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Abstract—This paper proposes a new brain–computer interface
(BCI) design using fuzzy ARTMAP (FA) neural network, as well
as an application of the design. The objective of this BCI-FA de-
sign is to classify the best three of the five available mental tasks
for each subject using power spectral density (PSD) values of elec-
troencephalogram (EEG) signals. These PSD values are extracted
using the Wiener–Khinchine and autoregressive methods. Ten ex-
periments employing different triplets of mental tasks are studied
for each subject. The findings show that the average BCI-FA out-
puts for four subjects gave less than 6% of error using the best
triplets of mental tasks identified from the classification perfor-
mances of FA. This implies that the BCI-FA can be successfully
used with a tri-state switching device. As an application, a proposed
tri-state Morse code scheme could be utilized to translate the out-
puts of this BCI-FA design into English letters. In this scheme, the
three BCI-FA outputs correspond to a dot and a dash, which are
the two basic Morse code alphabets and a space to denote the end
(or beginning) of a dot or a dash. The construction of English let-
ters using this tri-state Morse code scheme is determined only by
the sequence of mental tasks and is independent of the time dura-
tion of each mental task. This is especially useful for constructing
letters that are represented as multiple dots or dashes. This combi-
nation of BCI-FA design and the tri-state Morse code scheme could
be developed as a communication system for paralyzed patients.

Index Terms—Assistive technology, brain–computer interface
(BCI), EEG, fuzzy ARTMAP (FA), paralyzed patients, spectral
analysis, tri-state Morse code.

I. INTRODUCTION

T HE recent decade has seen many developments in elec-
troencephalogram (EEG)-based brain–computer interface

(BCI) technology. Specifically, EEG based BCI technologies
that do not depend on peripheral nerves and muscles have re-
ceived much attention as possible modes of communication for
the disabled [1]–[3], [6], [8], [9], [12]–[17], [19], [22]–[24],
[27]–[29]. Reviews of some of these technologies and develop-
ments in this area are given by Vaughanet al. [27] and Wolpaw
et al. [29].

In this paper, a new BCI design using fuzzy ARTMAP (FA)
neural network (NN) together with an application is proposed.
The objective of this BCI-FA design is to classify the best three
out of five available mental tasks using power spectral density
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(PSD) values of EEG signals. In our paper, we identify the best
triplet of mental tasks for each subject and show that BCI-FA
output error rates are minimal using the best triplets of mental
tasks. This is important because it ensures that a successful ap-
plication with a tri-state switching device is possible using the
outputs of BCI-FA. As an application, a tri-state Morse code
scheme is proposed to translate the outputs of the BCI-FA into
English letters. This combination of BCI-FA design and the
tri-state Morse code scheme could be developed as a communi-
cation system for paralyzed patients. Here, we refer to paralyzed
patients as those who do not have control over their peripheral
nerves and muscles.

In this BCI-FA design, PSD values from EEG signals are
computed using the Wiener–Khinchine (WK) and autoregres-
sive (AR) methods. FA is trained with these PSD values to clas-
sify different triplets of mental tasks from a total of five mental
tasks. These five mental tasks are: geometrical figure rotation,
mathematical multiplication, mental letter composing, visual
counting, and a baseline-resting task. The EEG data comprising
the five mental tasks were collected by Keirn and Aunon [12]
in their experiments for a possible implementation of an EEG
based BCI.

Keirn and Aunon [12] classified different pairs of mental
tasks using a Bayesian quadratic classifier. They used power
spectral asymmetry ratio as the discriminatory feature since
mental tasks were first identified as belonging to the right or
left hemisphere. In their experimental study, six electrodes were
placed over the left and right central, parietal, and occipital
areas of the cortex. PSDs were extracted using two methods:
Fourier transform of the autocorrelation function and AR.
Their study showed that the AR method was superior and could
differentiate between two mental tasks for each subject.

Andersonet al. [1] classified the data collected by Keirn and
Aunon [12] with a NN classifier. They focused on discrimi-
nating the multiplication task with the baseline-relaxed state.
They used scalar and multivariate AR coefficients in addition to
Karhunen-Loeve transform and correlation matrix eigenvalues
as input features. Using 80% of the data set to train the back-
propagation feedforward NN, they were able to obtain average
classification accuracy ranging from 86.1% to 91.4% for each
subject. Although multivariate AR coefficients gave the best re-
sults, they suggested using scalar AR coefficients because it in-
volves less computation time.

