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A new analysis of the deflection of square and rectangular membranes of varying aspect

ratio under the influence of a uniform pressure is presented. The influence of residual

stresses on the deflection of membranes is examined. Expressions have been developed

that allow one to measure residual stresses and Young's moduli. By testing both square

and rectangular membranes of the same film, it is possible to determine Poisson's ratio

of the film. Using standard micromachining techniques, free-standing films of LPCVD

silicon nitride were fabricated and tested as a model system. The deflection of the silicon

nitride films as a function of film aspect ratio is very well predicted by the new analysis.

Young's modulus of the silicon nitride films is 222 ± 3 GPa and Poisson's ratio is

0.28 ± 0.05. The residual stress varies between 120 and 150 MPa. Young's modulus and

hardness of the films were also measured by means of nanoindentation, yielding values

of 216 ± 10 GPa and 21.0 ± 0.9 GPa, respectively.

I. INTRODUCTION

The mechanical properties of thin films and the

residual stresses in them have long been recognized to

be important in the fabrication of electronic devices and

microsensors.1 This has provided a motivation for the

study of mechanical properties of thin films. Unfortu-

nately, the techniques commonly used to measure these

properties in bulk materials are not directly applicable to

thin films. Thus, specialized mechanical testing methods

have been sought.

The bulge test was one of the first techniques intro-

duced for the study of thin film mechanical properties.2

In its original form, a circular film or membrane is

clamped over an orifice and a uniform pressure is applied

to one side of the film. The deflection of the film is

then measured as a function of pressure allowing a

determination of the stress-strain curve and the residual

stress of the film. The stress state in the film is biaxial so

that only properties in the plane of the film are measured.

Traditionally the test has been plagued by a number

of problems. The results are rather sensitive to small

variations of the dimensions of the film and may be

affected by twisting of the sample when it is mounted.

Sample preparation is therefore crucial and special steps

need to be taken to minimize these effects. The residual

stresses in the film also have to be tensile. Finite element

studies3'4 have shown that for films in compression, the

circumferential stress near the edge of the film remains

compressive even at high applied pressures, causing

the film to buckle. Wrinkles in such films disappear

only gradually as the pressure on the film is increased,

leading to erroneous results. Finally, failure to take

into account the initial height of the membrane in the

analysis leads to apparent nonlinear elastic behavior of

the film.5

Developments in micromachining techniques and

better analysis methods have made it possible to over-

come many of the problems associated with the bulge

test. In this paper, a new analysis of the deflection of rect-

angular membranes is presented and it is demonstrated

how Young's modulus, Poisson's ratio, and residual

stress can be accurately measured by testing both square

and rectangular films with large aspect ratios. We also

describe a technique to fabricate free-standing films

of silicon nitride on silicon substrates, using standard

lithography and anisotropic etching techniques. The di-

mensions of the films can be controlled precisely if the

membranes are made rectangular in shape and oriented

with the crystal axes of the Si substrate. Silicon nitride

is used as a model system, but the technique can be

extended to a large number of films with only minor

modifications. The results obtained from the bulge test

are compared to results from nanoindentation experi-

ments performed on the same material.

II. ANALYSIS OF THE DEFLECTION
OF A MEMBRANE

A. Square films

Calculation of the deflection of a membrane under a

uniform pressure is a difficult problem. For the large de-

flections that are typical in bulge tests, the membrane be-

haves nonlinearly. Let u, v, and w be the components of

the displacement parallel to the x, y, and z directions (see
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Fig. 1). The strains in the membrane are then given by6: isotropic material is'

_ bu 1 (bw\

J
bv 1 /bw

by ~2

bu bv bw bw

7xy ~ by ~bx bx by
(1)

The nonlinear terms in these expressions arise from the

fact that the deflection of the membrane in the z direction

is large. Using the equilibrium equations, Hooke's law,

and the appropriate boundary conditions, the deflection

can be calculated. The problem can be reduced to the si-

multaneous solution of two nonlinear partial differential

equations.6 This, however, is a nontrivial task.

