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Abstract 

Network representation has been a groundbreaking concept for understanding the behavior 

of complex systems in social sciences, biology, neuroscience, and beyond. Network science 

is mathematically founded on graph theory, where nodal importance is gauged using 

measures of centrality. Notably, recent work suggests that the topological centrality of a node 

should not be over-interpreted as its dynamical or causal importance in the network. Hence, 

identifying the influential nodes in dynamic causal models (DCM) remains an open question. 

This paper introduces causal centrality for DCM, a dynamics-sensitive and causally-founded 

centrality measure based on the notion of intervention in graphical models. Operationally, 

this measure simplifies to an identifiable expression using Bayesian model reduction. As a 

proof of concept, the average DCM of the extended default mode network (eDMN) was 

computed in 74 healthy subjects. Next, causal centralities of different regions were computed 

for this causal graph, and compared against major graph-theoretical centralities. The results 

showed that the subcortical structures of the eDMN are more causally central than the 

cortical regions, even though the (dynamics-free) graph-theoretical centralities 

unanimously favor the latter. Importantly, model comparison revealed that only the pattern 

of causal centrality was causally relevant. These results are consistent with the crucial role 

of the subcortical structures in the neuromodulatory systems of the brain, and highlight their 

contribution to the organization of large-scale networks. Potential applications of causal 

centrality - to study other neurotypical and pathological functional networks – are discussed, 

and some future lines of research are outlined. 
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1 Introduction 

Network analysis has found widespread application in different disciplines including 

sociology, psychology and neuroscience (Barabási 2014; Bassett and Sporns 2017; 

Borsboom and Cramer 2013; Marsman et al. 2018; McNally 2016; Otte and Rousseau 2002). 

One of the foundational tools in network science is graph theory, a branch of mathematics 

that examines the properties of networks represented as graphs1. A crucial application of 

graph theory is to gauge the relative importance (aka centrality) of individual nodes in a 

network. One promising prospect is for the centrality information to guide clinical 

interventions in the network and to predict the outcomes thereof (Gessell et al. 2021). 

Numerous centrality measures have been developed based on different definitions for nodal 

importance; degree, closeness and betweenness centralities are prominent examples 

(Freeman 1979; Opsahl et al. 2010). Notably, centrality measures are based only on the 

network topology, not dynamics—even when a flow process is implicitly associated (Klemm 

et al. 2012). Importantly, if the flow assumptions of a centrality measure do not match the 

flow characteristics of the network to which it is applied, the centrality ranking of the nodes 

can be simply “wrong” (Borgatti 2005). Moreover, recent work has shown that graph-

theoretical (GT) centrality measures are “poor substitutes” for the causal influence of the 

nodes (Dablander and Hinne 2019). Instead, the latter should be estimated using dedicated 

methods in the field of causal inference (Glymour et al. 2016).  

Causal inference is a growing discipline that aims to answer causal rather than associative 

questions. A well-known framework for representing causal or directional relationships is 

directed graphical models, which consists of directed acyclic graphs (DAG) and directed 

cyclic graphs (DCG) (Glymour et al. 2016; Pearl 1998). Compared to DAGs, DCGs have been 

much less characterized (Ghassami et al. 2020; Park and Raskutti 2016; Pearl 1998; 

Richardson 1996a, 1996b; Spirtes 1995), even though cyclic effects are inevitable in many 

applications. Specifically, in the brain, the reciprocal polysynaptic influences of neuronal 

populations create feedback (cyclic) loops. Hence, a class of time-dependent DCGs has been 

particularly developed to represent dynamical models of causal influences in the brain—

known as dynamic causal models (DCM). These are state-space models that govern the 

dynamics of coupled neuronal states and their mappings to observed signals (such as 

neuroimaging data) (Friston et al. 2003). 