In the BCI-FA design proposed in this paper, the FA is used
instead of parametric classifiers [12], [22] or other types of NN
architectures [1], [14]. Most NN architectures have good gener-
alization ability as compared to parametric classifiers but they
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are difficult to train and are time consuming. Therefore FA, a
new type of NN architecture that requires less training time [5]
is used in this design. In addition, FA has the ability for incre-
mental learning, which makes it useful to train data from new
subjects without the need to retrain data from previously trained
subjects.

The classification performance of FA is used to identify the
best triplets of mental tasks for each subject. Since there are
a total of five evaluated mental tasks, ten different combina-
tions of triplets of mental tasks for each subject are presented to
BCI-FA for this purpose. The classification performance varies
for the same triplets of mental tasks among different subjects.
Each subject has his/her own way of performing a mental task.
Some subjects find some tasks easy to perform while other sub-
jects find the same tasks difficult to do. As such, these best
triplets of mental tasks might be different among the subjects.

The outputs of BCI-FA using these best triplets of mental
tasks could be used with a tri-state switching device. For ex-
ample, a tri-state Morse code scheme could be used to translate
the three outputs of BCI-FA into the English letters, which could
be used to construct words like “water,” “music,” “tv,” “food,”
etc. Morse code has been used previously as a translation al-
gorithm in applications for the disabled [10], [19], [20], [25],
but some of these works require muscle manipulation like the
Masseter muscle [20] or employ switching methods using some
parts of the body [10]. There are also other translator algorithms
like the modified version of Huffman’s algorithm, which has
been proposed for a binary spelling interface [21].

Although, two mental tasks will suffice to represent adotand
a dash, which are the two basic alphabets in the conventional
Morse code scheme, the proposed tri-state Morse code scheme
requires an additional mental task to representspacebetween
dotanddash. This is to denote the ending (or beginning) of adot
or adash. The use ofspacein this tri-state Morse code scheme
removes the requirement of a fixed duration for users to think
of each mental task. This is particularly useful for constructing
letters that require mental tasks to be repeated consecutively.
As such, the construction of English letters is independent of
the time duration of each mental task and is determined only by
the sequence of the mental tasks. Using this tri-state Morse code
scheme, each BCI-FA output corresponds to either adot, adash
or aspace.

This direct translation of brain signals into letters using the
proposed tri-state Morse code (or any other translation algo-
rithm) provides an alternative to methods requiring an inter-
mediary interface. A common intermediary interface method
is to use the movement of a cursor on a computer screen in
order to perform an action like selecting letters or menus. This
method requires the user’s attention to become divided between
the mental thought process required to move the cursor and the
progress of the cursor’s location on the screen.

The rest of the paper is organized into four sections. Sec-
tion II discusses the BCI-FA design. The experimental study
using BCI-FA design is covered in Section III. The tri-state
Morse code technique to translate the outputs of BCI-FA design
into English letters is explained in Section IV and the conclu-
sion is presented in Section V.

Fig. 1. Electrode placement.

II. BRAIN–COMPUTERINTERFACEDESIGN USING FUZZY

ARTMAP

This section on BCI-FA design is divided into three smaller
subsections: experimental setup to record EEG data, feature ex-
traction using spectral analyzes and FA classifier, which is used
to classify these extracted spectral features into three outputs
where each output corresponds to a mental task.

A. Experimental Setup to Record EEG Data

The EEG data used in this study were collected by Keirn and
Aunon [12]. The subjects are seated in an Industrial Acoustics
Company sound controlled booth with dim lighting and noise-
less fans (for ventilation). An Electro-Cap elastic electrode cap
is used to record EEG signals from positions C3, C4, P3, P4, O1
and O2, defined by the 10–20 system [11] of electrode place-
ment. The impedance of all electrodes is kept below 5 Kohms.
Fig. 1 shows the electrode placement. Measurements are made
with reference to electrically linked mastoids, A1 and A2. The
electrodes are connected through a bank of amplifiers (Grass
7P511), whose band-pass analog filters are set at 0.1 to 100 Hz.
The data are sampled at 250 Hz with a Lab Master 12-bit A/D
converter mounted on a computer.

Before each recording session, the system is calibrated with
a known voltage. Signals are recorded for 10 s during each task
and each task is repeated for two sessions where the sessions are
held on different weeks. The sampling rate is 250 Hz, so each
EEG signal gives 2500 samples per channel.

In this paper, EEG signals from four subjects performing five
different mental tasks are used. The data is available online at
http://www.cs.colostate.edu/~anderson. These mental tasks are:

• Baseline task. The subjects are asked to relax and think
of nothing in particular. This task is used as a control and
as a baseline measure of the EEG signals.