A number of researchers have derived approximate

solutions using an energy minimization method.6"9 In

this approach, one assumes a displacement field for

the membrane that contains a number of unknown

parameters and satisfies the boundary conditions.

According to the principle of virtual displacements,

the unknown parameters are then determined by the

condition that the total potential energy of the system

is minimum with respect to the parameters. The

displacement field used most often is the first term

in the Fourier expansion of the actual deflection. The

same method with a different displacement field is

used in the present study in order to derive a more

accurate expression for the load-deflection behavior

of a square membrane. The displacement field for a

square film with side 2a can be approximated by

u = AJ-5(a2 - x2)(a2 - y2)2)(a2

2)(a2 - y2)v = A^(a2 - x2)(a2 - y2)

w = w^{a2 - x2){a2 - y2)[l + + y2)]
(2)

where A, w0, and R are the unknown parameters. The

potential energy of the membrane in the case of an

Wo

2a

FIG. 1. Schematic diagram of a membrane with a uniform pressure

applied to one side.

V =
Et

e2x + e2 + 2vexey

2(1 - v2)

+ ^(1 - v2)yxy)dxdy - ff qwdxdy (3)

where t, E, and v are the thickness, Young's modulus,

and Poisson's ratio of the film, respectively, and q is the

pressure applied to the membrane. The first term in this

expression represents the strain energy of the membrane

due to the stretching in the plane of the membrane. The

contribution of bending to the strain energy has been

neglected. This is valid because the deflection is much

larger than the thickness of the membrane. The second

term represents the potential energy of the pressure

applied to the membrane. Minimization of Eq. (3) with

respect to the undetermined parameters leads to a set of

three simultaneous nonlinear equations in A, w0, and R,

that can be readily solved. The deflection of the center

of the membrane is then given by

= f{v)
qaA{\ - v)

Et

1/3

(4)

where f{v) is a complicated function of Poisson's ratio

which can be approximated by f{v) ~ 0.800 + 0.062*/.

The form of Eq. (4) is the same as that found by other

researchers, except for the function f(v). A few remarks

about Eq. (4) are in order. First, for a given pressure

and displacement, Young's modulus is proportional to

the fourth power of a. Therefore, if one wants to

measure Young's modulus by means of the bulge test,

the dimensions of the film have to be measured very

accurately. This is often impossible if the film is taken

off the substrate and glued onto a sample holder. Second,

the fact that f(p) is a function of Poisson's ratio arises

from the fact that the stress state in the membrane is

not entirely equal-biaxial. The assumption of an equal-

biaxial stress state has often been made in the derivation

of the deflection of circular membranes.2-10'11 The strain

state actually varies from equal-biaxial in the center of

the membrane to plane strain at the edges, where the

film is clamped. The biaxial modulus E/{\ — v) alone

is insufficient to characterize the load-deflection behavior

of the membrane and the membrane is more compliant

than one would expect based on the assumption of

an equal-biaxial stress state. In Fig. 2 the variation

of f{v) with Poisson's ratio is compared to a finite

element calculation of the same quantity7 and an energy

minimization calculation using the first term of the

Fourier expansion of the deflection.7*8 Agreement with

the finite element calculation is excellent. The Fourier

expansion, however, overestimates the compliance of the

membrane significantly. The shape of the deflected mem-
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brane is depicted in Fig. 3. Both the deflection in the

xz -plane and along the membrane diagonal are plotted

and show very good agreement with experimental data.7

Even though the film is clamped along the edges, the

slope of the deflection at the edges is not zero because

for very thin films and large deflections the bending

stiffness of the film can be neglected. According to

finite element calculations7 the shape of a membrane

for a given deflection is independent of Poisson's ratio.

Although in this analysis the parameter R in Eq. (2) is

a weak function of Poisson's ratio, the shape calculated

varies only very slightly with Poisson's ratio.

B. Rectangular films

The load-deflection behavior of a rectangular film

with sides 2a and 2b can be derived using the same

energy minimization technique as for square films. The

displacement field is very similar to that of square films

in Eq. (2) but contains five unknowns instead of three.

