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A NEW CALIBRATION METHOD OF CONSTRUCTING EMPIRICAL
LIKELIHOOD-BASED CONFIDENCE INTERVALS FOR THE TAIL INDEX
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Summary

Empirical likelihood has attracted much attention in the literature as a nonparametric method.
A recent paper by Lu & Peng (2002)[Likelihood based confidence intervals for the tail index.
Extremes 5, 337–352] applied this method to construct a confidence interval for the tail index
of a heavy-tailed distribution. It turns out that the empirical likelihood method, as well as other
likelihood-based methods, performs better than the normal approximation method in terms
of coverage probability. However, when the sample size is small, the confidence interval
computed using the χ 2 approximation has a serious undercoverage problem. Motivated
by Tsao (2004)[A new method of calibration for the empirical loglikelihood ratio. Statist.
Probab. Lett. 68, 305–314], this paper proposes a new method of calibration, which corrects
the undercoverage problem.
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1. Introduction

In many fields, such as meteorology, hydrology, climatology, environmental science,
telecommunications, insurance and finance, one is faced with a few very large observations
on which to base statistical analyses. For instance, in catastrophe insurance the insurance
company is concerned with the occurrence of large claims which may lead to large fluctuations
in cash-flow. For such data sets, heavy-tailed distributions are recommended to model the
underlying distribution functions (e.g. Embrechts, Klüppelberg & Mikosch, 1997).

In recent years the problem of estimating the tail index of a heavy-tailed distribution
has attracted much attention from statisticians. Various estimators have been proposed in the
literature; see, for example, Hill (1975) and Hall (1982). For more references see Peng & Qi
(2004). An important application of tail index estimation is to estimate the probabilities of
those rare events beyond the data. This can be done by extrapolating from some intermediate
order statistics via equation (1) defined in the next section.

To the best of our knowledge little attention has been paid to constructing confidence
intervals for the tail index. Lu & Peng (2002) applied both the empirical likelihood method and
the parametric likelihood method to obtain confidence intervals for the tail index of a heavy-
tailed distribution, and compared their performance with the normal approximation method
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based on Hill’s estimator (Hill, 1975). The simulation study in Lu & Peng (2002) indicates
that the empirical likelihood method and the parametric likelihood method are comparable,
and both result in better coverage accuracy than the normal approximation method.

The empirical likelihood was introduced by Owen (1988, 1990) for the mean vector for
independent identically distributed (i.i.d.) observations, and it has been extended to a wide
range of applications. The empirical likelihood method produces confidence regions whose
shape and orientation are determined entirely by the data. It possesses some advantages over
other methods like the normal approximation method. However, for a small sample size, the
asymptotic χ2 calibrated empirical likelihood-based confidence regions may have a lower
coverage probability than the nominal level as indicated by numeric evidence in the literature;
see, for example, Owen (1988), Hall & La Scala (1990), and Qin & Lawless (1994). The
reason for the undercoverage is that the distribution of the empirical likelihood ratio has an
atom at infinity, and the atom can be substantial if the sample size is not large (cf. Tsao, 2004).
The same problem exists for the empirical likelihood-based confidence interval for the tail
index since only a small proportion of upper-order statistics are employed in the inference.
The simulation study in Lu & Peng (2002) exhibits that the coverage probabilities of the
empirical likelihood-based confidence interval are below the nominal level in many cases
when the sample fraction, kn/n (to be defined in the next section), is small.

As a remedy for the empirical likelihood method, several alternative methods of cal-
ibration have been proposed, for example, the F-calibration (Owen, 2001), the bootstrap
calibration (Owen, 2001) and the Bartlett correction (DiCiccio, Hall & Romano, 1991).
Recently, Tsao (2004) proposed a new method of calibration for the empirical likelihood-
based confidence region for means. This new confidence region is computed by approximating
the quantiles of the empirical likelihood ratio by a so-called E-distribution. The E-distribution
is defined as the distribution of the empirical likelihood ratio for a normal mean. This method
is easy to implement and significantly improves the coverage probabilities for a small sample
size. In particular, if the underlying distribution is normal, this new method gives a coverage
probability exactly equal to the nominal level.

Motivated by the work of Tsao (2004), we propose a new calibration method for con-
structing confidence intervals for the tail index of a heavy-tailed distribution; see Section 2.
A simulation study is given in section 3 to compare different methods.

2. Methods

Assume X1, . . . , Xn are i.i.d. random variables with distribution function F satisfying

lim
t→∞

1 − F (tx)

1 − F (t)
= x−1/γ (1)

for all x > 0, where γ > 0 is an unknown parameter and 1/γ is called the tail index of the
distribution function F.