• Math task. The subjects are given nontrivial multipli-
cation problems, such as 72 times 38 and are asked to
solve them without vocalizing or making any other phys-
ical movements. The tasks are nonrepeating and designed
so that an immediate answer is not apparent. The subjects
verified at the end of the task whether or not he/she arrived
at the solution and no subject completed the task before the
end of the 10 s recording session.

• Geometric figure rotation task. The subjects are given
30 s to study a particular three-dimensional block object,
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Fig. 2. Example of one of the 3-D figures used for the geometric figure rotation
task.

after which the drawing is removed and the subjects are
asked to visualize the object being rotated about an axis.
The EEG signals are recorded during the mental rotation
period. An example of one of the objects is shown in Fig. 2
[12].

• Mental letter composing task. The subjects are asked to
mentally compose a letter to a relative or a friend without
vocalizing. Since the task is repeated several times the sub-
jects are told to continue with the letter from where they
left off.

• Visual counting task. The subjects are asked to imagine a
blackboard and to visualize numbers being written on the
board sequentially, with the previous number being erased
before the next number is written. The subjects are in-
structed not to verbalize the numbers but to visualize them.
They are also told to resume counting from the previous
task rather than starting over each time.

Keirn and Aunon [12] specifically chose these tasks since
they invoke hemispheric brainwave asymmetry (except for base-
line task). It was shown by Osaka [18] that arithmetic tasks ex-
hibit a higher power spectrum in the right hemisphere whereas
visual tasks do so in the left hemisphere. As such, Keirn and
Aunon and later Andersonet al. [1] proposed that these tasks
are suitable for brain–computer interfacing. However, one lim-
itation is that it is difficult to assess behaviorally that the sub-
jects are indeed performing the appropriate task. In order to al-
leviate this difficulty to some extent, the subjects were strictly
instructed to focus their attention on the specific tasks they were
engaged in.

B. Feature Extraction Using Spectral Analyzes

In the BCI-FA design, we have used two different spectral
analyzes methods to obtain the frequency content (i.e., PSD) of
the EEG signals from 0 to 50 Hz. The first method uses WK
theorem [7] where we have applied two different lag windows,
Tukey and Parzen [7], [26]. The second method uses AR spectral
analysis with Burg method [4], [7], [26] used to obtain the AR
coefficients. A model order 6 is used for this AR process based
on the suggestions by Keirn and Aunon [12] and Andersonet
al. [1].

A real valued, zero mean, stationary, nondeterministic, au-
toregressive process of orderis given by

(1)

where is the model order, is the signal at the sampled
point , are the real valued AR coefficients and repre-

sents the error term independent of past samples. The term au-
toregressive implies that the process is seen to be regressed
upon previous samples of itself. The error term is assumed to be
a zero mean white noise with finite variance,. In applications,
the values of and have to be estimated from finite samples
of data .

Many different techniques have been proposed to estimate
, each with its own merits and demerits. Some of these are

autocorrelation, covariance and lattice methods but the most
common method is the autocorrelation technique of solving the
Yule–Walker equations [26]. We can solve the Yule–Walker
equations directly using conventional linear equation solutions
like Gaussian elimination, but a shortcoming of this approach
is its huge computational time. Thus, recursive algorithms have
been developed which are based on the concept of estimating
the parameters of a model of orderfrom the parameters of a
model of order . Some of these algorithms are like Burg
[4], [7], [26] and Levinson–Durbin [26]. The former is more
accurate since it uses the data points directly, unlike the latter
method that relies on the estimation of the autocorrelation func-
tion, which is generally erroneous for small data segments. In
addition, Burg algorithm uses more data points by minimizing
not only a forward error (as in the Levinson–Durbin case) but
also a backward error. Proofs and details of this algorithm can
be found in [4], [7], [26].