The distinction between structural and dynamic causal models has been schematically 

illustrated in Fig. 1, based on the detailed comparison in (Friston 2011). Briefly, structural 

 

1 A graph consists of nodes and edges, which represent the network elements and their interrelations, 
respectively (Barabási (2014)). 
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causal models (SCM) are based on DAGs and static nonlinearities, whereas DCM 

accommodates time-dependent DCGs. In the DCM graph, nodes represent hidden neuronal 

states and directed edges encode the reciprocal neuronal couplings (aka effective 

connectivity parameters). The hidden states are mapped to observed variables through an 

observation function (Fig. 2). Given empirical observations, the generative model of DCM is 

inverted using variational Bayesian inference to estimate the optimal model parameters and 

the associated model evidence (Friston et al. 2007). Once the causal effects have been 

estimated, a natural question arises: what is the relative significance of each node (i.e., brain 

region) in this DCM? 

Recently, (Dablander and Hinne 2019) showed that the graph-theoretical centrality of a node 

is not indicative of its causal importance in a DAG. To quantify the latter, the authors defined 

the total causal effect of a node as the sum of the node’s causal influences over its children in 

the DAG (Dablander and Hinne 2019). However, in a cyclic graph like a DCM, a node’s 

children might as well be its parents. So, how can one quantify the causal and dynamical 

significance of the nodes in a DCM? 

To answer to this question, a causal centrality measure for DCM is introduced in this paper, 

based on the notion of intervention in graphical models. We will see that this measure is 

identifiable by virtue of recent developments in Bayesian (sub)model comparison—known 

as Bayesian model reduction (BMR). Then, through a worked example, we shall compare 

causal centrality with some common graph-theoretical centralities, and asses the causal 

relevance of each measure in a model comparison framework. In the following, some 

background is reviewed before the new measure is introduced. 

2 Theory 

 Intervention in causal models 

Pearl’s theory of causation, called structural causal modeling (SCM), combines features of 

structural equation models (SEM, used in economics and social sciences) and graphical 

models (developed for probabilistic and causal reasoning) (Glymour et al. 2016; Pearl 1998). 

While graphical models encode the causal assumptions in SCM (Fig. 1-A), causal derivations 

are performed in a dedicated algebraic language called the calculus of interventions or do-

calculus. 

Intervention on a node (𝑋) in a graphical model, denoted as 𝑑𝑜(𝑋 = 𝑥0), deletes the edges 

pointing to that node, and assigns a constant value to the node 𝑋 = 𝑥0. In this calculus, the 

statement 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥0)) describes how the distribution of 𝑌 changes under the 

hypothetical setting of 𝑋 to 𝑥0. This post-intervention distribution is different from the 

familiar conditional probably statement 𝑃(𝑌|𝑋 = 𝑥0), which describes how the distribution 
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of 𝑌 changes when 𝑋 is observed to be equal to 𝑥0. Using do-calculus, Pearl defined a measure 

of causal influence, called average causal effect (ACE) (Glymour et al. 2016; Pearl 2010):  

𝐴𝐶𝐸(𝑋 → 𝑌) = 𝐸[𝑌|𝑑𝑜(𝑋 = 𝑥0 + 1)] −  𝐸[𝑌|𝑑𝑜(𝑋 = 𝑥0)]    (1) 

where 𝐸 is the expectation operator with respect to the post-intervention distributions. He 

also showed that, under certain conditions, hypothetical quantities such as 𝑃(𝑌|𝑑𝑜(𝑋 = 𝑥0)) 

are identifiable (i.e., estimable) from observed data (i.e., pre-intervention distributions). 

Total ACE of a node (𝑋𝑗) in a DAG can be computed by adding up the node’s absolute 

ACE values over its children (𝐶ℎ(𝑋𝑗)) (Dablander and Hinne 2019): 

𝐴𝐶𝐸𝑡𝑜𝑡𝑎𝑙  (𝑋𝑗) =  ∑ |𝐴𝐶𝐸(𝑋𝑗 → 𝑋𝑖)|𝑖∈𝐶ℎ(𝑋𝑗)        (2) 

Note that ACE only accounts for linear dependencies between cause and effect, and it is not 

designed to detect whether 𝑋 changes higher order moments of the distribution of 𝑌 (Eq. 1). 