Let Xn,1 ≤ · · · ≤ Xn,n denote the order statistics based on X1, . . . , Xn. The well known
estimator for γ is the so-called Hill ’s estimator defined as

γ̂n = 1

kn

kn∑
i=1

log Xn,n−i+1 − log Xn,n−kn
,
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where kn → ∞ and kn

n
→ 0 as n → ∞ (see Hill, 1975). The condition on kn means that only

some of the upper order statistics can be used in estimating the parameter γ . The choice of
kn will be discussed in Section 3.

In order to make an inference about γ , a condition stronger than (1) is required. Through-
out this paper, we assume that there exists a function A(t) → 0 such that

lim
t→∞

U (tx)/U (t) − xγ

A(t)
= xγ xρ − 1

ρ
(2)

for all x > 0, where U(x) is the inverse function of 1
1−F (x) and ρ ≤ 0. In addition, if

kn → ∞,
kn

n
→ 0 and

√
knA(n/kn) → 0 as n → ∞, (3)

we have

√
kn(γ̂n − γ )

d→ N (0, γ 2) (4)

(see e.g. De Haan & Peng, 1998) and

sup
x

|P {
√

kn(γ̂n/γ − 1) ≤ x} − �kn
(kn + x

√
kn)| → 0 (5)

(see Cheng & de Haan, 2001), where �kn
is a gamma (cumulative) distribution function with

shape parameter kn, that is,

�kn
(t) =

∫ t

0

1

�(kn)
xkn−1e−xdx for t > 0.

Based on equations (4) and (5), 100(1 − α)% confidence intervals are given by

IN (1 − α) =
(

γ̂n

1 + zα/2/
√

kn

,
γ̂n

1 − zα/2/
√

kn

)

and

I�(1 − α) = (knγ̂n/β1−α/2, knγ̂n/βα/2),

where zα/2 denotes the upper α/2-level critical value of the standard normal distribution and
�kn

(βα/2) = α/2. Note that IN (1 − α) = {γ : −zα/2 <
√

kn(γ̂n/γ − 1) < zα/2} is different
from that in Lu & Peng (2002).

By noting that {Yi = i(log Xn,n−i+1 − log Xn,n−kn
), i = 1, . . . , kn} are asymptotically

independent with a common exponential limiting distribution with mean γ for fixed kn (see
e.g. Weissman, 1978), Lu & Peng (2002) proposed the following empirical likelihood-based
confidence interval

Ie(1 − α) = {
γ : l(γ ) < χ2

α

}
,
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where χ2
α is the upper α-level critical value of a χ2

1 distribution,

l(γ ) = 2
kn∑

i=1

log(1 + λ(Yi − γ )), (6)

and λ is determined by

kn∑
i=1

Yi − γ

1 + λ(Yi − γ )
= 0. (7)

They proved under conditions (2) and (3) that

l(γ )
d→ χ2

1 .

Since Yi/γ in l(γ ) has an approximate exponential distribution with mean one, we replace
Y1/γ, . . . , Ykn

/γ by i.i.d. random variables E1, . . . , Ekn
with an exponential distribution with

mean one. Hence we obtain

ELR(kn) = 2
kn∑

i=1

log(1 + λ′(Ei − 1)),

where λ′ is the solution to

kn∑
i=1

Ei − 1

1 + λ′(Ei − 1)
= 0.

Motivated by Tsao (2004), we approximate the distribution of l(γ ) by the distribution of
ELR(kn) instead of χ2

1 . This results in the following confidence interval with nominal level
100(1 − α)%:

Inew(1 − α) = {γ : l(γ ) < c(kn, α)},
where c(kn, α) is the upper α-level critical value of the distribution of ELR(kn). Note that our
definition of ELR(kn) is different from that in Tsao (2004), where the Ei are taken as standard
normal random variables.

Although the exact distribution of ELR(kn) is hard to calculate, the critical value c(kn, α)
can easily be obtained via Monte Carlo simulation. We have obtained the critical values
c(kn, α) for α = 10%, 5% and 1% for all kn between 10 and 200 based on 1 000 000 random
samples. Using the critical values, we compare the above four confidence intervals in the next
section.