The resulting load-deflection relation is then

b\(qa\l - v)
1/3

(5)

where g{v,b/a) is a function of Poisson's ratio and the

aspect ratio of the membrane. Figure 4 shows the change

of g{v, b/a) with membrane aspect ratio for three differ-

ent values of Poisson's ratio. Apparently, a membrane

shows a rapidly increasing deflection as its aspect ratio

increases above unity, but once the aspect ratio exceeds

5, the deflection is independent of the aspect ratio. There

are two limiting cases for which this calculation can be

checked. First, for an aspect ratio of 1.0, the solution

has to be the same as the one derived previously in

this paper. Second, for an infinitely long membrane the
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FIG. 3. The deflection of a thin film in the xz-plane (a) and along the

diagonal (b). The shape of the membrane is virtually independent of

Poisson's ratio of the film.
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FIG. 4. Variation of the function g{v,b/a) with membrane aspect

ratio for three different values of Poisson's ratio. The solid lines at

the right-hand side are the plane strain solutions (see appendix) for

the same Poisson's ratios. For a given aspect ratio, g(v, b/a) increases

with increasing Poisson's ratio.
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strain state must be one of plane strain since any plane
perpendicular to the axis of the film is a mirror plane. In
this case an exact solution for the membrane deflection
can be readily derived (see appendix). The deflection in
the center of the membrane is given by

center of the membrane can be written as12

= (6qa4(l - v2)\113

\ SEt )
(6)

so that for large aspect ratios g{v,b/a) must approach
[6(1 + v)/8]m. The virtual energy solution indeed ap-
proaches a limit value which is within 3.7% of the correct
solution. The maximum in the plot at an aspect ratio
of about two is most likely an artifact arising from the
approximations used in the energy method. For small
aspect ratios, one should use Eq. (5) for the membrane
deflection, whereas Eq. (6) is better for large aspect
ratios. In the plane strain case the load-deflection be-
havior of the membrane is fully determined by the ratio
E/{\ — v2). As a result, the deflection does not depend
as strongly on Poisson's ratio as for square membranes.
Testing of long rectangular membranes therefore allows
a more accurate determination of Young's modulus when
Poisson's ratio is not exactly known. A similar observa-
tion has been made by Tabata et al.8

Comparing the results for square and rectangular
membranes, an interesting observation can be made. If
both a square and a much longer rectangular film are
tested, the coefficients of q in Eqs. (4) and (6) can be
determined. Elimination of Young's modulus from the
two coefficients makes it possible to calculate Poisson's
ratio of the film from the ratio f(vf/(l + v). This
method will give at least a very good estimate of a
quantity that is otherwise very difficult to measure.
Since Poisson's ratio is rather sensitive to propagation
of experimental errors in the calculations, a sufficient
number of films should be tested.

C. The influence of residual stress
on the deflection of a membrane

Until now, only membranes without residual stress
were considered. The presence of such a stress, ao, can
alter the deflection behavior of a membrane considerably.
The energy minimization technique used in the two pre-
vious sections fails to give a straightforward formula for
the deflection in this case, since the nonlinear equations
derived from the minimization of the total potential
energy of the system have to be solved numerically for
each value of the pressure q and stress cr0. However, if
one assumes that the pressure can be resolved into two
components qx and q2 such that q\ is balanced by the
residual stress in the membrane and q2 by the stretching
of the membrane, a solution can be readily derived. An
expression for q\ as a function of the deflection of the

16a2
-Wo

X
n=l,3,5

(rot

1 -
nirb

- l

(7)

whereas Eq. (5) or (6) can be used for q2, depending
on the aspect ratio of the membrane. The load-deflection
relationship for a stressed membrane is then given by

q = q\
aot Et

C2" (8)

where c2 is given by g{v,b/a) 3 or 8/6(1 + v), de-
pending on the aspect ratio. Figure 5 shows c\ as a
function of membrane aspect ratio. The constant is
independent of material properties and has a value of
3.393 for square membranes, decreases rapidly as the
aspect ratio increases, and reaches a value of 2 for
infinitely long membranes. The conditions in which
Eq. (8) holds are that c\ does not change for large
deflections and that c2 is not a function of o^. Again,
Eq. (2) can be checked for two limiting cases. In the case
of plane strain, the problem can be solved analytically
and Eq. (8) gives the correct solution (see appendix).
Finite element calculations have been done to study
the influence of residual stress on the deflection of
circular and square membranes.3'4'7 According to Lin,7
c\ is constant and equal to 3.41. This is in very close
agreement with Eq. (8). The same study also shows
that at least for circular films, c2 is independent of the
residual stress in the film. More recent calculations for
circular films,3'4 however, have shown that c2 is a weak
function of residual stress. One would expect Eq. (8) to