After estimating the AR coefficients using Burg algorithm,
we can obtain the PSD values by using the equation

(2)

where represents the PSD function,is the sampling pe-
riod and represents the power spectrum of the error se-
quence. Since the term applies to the errors or residuals,
which are in theory white, the resulting power spectrum should
be flat. Therefore, should be a constant independent of
the frequency. Ideally, the value of this constant (noting that
the mean of the residuals are zero) will be directly proportional
to the variance of the residuals. Hence, the final expression for
the conventional AR spectral estimate is obtained by replacing

with where is the unbiased estimated vari-
ance of the residuals and the termis included so that the true
power of the corresponding analog signal will be represented
digitally. The final PSD equation is given by

(3)

WK theorem shows that the spectral content of a wide-sense
stationary random signal is obtained by taking the Fourier trans-
form of its autocorrelation function. It is given by

(4)



PALANIAPPAN et al.: A NEW BCI DESIGN USING FUZZY ARTMAP 143

Fig. 3. Fuzzy ARTMAP structure as used in this paper.

for discrete signals, where the signal hasnumber of sampled
points and the autocorrelation function is defined as

(5)

with autocovariance defined as

(6)

Modern spectral analysis makes some modifications to (4),
which are designed to improve the estimate of the population
function [7], [26]. First, not all autocorrelation coeffi-
cients are used but a maximum of , where is
the truncation point. This is to reduce the occurrence of false
spectral peaks. In this paper, using rule of thumb, the trunca-
tion limit, is chosen to be approximately 25% of the segment
length. Second, lag windows are used to smoothen the spectral
estimate. These lag windows are used to reduce the variance of
the sample spectral density function. In our case, we use Tukey
and Parzen windows.

C. Fuzzy ARTMAP Classifier

FA classifier is trained to classify three mental tasks where
each mental task is represented by the 300 PSD values (from
6 channels of EEG). The network structure of FA used in this
paper is shown in Fig. 3. This system learns to classify inputs
by using fuzzy set features ranging from 0 to 1. It consists of
two Fuzzy ART modules (Fuzzy ARTand Fuzzy ART) that
create stable recognition categories in response to a sequence
of input patterns. During supervised learning, Fuzzy ARTre-
ceives a stream of input features representing the pattern and
Fuzzy ART receives a stream of output features representing
the target class of the pattern. An Inter ART module maps these
two modules by creating a minimal linkage of recognition cat-
egories between the two Fuzzy ART modules to meet a certain
accuracy criteria. This is accomplished by realizing a learning
rule that minimizes predictive error and maximizes predictive
generalization. It works by increasing the vigilance parameter

of Fuzzy ART by a minimal amount needed to correct a
predictive error at Fuzzy ART.

Fig. 4. BCI-FA design.

Parameter calibrates the minimum confidence that Fuzzy
ART must have in a recognition category or hypothesis that is
activated by an input vector in order for Fuzzy ARTto accept
that category, rather than search for a better one through an auto-
matically controlled process of hypothesis testing. Lower values
of enable larger categories to form and lead to a broader gen-
eralization and higher code compression. A predictive failure at
Fuzzy ART increases the minimal confidence by the least
amount needed to trigger hypothesis testing at Fuzzy ART
using a mechanism called match tracking. Match tracking sac-
rifices the minimum amount of generalization necessary to cor-
rect the predictive error and leads to an increase in the confi-
dence criterion just enough to trigger hypothesis testing, which
in turn leads to a new selection of Fuzzy ARTcategory. This
new cluster can give a better prediction of the correct target class
as compared to the cluster before match tracking. Further details
of FA can be found in [5].

The steps involved in the BCI-FA design are illustrated in
Fig. 4.

III. EXPERIMENTAL STUDY USING BCI-FA DESIGN

In the experimental study, the classification performance of
FA is used to identify the best triplets of mental tasks for each
subject. As mentioned previously, this process is necessary to
minimize the BCI-FA output error rates to ensure successful
tri-state application using BCI-FA design. Since we have five
mental tasks in the dataset, we have studied the variation in
classification performance using ten different triplets of mental
tasks for each subject.

Each EEG signal from a particular mental task is segmented
with a 0.5-s window, i.e., for a length of 125 points giving 20
patterns for each mental task per session. A total of 200 pat-
terns are obtained for the five mental tasks performed by each
subject across two sessions. PSD values from half of available
patterns (chosen randomly) are used for FA training, while PSD
values from the remaining half of the patterns are used for FA
testing. Each FA training and testing is run 10 times with the
ordering of training patterns for each data set chosen randomly.
This is because FA performance varies with different orders of
training patterns [5]. It must be noted here that the training and
testing data sets are fixed; only the ordering of patterns during
training is changed randomly. Fuzzy ARTvigilance parameter,

value is fixed at 0 for all the experiments. This is to maxi-
mize code compression and generalization ability. The 300 PSD
values in the range of 0–50 Hz from the six channels are con-
catenated into a single feature vector as inputs and the three clas-
sified outputs represent the three mental tasks.