The critical values c(kn, α) for 10 ≤ kn ≤ 29 are listed in Table 1. Interested readers can
find the complete table of the critical values in the technical report by Peng & Qi (2005). For
30 ≤ kn ≤ 200 we fit three linear regression equations as suggested by an Associate Editor.
It turns out that the critical values c(kn, α) we obtained from the simulation are very well
approximated by the three regression equations given by

c(k, 0.10) = 2.7055 − 0.51269√
k

+ 18.14242

k
,
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TABLE 1
α-level critical value of the empirical likelihood ratio: ELR(k).

k α = 0.10 α = 0.05 α = 0.01 k α = 0.10 α = 0.05 α = 0.01

10 4.7345 8.1886 ∞ 20 3.5485 5.3850 11.6495
11 4.4733 7.5047 22.6407 21 3.5085 5.3125 11.2854
12 4.2872 7.0245 19.6575 22 3.4598 5.2159 10.9427
13 4.1499 6.6784 17.9019 23 3.4231 5.1378 10.6890
14 4.0188 6.3691 16.1623 24 3.3868 5.0765 10.3364
15 3.9079 6.1526 15.1273 25 3.3634 5.0220 10.1273
16 3.8185 5.9443 14.0525 26 3.3313 4.9464 9.8952
17 3.7477 5.8020 13.4480 27 3.2988 4.8939 9.7131
18 3.6691 5.6450 12.8207 28 3.2710 4.8531 9.5828
19 3.6006 5.5101 12.1357 29 3.2576 4.8030 9.4580

c(k, 0.05) = 3.8415 − 1.12486√
k

+ 32.90613

k

and

c(k, 0.01) = 6.6349 − 4.56941√
k

+ 98.98899

k
.

The three intercepts in the equations are the 10%, 5% and 1% critical values of the χ2
1

distribution, and the corresponding R2 values and root MSEs are 0.999, 0.999, 0.9975, and
0.006, 0.01, 0.04, respectively.

3. Simulation study

In this section we compare the four methods described in Section 2 in terms of both cov-
erage probability and interval length by employing the following two cumulative distribution
functions (cdfs): (i) the Fréchet cdf given by F (x) = exp(−x−α0 ) (x > 0), where α0 > 0 (no-
tation: Fréchet(α0)); and (ii) the Burr cdf given by F (x) = 1 − (1 + xα0 )−β0 (x > 0), where
α0 > 0, β0 > 0 (notation: Burr(α0, β0)).

First we drew 10 000 random samples of sample size n = 500, 1000 and 2000 from the
Fréchet(1), Burr(0.5,1), Burr(1,0.5) and Burr(1,1) distributions, and then computed the cov-
erage probabilities for IN (0.95), I�(0.95), Ie(0.95) and Inew(0.95) for k = 10, 15, . . . , 200.
Note that these four methods are independent of α0 for Fréchet(α0). Here we report the results
for Fréchet(1) and Burr (0.5,1) with n = 1000 in Table 2.

Second, we drew 1000 random samples of size n = 1000 from the Fréchet(1)
and Burr(0.5,1) distributions, and then computed the average lengths of the intervals
IN (0.95), I�(0.95), Ie(0.95) and Inew(0.95) for k = 10, 15, . . . , 200; see Table 3.

Our observations from Tables 2 and 3 are as follows. First, the new calibration method
gives the best coverage accuracy among the four methods, especially for larger values of kn.
Second, the two empirical likelihood-based methods generate shorter confidence intervals in
general. Third, the new calibration method greatly improves on the asymptotic χ2 calibrated
empirical likelihood method given in Lu & Peng (2002) in that it has a much more accurate
coverage probability for smaller values of kn, and has a comparable length of confidence
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TABLE 2
Coverage probabilities of the four confidence intervals.

Fréchet(1) Fréchet(1) Fréchet(1) Fréchet(1) Burr(0.5,1) Burr(0.5,1) Burr(0.5,1) Burr(0.5,1)
k Inew(0.95) Ie(0.95) IN (0.95) I�(0.95) Inew(0.95) Ie(0.95) IN (0.95) I�(0.95)