32

Residual stress coefficient as a
function of membrane aspect ratio

Plane strain solution

Aspect ratio

FIG. 5. The residual stress coefficient c\ as a function of film as-

pect ratio.
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be quite accurate as long as the residual stress is not too

high, i.e., smaller than 0.5 GPa.

According to Eq. (8) a plot of load versus deflection

at the center of a membrane is a cubic parabola, the

slope of which at zero deflection is determined by

the residual stress in the film. The nonlinear term, on the

other hand, yields information about Young's modulus.

By fitting Eq. (8) to experimental data from the bulge

test, both Young's modulus and residual stress can be

calculated.

III. EXPERIMENTAL

A. Measuring apparatus

A schematic of the bulge tester used in this study

is shown in Fig. 6. The sample to be tested is glued

onto a sample holder and pressure is applied to one side

of the film, by pumping water into the cavity under

the film. The deflection of the film is measured by

means of a laser interferometer with a He-Ne laser

light source. The displacement resolution is half the

wavelength of the light, i.e., 0.3164 yum. The pressure is

measured with a pressure transducer with a resolution of

70 Pa. A maximum pressure of 100 kPa can be applied.

The experiment is controlled by computer via a data

acquisition system.

B. Sample preparation

The nitride films examined in this study were de-

posited by means of LPCVD. The deposition tempera-

ture was 785 °C and the gas pressure was 300 mTorr.

The ratio of dichlorosilane to ammonia was 5.2:1. The

deposition rate was 30 A/min and the final thickness

interfero-
meter

_ 'limp

:sample clamp
'///////.+fiSm

computer+
data acquisition

of the films was approximately 2900 A. The substrates

were (100) oriented n-type Si wafers, between 200 and

250 fim thick. The films were deposited on both sides of

the wafers. Both square and rectangular windows with

various aspect ratios were etched in the silicon nitride

on one side of the wafers using standard lithographic

techniques and plasma etching. In order to make free-

standing films, the exposed silicon was etched using

an anisotropic etchant containing potassium hydroxide

and methanol at a temperature of 65 °C. A typical film

is shown in Fig. 7. The thickness of each membrane

was measured by means of ellipsometry. Finally, a

thin aluminum coating was deposited onto the silicon

nitride to enhance the reflectivity of the films. Tests were

performed on each of five square membranes and on

eight rectangular films with aspect ratios varying from

1.2 to 4.9.

In order to have an independent check of the results

of the bulge test, Young's modulus of the silicon nitride

was also measured by means of continuous indentation

testing. The indentations were performed on the film

using a Nanoindenter, a high-resolution depth-sensing

hardness tester, the description of which can be found

elsewhere in the literature.13'14 Both applied load and

displacement were continuously recorded during the

experiments. A total of 36 indentations were made to

plastic depths ranging from 20 to 60 nm. The depths

of the indentations were small enough that only film

properties were measured. The velocity of the indenter

upon loading was between 3 and 6 nm/s. When the

desired indentation depth was reached, the load was held

constant for 15 s and then decreased at a rate equal to the

last loading rate. Hardness and Young's modulus were

calculated from the load-displacement curves using the

analysis given by Doerner and Nix.13

FIG. 6. A schematic of the bulge testing apparatus.
FIG. 7. Scanning electron micrograph of a square SiNx window in a

silicon wafer.
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IV. RESULTS AND DISCUSSION

A. Bulge test results

The results of the square films were used to calculate

the elastic modulus of the silicon nitride. In Fig. 8 a

typical load-deflection plot of a square membrane is

depicted. The plot consists of a number of loading

cycles. Since loading and unloading segments trace each

other, no plastic deformation is taking place and curve

fitting can be used to determine Young's modulus and

residual stress. The curve fit is very sensitive to the

initial height of the film, which if not taken into account,

can lead to very large errors.3"5 However, with the

laser interferometer one can simultaneously obtain an

interference pattern of film and substrate so that it is

possible to start the tests with a perfectly flat film.

