anisotropic solid. Int J Appl Mech. 2011;3:1–24.

 55. Fahmy MA. A time-stepping DRBEM for the transient magneto-thermo-visco-elastic stresses in a rotating non-

homogeneous anisotropic solid. Eng Anal Bound Elem. 2012;36:335–45.

 56. Fahmy MA. Numerical modeling of transient magneto-thermo-viscoelastic waves in a rotating nonhomogeneous 

anisotropic solid under initial stress. Int J Model Simul Sci Comput. 2012;3:1250002.

 57. Fahmy MA. Transient magneto-thermo-viscoelastic stresses in a rotating nonhomogeneous anisotropic solid with 

and without a moving heat source. J Eng Phys Thermophys. 2012;85:950–8.

 58. Fahmy MA. Transient magneto-thermo-elastic stresses in an anisotropic viscoelastic solid with and without moving 

heat source. Numer Heat Transf A Appl. 2012;61:547–64.

 59. Fahmy MA. Transient magneto-thermoviscoelastic plane waves in a non-homogeneous anisotropic thick strip 

subjected to a moving heat source. Appl Math Model. 2012;36:4565–78.

 60. Fahmy MA. The effect of rotation and inhomogeneity on the transient magneto-thermoviscoelastic stresses in an 

anisotropic solid. ASME J Appl Mech. 2012;79:1015.

 61. Green D, Perry R. Perry’s chemical engineer’s handbook. 8th ed. New York: Mc Graw Hill; 2007.

 62. Hoemmen M. Communication-avoiding Krylov subspace methods. Ph.D. Dissertation. University of California, Berke-

ley; 2010.

 63. Magri VP, Franceschini A, Janna C. A novel algebraic multi-grid approach based on adaptive smoothing and prolon-

gation for ill-conditioned systems. SIAM J Sci Comput. 2019;41:A190–219.

 64. Badahmane A. Regularized preconditioned GMRES and the regularized iteration method. Appl Numer Math. 

2020;152:159–68.

 65. Fahmy MA. A novel BEM for modeling and simulation of 3T nonlinear generalized anisotropic micropolar-thermoe-

lasticity theory with memory dependent derivative. CMES. 2021;126:175–99.

 66. Awrejcewicz J, Krysko VA. Elastic and thermoelastic problems in nonlinear dynamics of structural members: applica-

tions of the bubnov-galerkin and finite difference methods. New York: Springer International Publishing; 2020.

 67. Shakeriaski F, Ghodrat M. The nonlinear response of Cattaneo-type thermal loading of a laser pulse on a medium 

using the generalized thermoelastic model. Theor Appl Mech Lett. 2020;10:1–12.

 68. Ahmad F, Almatroud AO, Hussain S, Farooq SE, Ullah R. Numerical solution of nonlinear Diff. equations for heat 

transfer in micropolar fluids over a stretching domain. Mathematics. 2020;8:854.

 69. Ibrahim W, Gadisa G. Finite element analysis of couple stress micropolar nanofluid flow by non-Fourier’s law heat 

flux model past stretching surface. Heat Transf Asian Res. 2019;48:3763–89.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


	A new boundary element algorithm for modeling and simulation of nonlinear thermal stresses in micropolar FGA composites with temperature-dependent properties
	Abstract 
	Introduction
	Formulation of the problem
	BEM solution for temperature field
	Regularization of BEM formulations and evaluation of the domain integrals
	BEM solution for displacement field
	Numerical results and discussion
	Numerical examples

	Conclusion
	Acknowledgements
	References