For this and other reasons, (Janzing et al. 2013) defined an alternative measure to quantify 

causal strength between two nodes, using intervention on the edges and by measuring the 

Kullback-Leibler (KL) divergence between the pre- and post-intervention distributions of a 

DAG over its 𝑛 nodes: 

𝐶𝐸𝐾𝐿(𝑋 → 𝑌) = 𝐾𝐿𝐷 (𝑃 ∥ 𝑃𝑆)         (3) 

The post-intervention distribution (𝑃𝑆) corresponds to a DAG in which the directed edge 

(i.e., causal dependence) between 𝑋 and 𝑌 is removed, and instead the marginal distribution 

of 𝑋 is fed into 𝑌 (Janzing et al. 2013). Similarly, the total KL-based causal effect of a node 

(𝑋𝑗) in a DAG can be computed as the KL-divergence between the DAG’s pre- and post-

intervention distributions, where the intervention is simultaneously applied to all the 

outgoing edges from that node (Dablander and Hinne 2019). 

Note that both ACE and CEKL quantify causal strengths in a DAG. The present paper tackles a 

related but distinct problem, which is quantifying the overall causal importance of individual 

nodes in a DCM, after the causal strengths have been estimated2. Still, the concepts of 

intervention on the edges and KL-based distance are fundamental to the proposed centrality 

measure. Before introducing this measure, it is worthwhile to review a Pearlian guideline for 

new developments in the causal framework. When discussing the possibility of extending 

SEMs beyond modeling linear causal dependencies, Pearl asserts that a key requirement for 

any such extension is to “redefine ‘effect’ as a general capacity to transmit changes among 

variables [emphasis added]. Such an extension, based on simulating hypothetical 

interventions [emphasis added] in the model […] has led to new ways of defining and 

 

2 More precisely, after the distributions over the causal strengths have been estimated. 
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estimating causal effects” (Pearl 2010). As we shall see, causal centrality is based on these 

guidelines. 

 

 

Fig. 1: Structural and dynamic causal modeling. (Left): SCM is mainly concerned with discovering conditional 
independencies induced by static nonlinear mappings, in DAGs. (Right): DCM is based on time-dependent DCGs, 
expressed as differential equations. For simplicity, the mappings from hidden neuronal states to the 
observations are not shown for this DCM (see Fig. 2 instead). Abbreviations: DAG, directed acyclic graph; DCG, 
directed cyclic graph; SCM, structural causal model; DCM, dynamic causal model or directed cyclic model.  

 Definition of causal centrality 

The causal centrality of a node in a DCM is defined as the (normalized) KL-divergence 

between the pre- and post-intervention distributions of the DCM; where the distribution is 

the joint probability distribution over the model’s unobservable3 (𝜃) and observable (𝑌) 

variables, given the generative model of DCM (𝑚); and intervention refers to removing the 

causal influences of that node directed at the other hidden nodes (Fig. 2). Mathematically: 

 

𝐶𝑎𝑢𝑠𝑎𝑙 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ≜
1

Ζ
𝐷𝐾𝐿 [𝑃(𝜃, 𝑌|𝑚) ∥ 𝑃𝑅(𝜃, 𝑌|𝑚𝑅)]      (4) 