Table I shows the results from the experiments with different
triplets of mental tasks using PSD values from WK method with
Parzen window smoothing. The classification accuracies of FA
are shown in terms of maximum, minimum and average for the
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TABLE I
FA CLASSIFICATION RESULTS FOR10 RUNS USING PSD VALUES OBTAINED FROM WEINER–KHINCHINE METHOD WITH PARZEN WINDOW SMOOTHING

TABLE II
FA CLASSIFICATION RESULTS FOR10 RUNS USING PSD VALUES OBTAINED FROM WEINER–KHINCHINE METHOD WITH TUKEY WINDOW SMOOTHING

10 runs with different orderings of training patterns. As indi-
cated earlier, the patterns for training and testing remain fixed
for these 10 runs; only the order with which the training patterns
are fed into FA changes.

Tables II and III show classification results using PSD values
obtained from WK method with Tukey window smoothing and
6th order AR model (with Burg method for computing AR coef-
ficients), respectively. It can be seen from these tables that clas-
sification of different triplets of mental tasks shows that the per-
formances vary for each subject. This is true regardless of the
method used to obtain the PSD features. This shows that not any
triplets of mental tasks can be used as inputs to BCI-FA for it to
be used successfully with a tri-state switching device.

Table IV shows the different triplets of mental tasks that
gave the best classification performance (from averaged values
of 10 runs) for each subject using different feature extraction
methods. It could be noted that the best triplets of mental tasks
for all the subjects are the same whether WK method with
Parzen window or WK method with Tukey window is used. In
the case of AR method, the best triplets of mental tasks are the
same as WK method for subjects 1 and 3. For subjects 2 and 4,
the results differ only by a single task, with the other two tasks

being the same. This shows that in most cases the best triplets
of mental tasks identified for each subject is rather independent
of the PSD features.

When classification performances using different spectral
methods are compared, the AR method is the only method that
gives near 100% classification during one of the runs in that
experiment for subject 3 for the mental tasks ofbaseline, letter
and count as shown in Table III. In some cases, the perfor-
mances of the other two spectral methods are better than the AR
method. The average performances of the four subjects using
the best triplets of mental tasks show that WK-Parzen method
gives 94.43% followed by AR at 93.67% and WK-Tukey at
91.08%.

Using the same dataset, Keirn and Aunon [12] obtained
average classification results of 81.0% using WK method,
82.3% using Burg spectrum and 84.6% using Burg AR coef-
ficients for pairs of mental tasks. Andersonet al. [1] obtained
averaged classification results which ranged from 86.1%
using Karhunen-Loeve transform to 91.4% obtained using
multivariate AR coefficients for classifying two mental tasks
in the same dataset. They also obtained 90.6% with scalar AR
coefficients and 90.4% using correlation matrix eigenvalues.
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TABLE III
FA CLASSIFICATION RESULTS FOR10 RUNS USING PSD VALUES OBTAINED FROM AR

TABLE IV
PERFORMANCE OFBEST TRIPLETS OFMENTAL TASKS FOREACH SUBJECT USING THE DIFFERENT FEATURE EXTRACTION METHODS (FROM

AVERAGED VALUES OF 10 RUNS)

IV. TRI-STATE MORSECODE SCHEME FORTRANSLATING

BCI-FA OUTPUTSINTO ENGLISH LETTERS

As an application of the BCI-FA design, a tri-state Morse
code scheme could be used to translate the outputs of BCI-FA
into English letters/words like “water,” “tv,” etc. Although two
mental tasks will suffice since the basic alphabets in the conven-
tional Morse code scheme aredot anddash, we are proposing
the use of an additional mental task to representspacebetween
dot anddash. Thespacewill denote the end of either adot or
dashand starting of a newdot or dash, which allows users to
focus on the sequence of mental tasks, regardless of the time
duration of each mental task. This is particularly useful for con-
structing letters like “I,” “H,” or “S,” which consist of consec-
utive dotsor dashes. For example, the letter “I” in Morse code
is represented by two consecutivedots. Assuming that BCI-FA
makes a decision on the type of mental task using EEG data
every 0.5 s, it will most likely be difficult for any user to per-
form a mental task for exactly 1 s, i.e., 0.5 s for the firstdotand
another 0.5 s for the seconddot. However, usingspaceallows
the user to perform a mental task (without any time constraint),
followed by a different mental task (as a representation ofspace)
denoting to the computer the end of thedot. This process is re-
peated to construct the letter “I.” Fig. 5 illustrates this sequence
of mental tasks. Therefore, using this tri-state Morse code, we
require three different mental tasks where each task will corre-
spond to either adot, adashor aspace.