10 0.9447 0.8723 0.9561 0.9510 0.9453 0.8731 0.9556 0.9507
15 0.9533 0.8998 0.9550 0.9518 0.9546 0.9015 0.9544 0.9512
20 0.9520 0.9150 0.9521 0.9536 0.9534 0.9162 0.9503 0.9529
25 0.9545 0.9213 0.9521 0.9506 0.9561 0.9234 0.9511 0.9514
30 0.9541 0.9309 0.9533 0.9525 0.9553 0.9330 0.9497 0.9518
35 0.9558 0.9326 0.9506 0.9522 0.9567 0.9338 0.9492 0.9519
40 0.9562 0.9391 0.9528 0.9535 0.9570 0.9381 0.9491 0.9529
45 0.9537 0.9386 0.9490 0.9525 0.9545 0.9390 0.9450 0.9489
50 0.9560 0.9432 0.9505 0.9528 0.9558 0.9426 0.9464 0.9502
55 0.9567 0.9467 0.9523 0.9541 0.9565 0.9447 0.9454 0.9513
60 0.9543 0.9435 0.9495 0.9504 0.9548 0.9434 0.9400 0.9478
65 0.9513 0.9424 0.9479 0.9486 0.9491 0.9405 0.9400 0.9456
70 0.9494 0.9394 0.9438 0.9467 0.9459 0.9366 0.9331 0.9398
75 0.9478 0.9398 0.9433 0.9457 0.9443 0.9354 0.9293 0.9358
80 0.9473 0.9384 0.9381 0.9420 0.9389 0.9307 0.9246 0.9317
85 0.9487 0.9409 0.9406 0.9454 0.9356 0.9278 0.9189 0.9291
90 0.9452 0.9381 0.9362 0.9402 0.9319 0.9216 0.9157 0.9239
95 0.9448 0.9365 0.9351 0.9407 0.9268 0.9173 0.9076 0.9189
100 0.9439 0.9382 0.9333 0.9392 0.9223 0.9146 0.9037 0.9143
105 0.9436 0.9356 0.9311 0.9392 0.9181 0.9094 0.8974 0.9076
110 0.9431 0.9361 0.9331 0.9379 0.9122 0.9044 0.8910 0.9049
115 0.9406 0.9340 0.9320 0.9370 0.9074 0.8994 0.8850 0.9001
120 0.9402 0.9345 0.9283 0.9360 0.9043 0.8954 0.8805 0.8932
125 0.9402 0.9333 0.9285 0.9336 0.8965 0.8891 0.8722 0.8866
130 0.9367 0.9331 0.9263 0.9331 0.8887 0.8814 0.8631 0.8807
135 0.9362 0.9306 0.9233 0.9296 0.8792 0.8722 0.8518 0.8682
140 0.9343 0.9290 0.9211 0.9305 0.8702 0.8613 0.8397 0.8549
145 0.9320 0.9273 0.9196 0.9247 0.8603 0.8511 0.8296 0.8463
150 0.9311 0.9255 0.9157 0.9252 0.8491 0.8398 0.8156 0.8323
155 0.9275 0.9223 0.9119 0.9209 0.8344 0.8262 0.7996 0.8198
160 0.9237 0.9186 0.9081 0.9174 0.8200 0.8105 0.7829 0.8039
165 0.9191 0.9150 0.9054 0.9124 0.8015 0.7921 0.7653 0.7842
170 0.9138 0.9091 0.8962 0.9068 0.7875 0.7786 0.7511 0.7719
175 0.9115 0.9066 0.8918 0.9025 0.7711 0.7635 0.7346 0.7550
180 0.9070 0.9010 0.8856 0.8969 0.7578 0.7509 0.7186 0.7390
185 0.9043 0.9001 0.8845 0.8955 0.7360 0.7288 0.7009 0.7203
190 0.8982 0.8928 0.8790 0.8903 0.7165 0.7091 0.6759 0.6957
195 0.8941 0.8889 0.8723 0.8846 0.6963 0.6882 0.6547 0.6767
200 0.8905 0.8855 0.8692 0.8811 0.6742 0.6657 0.6335 0.6546

interval for larger values of kn. Since our new calibration method uses larger critical values
than that from the asymptotic χ2 calibrated empirical likelihood method, it generates a wider
confidence interval for smaller kn, but compared with the gain in the coverage accuracy, it is
a worthwhile method. To see why our new method works much better than the asymptotic χ2

calibrated empirical likelihood method one can calculate the size of the atom at infinity for the
empirical likelihood ratio l(γ ) defined in (6). This size is actually equal to the probability of no
solution to equation (7) or equivalently of all (Yi − γ )s having the same signs. Therefore this
probability is close to e−kn + (1 − e−1)kn when kn is small. When kn = 10, this probability
is as large as 1%, and the actual 5% critical value for l(γ ) is close to 8.19, much larger than
3.84, the 5% critical value from the χ2

1 distribution.

C© 2006 Australian Statistical Publishing Association Inc.



NEW CALIBRATION METHOD OF CONFIDENCE INTERVALS FOR THE TAIL INDEX 65

TABLE 3
Average lengths of the four confidence intervals.