 

where 𝑃 and 𝑃𝑅 refer to the pre- and post-intervention distributions, associated with the full 

and reduced models (𝑚 and 𝑚𝑅); and the normalization constant 𝑍 is the model evidence (as 

shown in Appendix A). In the reduced model (𝑚𝑅), some of the edges (𝜃𝑖) of the full model 

have been removed; i.e., forcefully set to zero, in the spirit of: 𝑃(𝜃, 𝑌|𝑑𝑜(𝜃𝑖) = 0, 𝑚). An 

example of such intervention on the edges of a DCM has been illustrated in Fig. 2. The key 

issue here is identifiability of the post-intervention distribution. “The central question in the 

analysis of causal effects is the question of identification: Can the controlled (post-

intervention) distribution 𝑃(𝑌 = 𝑦| 𝑑𝑜(𝑥)) be estimated from data governed by the pre-

 

3 Generally, 𝜃 encompasses all the unobservable variables of the model, including the hidden states, parameters 
and hyperparameters. In this work, we only intervene on the causal influences (i.e., the effective connectivity 
parameters) of DCM, which shape the causal architecture of the graph. 
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intervention distribution, 𝑃(𝑧, 𝑥, 𝑦)?” (Pearl 2010). As we will shortly see, Bayesian model 

reduction can facilitate the computation of post-intervention distributions from pre-

intervention quantities. 

 

Fig. 2: Intervention on the edges of a DCM. (A) Pre-intervention graph of an exemplar DCM with three hidden 
states. 𝑋-nodes represent the hidden neuronal states and 𝑌-nodes (shaded) denote the observed variables. 
Edges represent the causal influences. (B) Post-intervention graph, after intervention on (i.e., removing) the 
𝑋3 → 𝑋1 edge. (C) Post-intervention graph, after intervention on all the causal influences of 𝑋3 directed at the 
other hidden states. (Brain schematic: Injurymap, Human Brain, Recolor by Author, CC BY 4.0). 

 Bayesian model reduction 

BMR refers to the analytic inversion of a reduced model based on the priors and posteriors 

of the full model and the priors of the reduced model. Reduced models are nested within the 

full model; that is, they include only a subset of the parameters of the parent model by 

“switching off” the other parameters. This is achieved by imposing very precise null priors 

over the selected parameters, which shrinks them to zero (Friston et al. 2016; Friston et al. 

2018; Friston and Penny 2011). To see how BMR can be applied in the current context, note 

that Eq. 4 can be rearranged as follows (details in Appendix A): 

 

𝐶𝑎𝑢𝑠𝑎𝑙 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 = 𝐷𝐾𝐿[𝑃(𝜃|𝑌, 𝑚) ∥ 𝑃𝑅(𝜃|𝑌, 𝑚𝑅)]  + log 𝑃(𝑌|𝑚) − log 𝑃𝑅(𝑌|𝑚𝑅)  (5) 

BMR facilitates the computation of model evidence (𝑃𝑅(𝑌|𝑚𝑅)) and parameter posteriors 

(𝑃𝑅(𝜃|𝑌, 𝑚𝑅)) for the reduced model, using the same quantities already estimated for the 

full model. Specifically, when the inference is variational, we can write (see Appendix B): 

 

𝐶𝑎𝑢𝑠𝑎𝑙 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ≈  𝐷𝐾𝐿[𝑄(𝜃|𝑌, 𝑚) ∥ 𝑄𝑅(𝜃|𝑌, 𝑚𝑅)] + (𝐹 − 𝐹𝑅)   (6) 
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The approximate posterior (𝑄) and the free energy4 (𝐹) of the full model are already 

available by virtue of the original model inversion. Hence, BMR can analytically compute 𝑄𝑅 

and 𝐹𝑅 for the reduced (intervened upon) model (Appendix B). Thereafter, causal centrality 

is computed as the KL-divergence between the approximate posteriors of the full and 

reduced models (𝑄, 𝑄𝑅), plus the approximate change (decrease5) in free energy following 

the intervention. The Gaussian distributions assumed in variational Laplace (Friston et al. 