Using this tri-state Morse code, we could construct English
letters, Arabic numerals and punctuation marks to form words
and complete sentences. Fig. 6 shows some of the Morse code

listings obtained from the Australian Communications Au-
thority website, www.aca.gov.au/publications/info/morse.htm.

Schematic examples of how the tri-state Morse code could
be used to construct the words “water” and “tv” are shown in
Fig. 7(a) and (b), respectively. In these examples, we use the
three mental tasks:baseline, letter, andcountto representspace,
dot, anddashof the Morse code system, respectively. These
tasks are chosen because they gave an average performance of
99% for subject 3 in the experimental study. However, it must
be noted that this best triplet of mental tasks is different for the
other subjects. Each mental task from the best triplet of mental
tasks corresponds to one of the three BCI-FA outputs, i.e., either
100, 010, or 001.

Fig. 8 illustrates the link between FA and the tri-state
Morse code scheme for a possible implementation of English
letter/word construction where the letter ‘A" of Fig. 7(a) is
used as an example. In the figure, PSD values from four mental
tasks in the sequence ofletter, baseline, countand baseline
are used as inputs to the FA. Once theletter task represented
by PSD values is recognized by FA, code 100 is generated as
outputs, which is translated by the tri-state Morse code scheme
as adot. Similarly, codes 010, 001, and 010 are generated as
outputs forbaseline, countand baselinetasks, respectively.
These codes are translated by the tri-state Morse code tospace,
dash, andspace, respectively. Therefore, the final outputs are
in the sequence ofdot, space, dash, andspace, which denotes
the letter “A.”

BCI-FA combined with the tri-state Morse code scheme takes
0.006 s of computation time on a modern PC to convert a mental
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Fig. 5. The requirement ofspacein addition todot to construct the letterI.

Fig. 6. Examples of Morse codes for alpha numerals.

Fig. 7. Schematic examples of the words (a) “WATER” and (b) “TV”
constructed using tri-state Morse code scheme.

Fig. 8. Link between FA and the tri-state Morse code scheme (for letter “A”
of Fig. 7).

task into either adot, a dash, or a space. This implies that to
generate an English letter such as “J,” “Q,” or “Y,” which re-
quires eight mental tasks to represent, it will take 0.048 s. This
shows that the time taken for signal processing and classification
using BCI-FA is insignificant as compared to the response time
required for subjects to switch tasks, which could take much

longer. Unfortunately, we are unable to investigate on the ability
(speed, difficulty, etc.) of subjects to switch mental tasks be-
cause at the time of EEG recording, these parameters were not
considered.

Since the BCI-FA design produces output errors as indicated
in Tables I–IV, there would be state errors resulting from it. The
state transition errors related to generating a single English char-
acter would be compounded because a single character is com-
posed ofdotsand/ordashesandspaces. In addition, there is also
the possibility of transition errors caused by human faults. In
these cases, the subjects unintentionally perform wrong mental
tasks, which results in unintended letters generated by the tri-
state Morse code scheme.

V. CONCLUSION

This paper proposes a new BCI design using FA together
with an application of the design. The BCI-FA design classi-
fies three best mental tasks from five available mental tasks
using PSD values of EEG signals extracted with WK-Tukey,
WK-Parzen, and sixth-order AR methods. The output error rates
of this BCI-FA design are minimal using the best triplets of
mental tasks for each subject, where these best triplets of mental
tasks are identified from the classification performance of the
FA. This process of selecting the best triplet of mental tasks
for each subject is important because it ensures the minimum
BCI-FA output error. Our results show that these best triplets
of mental tasks are different for the four subjects because each
subject has his/her own of performing a mental task. In addi-
tion, the results also indicate that in most cases, the best triplets
of mental tasks identified for each subject is independent of the
spectral methods used to obtain the PSD values.

As an application, BCI-FA outputs could be used with the
proposed tri-state Morse code scheme to translate the outputs of
BCI-FA into dot, dashor spacefor generating English letters.
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The construction of the English letters using this tri-state Morse
code scheme is determined only by the sequence of mental tasks,
which is especially useful for constructing letters that are rep-
resented as multipledotsor dashes. This tri-state Morse code
scheme if used together with the BCI-FA design could be de-
veloped as a mode of communication for paralyzed patients. It
is hoped that more development work based on the proposed
BCI-FA technology will take place in the near future to enable
the design of a complete working system.
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