The elastic modulus of the silicon nitride is

222 ± 3 GPa, assuming a Poisson's ratio of 0.28. The

contribution of the aluminum coating on the silicon

nitride amounts to approximately 3% and has been

taken out. It should be noted that the measurement

was very reproducible and the scatter in the data

extremely small. Young's modulus of LPCVD silicon

nitride has been measured previously using a variety

of different techniques, including bulge testing,8'11

nanoindentation,15'16 and beam deflection techniques.16'17

The values vary over a wide range from 150 to

373 GPa depending on the deposition temperature and

the stoichiometry, but for a low stress nitride deposited

under conditions similar to this nitride, a value of

235 GPa has been reported.16

The results of the rectangular films make it possible

to examine how accurately expression (8) describes the

deflection of a membrane. In Fig. 9, measured values of

g{v,b/a) are plotted versus aspect ratio. For compari-

son, the plane strain solution and the solution given by

Pressure-deflection curve
- for a SiNx membrane

SiNx + Al coating

a=2.11 mm

tsii*.=290 nm

tAi—31 nm

0 20 40 60 80 100 120

Height (am)

FIG. 8. A typical pressure versus height plot for a square, 290 nm

SiNj membrane.
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Theory, v=0.25
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FIG. 9. Experimental values of g{v, b/a) as a function of film aspect

ratio, assuming a Poisson's ratio of 0.28.

Eq. (8) are also plotted. Agreement between experimen-

tal results and calculated values is excellent. For aspect

ratios greater than two, g{v,b/a) does not vary with

aspect ratio and is closer to the plane strain solution. This

suggests that films with aspect ratios greater than two can

be used in combination with the results of the square

films to calculate Poisson's ratio of the film, yielding

a value of 0.28 ± 0.05. This corresponds well with the

Poisson's ratios of polycrystalline (0.27) and amorphous

silicon nitride (0.30) reported in Ref. 15 and justifies the

use of this value for the calculation of Young's modulus.

The average residual stress calculated from the tests

of the square membranes is 124 ± 14 MPa. The tests

of the rectangular films yield 147 ± 25 MPa. The fact

that the experimental scatter is greater in the latter case

can be attributed to some slight twisting of the samples

that may have occurred during sample mounting. Long

rectangular films are more prone to this than square films

and the residual stress, which is determined by the initial

slope of the load-deflection curve, is more affected than

Young's modulus. The residual stress in LPCVD silicon

nitride depends primarily on the deposition temperature

and the ratio of dichlorosilane to ammonia, and decreases

when either of these quantities increases.17 Based on this

observation one would expect a residual stress in the

range of 100 to 200 MPa.

B. Nanoindenter results

Figure 10 shows a load-displacement plot for a

typical indentation in the silicon nitride film. Using

the analysis first given by Doerner and Nix,13 Young's

modulus of the nitride can be determined from the

unloading slope of this plot. However, since silicon

nitride shows a substantial amount of elastic recovery

upon unloading, a more refined analysis developed by

Oliver and Pharr was used to determine the contact

J. Mater. Res., Vol. 7, No. 12, Dec 1992 3247



J. J. Vlassak and W. D. Nix: A new bulge test technique for the determination of Young's modulus and Poisson's ratio

Typical mdentation plot for SiN

Depth (nm)

FIG. 10. A typical load-depth plot for a nanoindentation in a

300 nm silicon nitride film. The indenter velocity upon loading

was between 3 and 6 nm/s; the hold time at maximum load was

15 s.