2007; Zeidman et al. 2022) further simplify the computation of the KL-divergence (Appendix 

A). Note that, Eq. 6 also reveals the intuitive properties of a node with high causal centrality; 

that is, intervention on the causal effects of a highly central node would result in substantial 

drop in model evidence (𝐹 − 𝐹𝑅), and the remaining causal strengths should be substantially 

revised to explain the same data 𝑌 (𝐷𝐾𝐿 term). 

So far, we defined causal centrality; derived an identifiable expression for its computation; 

and mentioned the intuition behind it. In the following, some face and construct validation is 

provided for this measure through a worked example. Namely, causal centralities are 

computed for the nodes in a DCM group study, which are next compared against several 

graph-theoretical centrality measures. Lastly, all these measures shall be included in a model 

comparison framework, to reveal the extent of their causal relevance. 

3 Materials and Methods 

This section includes an illustrative example to showcase the utility of causal centrality. This 

example is based on recent characterizations of the default mode network (DMN) as a 

functional network that extends beyond the cortical regions, into the subcortex. First, the 

average causal architecture of this extended DMN is identified in a group of healthy subjects; 

then, the graph-theoretical and causal centralities of the constituent regions are computed 

and contrasted against each other. Finally, each of these centrality measures is incorporated 

as prior information in a model comparison framework, which shall elucidate their causal 

relevance. 

 

 

4 Free energy is a lower bound on log model evidence, hence known as evidence lower bound (ELBO) in 
machine learning. In variational Bayesian inference, the optimized free energy serves as a proxy for log model 
evidence. Note that this variational free energy is the negative of free energy in statistical physics. 

5 Here we make sure that the full model has been structurally optimized (using exploratory BMR); hence, 
intervention decreases the model evidence. Note that, for an over-parametrized model, edge (parameter) 
removal can increase the model evidence, which is the foundation of structure learning and optimization using 
Bayesian model reduction (Beckers et al. (2022); Friston and Penny (2011); Jafarian et al. (2019); Neacsu et al. 
(2022)). 
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 Dataset and pre-processing 

Resting state fMRI scans from 74 healthy individuals (age: 35.8 ± 11.6; 51 males) were 

acquired from the publicly available COBRE dataset6 (Çetin et al. 2014). The subjects had 

been scanned for five minutes on a 3-Tesla Siemens scanner, while fixating on a central cross. 

A total of 150 functional volumes had been collected using gradient-echo EPI sequence, with 

the following settings: TR = 2 s, TE = 29 ms, flip angle = 75°, 33 axial slices, ascending 

acquisition, matrix size = 64 × 64, voxel size = 3.75 × 3.75 × 4.55 mm, field of view = 240 mm. 

High-resolution T1-weighted structural images had also been acquired for all subjects. 

The data were preprocessed in SPM127 as follows: the first 5 volumes were discarded to 

allow for T1 equilibration; the remaining functional images were realigned to the first 

volume, slice-timing corrected, co-registered to the structural image, normalized to the 

standard MNI152 template (Collins et al. 1998), resampled to 3 𝑚𝑚3 isotropic voxels, and 

smoothed with a Gaussian kernel (FWHM = 6 mm). For each subject, the absolute head 

motion was below one voxel, and the mean framewise displacement (MFD) was 0.35 ± 0.18 

mm across the group (Power et al. 2012).  

 Extended default mode network 

The default mode network (Buckner and DiNicola 2019; Raichle et al. 2001) is a collection of 

brain region that are typically deactivated during external goal-directed tasks, but activated 

during internally focused cognitive processes such as mind wandering, memory retrieval, 

self-referential and emotional processing, perspective taking, etc. (Knyazev et al. 2020; 

Murphy et al. 2018; Mwilambwe-Tshilobo and Spreng 2021; Qin and Northoff 2011). Most 

of these psychological functions are readily carried out during wakeful resting state, the 

context in which DMN was first characterized8 (Greicius et al. 2003; Raichle et al. 2001).  