Fréchet(1) Fréchet(1) Fréchet(1) Fréchet(1) Burr(0.5,1) Burr(0.5,1) Burr(0.5,1) Burr(0.5,1)
k Inew(0.95) Ie(0.95) IN (0.95) I�(0.95) [Inew(0.95) Ie(0.95) IN (0.95) I�(0.95)

10 1.53 1.03 2.04 1.52 3.09 2.06 4.10 3.05
15 1.19 0.89 1.39 1.17 2.39 1.78 2.79 2.35
20 0.99 0.81 1.11 0.98 1.99 1.62 2.23 1.98
25 0.86 0.73 0.94 0.86 1.74 1.49 1.90 1.73
30 0.76 0.67 0.83 0.77 1.55 1.36 1.68 1.56
35 0.70 0.62 0.75 0.71 1.41 1.27 1.52 1.43
40 0.65 0.59 0.69 0.66 1.31 1.20 1.40 1.33
45 0.61 0.56 0.65 0.62 1.24 1.14 1.31 1.25
50 0.57 0.53 0.61 0.58 1.16 1.08 1.23 1.18
55 0.54 0.51 0.58 0.55 1.10 1.03 1.17 1.12
60 0.52 0.49 0.55 0.53 1.06 0.99 1.11 1.07
65 0.50 0.47 0.52 0.51 1.01 0.96 1.07 1.03
70 0.47 0.45 0.50 0.49 0.97 0.92 1.02 0.99
75 0.46 0.43 0.48 0.47 0.93 0.89 0.99 0.96
80 0.44 0.42 0.47 0.46 0.90 0.86 0.96 0.93
85 0.43 0.41 0.45 0.44 0.88 0.84 0.93 0.91
90 0.42 0.40 0.44 0.43 0.85 0.82 0.90 0.88
95 0.41 0.39 0.43 0.42 0.83 0.80 0.88 0.86
100 0.40 0.38 0.42 0.41 0.81 0.78 0.86 0.84
105 0.39 0.38 0.41 0.40 0.79 0.76 0.84 0.82
110 0.38 0.37 0.40 0.39 0.77 0.75 0.82 0.80
115 0.37 0.36 0.39 0.38 0.75 0.73 0.80 0.78
120 0.36 0.35 0.38 0.37 0.73 0.71 0.79 0.77
125 0.36 0.35 0.37 0.37 0.72 0.70 0.77 0.76
130 0.35 0.34 0.37 0.36 0.70 0.68 0.76 0.75
135 0.34 0.33 0.36 0.35 0.68 0.66 0.75 0.73
140 0.34 0.33 0.35 0.35 0.66 0.65 0.73 0.72
145 0.33 0.32 0.35 0.34 0.65 0.63 0.72 0.71
150 0.33 0.32 0.34 0.34 0.63 0.61 0.71 0.70
155 0.32 0.31 0.34 0.33 0.61 0.59 0.70 0.69
160 0.31 0.31 0.33 0.33 0.60 0.58 0.69 0.68
165 0.31 0.30 0.33 0.32 0.59 0.57 0.68 0.67
170 0.30 0.30 0.32 0.32 0.57 0.55 0.67 0.67
175 0.30 0.29 0.32 0.31 0.55 0.54 0.67 0.66
180 0.29 0.29 0.31 0.31 0.54 0.53 0.66 0.65
185 0.29 0.28 0.31 0.31 0.53 0.52 0.65 0.64
190 0.29 0.28 0.31 0.30 0.52 0.51 0.64 0.64
195 0.28 0.28 0.30 0.30 0.51 0.49 0.64 0.63
200 0.28 0.27 0.30 0.30 0.48 0.48 0.63 0.62

We observe that the lengths of the confidence intervals from all four methods get smaller
and smaller with increasing kn. This does not make sense when kn is too large since the
coverage probabilities are far below the nominal levels. Condition (3) is imposed to ensure
that the coverage probabilities are asymptotically correct. For example, for Fréchet(1), we
can verify that A(t) = (2t)−1. Then we can choose kn = o(n2/3). If we take n = 1000, the
range for kn is actually very limited since n2/3 is only 100. If kn goes beyond this point, a bias
appears inevitably, and it leads to undercoverage. As we have observed, the new calibration
method is more stable than the others. This is very important since the choice of kn is a very
tough question, both theoretically and practically. For example, Cheng & de Haan (2001)
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pointed out that the optimal kn, in terms of coverage probability, depends on the third order
regular variation index for a two-sided confidence interval based on the normal approximation
method. The second order parameter can be estimated (e.g. Peng & Qi, 2004) but, as far as
we know, these estimators are very unstable. In other words, seeking the optimal kn is quite
difficult in practice. Therefore, it is good to have some comparable methods, and to prefer
methods which are stable against the choice of kn.
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