area between indenter and sample.18 In this analysis

it is assumed that upon unloading the indenter shape

can be modeled as a paraboloid. In Fig. 11, the contact

compliance, i.e., the reciprocal of the unloading slope

at maximum load, is plotted versus the reciprocal of

the square root of the projected contact area between

indenter and sample. This is a straight line, the slope of

which is inversely proportional to the elastic modulus

of the film. The modulus is then 216 ± 10 GPa which

is in excellent agreement with the value measured with

the bulge test. For comparison, a Young's modulus of ap-

proximately 250 GPa was measured with a Nanoindenter

for a stoichiometric LPCVD nitride in Ref. 16. The

same analysis also allows one to determine the hardness

of the film. The hardness of the silicon nitride film

z

•A
C

o
o

co
o

Contact compliance for SiNx

t=300nm
v=0.28 and e=0.75
E=216±10 GPa

0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.005C

Projected contact area-1/2 (1/nm)

FIG. 11. Contact compliance as a function of the reciprocal of the

square root of the projected contact area between indenter and sample.

The slope of the plot is inversely proportional to the elastic modulus of

the film.

is independent of the indentation depth. The substrate

therefore does not significantly affect the measurement.

An average hardness of 21.0 ± 0.9 GPa was found. This

is very close to the value of 23 GPa reported in Ref. 15.

V. CONCLUSIONS

Using an energy minimization technique we have

derived new and more accurate expressions to determine

the deflection of square and rectangular membranes

under the influence of a uniform pressure. Membranes

both with and without residual stress were considered.

These formulas can be used to analyze bulge test results

and to calculate Young's modulus and residual stress

of thin films. By testing both square and rectangular

films with a sufficiently large aspect ratio it is possible

to determine Poisson's ratio of the film.

Sample preparation in the bulge test is extremely

important. If samples are prepared properly, the bulge

test yields very reproducible results. Using standard

lithography and anisotropic etching techniques, free-

standing films of LPCVD silicon nitride were fabricated

and tested as a model system. The deflection of the films

as a function of film aspect ratio is very well predicted by

the new analysis. Young's modulus of the silicon nitride

films is 222 ± 3 GPa and Poisson's ratio is 0.28 ± 0.05.

The residual stress varies between 120 and 150 MPa.

Agreement with the literature is very good. Young's

modulus and hardness were also measured by means of

nanoindentation, yielding values of 216 ± 10 GPa and

21.0 ± 0.9 GPa, respectively.
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APPENDIX: THE PLANE STRAIN DEFLECTION
OF A THIN MEMBRANE

The plane strain deflection of a thin membrane in
the presence of a residual stress can be formulated as
follows:

H Jw\2

dx)

dax

= CTrrt
d2w

Ix2

dx
= 0

w = fix)

u = g(x)

(Al)

(A2)

(A3)

where q is the differential pressure applied to the mem-
brane, (To is the residual stress in the membrane, and t is
the membrane thickness, u and w are the displacements
in the plane of the membrane and perpendicular to the
membrane, respectively (see Fig. 1). Equations (Al) and
(A2) are the equilibrium equations; Eqs. (A3) arise from
the condition of plane strain and express that u and
w are functions of x solely. Equations (A4) are the
boundary conditions. For thin membranes, the bending
stiffness can be neglected. In the case where the deflec-
tion is much smaller than the width of the membrane,
the first derivative in Eq. (Al) can be neglected and
Eq. (Al) can be readily integrated. Taking into account
Eqs. (A2-A4), one finds:

w =
q

It a.
-{a1 - x2) (A6)

Using this expression for w, Eq. (A5) can be integrated
to find u. Taking into account that w(0) = 0, this leads
to:

- v
U = {(Txx -

1 q2x3

6 {taxxf
(A7)

The stress axx can be determined by setting u{±a) to

zero:

,2^2Eq2a

6f2(l - v2
(A8)

Let w0 be the deflection along the center of the mem-
brane. From Eq. (A6), one finds that

1 - v2

u(±a) = 0

M(0) = 0

w(±a) = 0

du

(A4)

1 /dw\ 2 1 - v2

-<TX

(A5)

Wo =
2tax

and Eq. (A8) becomes:

2ta0

q = w0 +
%Et

6a4(l - ^2)

(A9)

(A10)
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