To date, DMN has largely been a cortically defined network, consisting of regions distributed 

across the ventromedial and lateral prefrontal cortex, posteromedial and inferior parietal 

cortex, as well as the lateral and medial temporal cortex. As such, DMN has been considered 

a backbone of cortical integration (Alves et al. 2019; Andrews-Hanna et al. 2010; Kernbach 

et al. 2018; Lopez-Persem et al. 2019; Margulies et al. 2016). Hence, the involvement of 

subcortical regions in the DMN has been usually overlooked. Importantly, subcortical 

structures contain the neurochemically diverse nuclei that are crucial in the pathophysiology 

of various brain diseases, in which DMN connectivity is gravely affected; these include 

Alzheimer’s disease, Parkinson’s disease, schizophrenia, depression and temporal lobe 

 

6 http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html 
7 https://www.fil.ion.ucl.ac.uk/spm/  

8 Recent work has revealed the implication of DMN subsystems in the execution of certain external activities as 
well (see Mancuso et al. (2022) and the references therein). 
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epilepsy, among others (Kottaram et al. 2019; Mothersill et al. 2017; Parsons et al. 2020; 

Qian et al. 2019; Ruppert et al. 2021; Sheline et al. 2009; Whitfield-Gabrieli and Ford 2012). 

Therefore, investigating the contribution of subcortical structures to the DMN function is an 

essential step towards understanding the mechanisms of DMN disruption in these disorders, 

and more broadly serves to reconcile neurochemistry, connectivity and cognition.  

Recently, (Alves et al. 2019) have revisited the spatial extent of DMN, with specific focus on 

the structural and functional role of the subcortical regions in the DMN integration. The 

result has been an improved neuroanatomical model of the DMN, consisting of 33 cortical 

and subcortical regions of interest (ROIs). These regions and their MNI coordinates have 

been outlined in Table 2 of (Alves et al. 2019), and the final template has been shared on the 

NeuroVault9 repository. This extended DMN (eDMN) was used in the present work as prior 

spatial information to identify subject-specific eDMNs in 74 healthy subjects, which were 

then causally modeled using DCM—as elaborated shortly. 

 Identifying eDMN 

To identify the extended DMN for each subject, the eDMN template was used as prior 

information in a spatially-constrained independent component analysis (SC-ICA) (Lin et al. 

2010). Constrained ICA is a semi-blind source separation method, where prior information 

is added to the contrast function of a standard blind ICA in the form of (in)equality 

constraints. As such, the prior information ensures some level of similarity between the 

recovered sources and the reference templates, and keeps the optimization solution 

bounded. Importantly, SC-ICA accommodates the spatial variability of the networks between 

subjects (unlike fixed templates) while maintaining the component (i.e., network) 

correspondence over the group. SC-ICA algorithm has been implemented in the Group ICA 

of fMRI Toolbox (GIFT10). 

To assess the consistency and fidelity of the identified networks, the validation procedure in 

(Lin et al. 2010) was followed. Briefly, voxel-wise one sample t-tests were performed across 

all the eDMNs (after variance normalizing each spatial pattern). The resulting t-map was 

thresholded at a false discovery rate (FDR) corrected q-value < 0.01, to create a group eDMN 

map. Subject-specific eDMNs were then intersected with this group eDMN to yield group-

adjusted individual networks. Finally, the normalized spatial correlation of the template with 

each adjusted individual eDMN was computed, which turned out to be 0.81 ± 0.03 across the 

group. In short, this procedure revealed the fidelity of individual networks to the prior 

template, as well as natural spatial variability over the subjects. The template from (Alves et 

 

9 https://identifiers.org/neurovault.image:568084  
10 http://trendscenter.org/software/gift/ 
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al. 2019) and the average spatial map of eDMN (from the present study) have been illustrated 

in Fig. S1 and Fig. S2. 

 Dynamic causal modeling the eDMN 

3.4.1 Region specification and time series extraction 

Several eDMN regions were merged based on physical and functional proximity for 

computational tractability of the DCM analysis11. First, the 16 pairs of highly correlated 

homologous regions were merged. Next, VMPFC12, AMPFC13 and DPFC14 were grouped into 

one prefrontal (PFC) component; two temporal sub-regions (TP15 and MTG16) were merged 

into one temporal (Tmp) component; and two cerebellar regions (CbH17 and CbT18) were 

represented by one cerebellar (Cb) component. This resulted in 13 regions for spectral 

dynamic causal modeling, which have been listed in Table 1. 

Table 1: The regions of eDMN included in DCM analysis. 

Abbreviation Region 

PFC Prefrontal cortex 

Tmp Temporal cortex 

PCC Posterior cingulate cortex 

Rsp Retrosplenial cortex 

PPC Posterior parietal cortex 

VLPFC Ventrolateral prefrontal cortex 

Amy Amygdala 

BF Basal forebrain 

C Caudate 

Cb Cerebellar region 

PH Parahippocampal region 

T Thalamus 

MidB Midbrain 

 

 

11 Note that vanilla spectral DCM is typically used for causal networks with less than 15 regions. For larger 
networks, further linearized variants of DCM can be used (Frässle et al. (2021); Friston et al. (2021))  
12 Ventro-median prefrontal cortex (VMPFC) 
13 Antero-median prefrontal cortex (AMPFC) 
14 Dorsal prefrontal cortex (DPFC) 
15 Temporal pole (TP) 
16 Middle temporal gyrus (MTG) 
17 Cerebellar hemisphere (CbH) 
18 Cerebellar tonsil (CbT) 
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The average regional time series were extracted for these 13 ROIs from the intersection of 

group-adjusted individual eDMNs with the parcellation map of (Alves et al. 2019). Post-

processing (Allen et al. 2014; Damaraju et al. 2014; Iraji et al. 2022) of the time series 

included: removal of the linear trends, regression of the nuisance (motion and physiological) 

signals, and replacement of outlier time points with spline interpolations (using AFNI’s 

3dDespike). The average functional connectivity between these regions has been depicted in 

Fig. S3. The post-processed time series were next modeled using spectral DCM. 

3.4.2 Spectral dynamic causal model 

Spectral DCM was used to estimate the effective (causal) connections among the 13 regions 

of eDMN, for each subject. The generative model of this DCM specifies how the observed 

complex cross-spectra19 of fMRI signals are generated from the interaction of coupled 

neuronal ensembles and the neurovascular coupling. The model is initially expressed in the 

time domain as a state-space model with two equations; the first equation describes the 

dynamics of an endogenously driven network of coupled neuronal populations, and the 

second equation maps these neuronal activities to the observed hemodynamic responses 

(Friston et al. 2014; Razi et al. 2015): 

�̇�(𝑡) = 𝑓(𝑥(𝑡), 𝜃) + 𝜈(𝑡) ≈ 𝐴𝑥(𝑡) + 𝜈(𝑡)       (7) 

𝑦(𝑡) = ℎ(𝑥(𝑡), 𝜃ℎ) + 𝑒(𝑡)          (8) 

where 𝑥(𝑡) is a vector containing the hidden neural states (i.e., ensemble activities) of 𝑛 brain 

regions, at time 𝑡. The rates of change20 in neural states �̇�(𝑡) are influenced by the activities 

of (self and) other regions via the connectivity matrix, 𝐴, and fast endogenous neural 

fluctuations, 𝜈(𝑡). The hemodynamic response function, ℎ (Stephan et al. 2007b), translates 

the neural activities into measured BOLD21 signals, 𝑦(𝑡), which also contain the observation 

noise, 𝑒(𝑡). After linearization, Fourier transformation and parametrization of the noise 

cross-spectra, this generative model admits a deterministic form that can be efficiently 

inverted using variational Bayesian methods (Friston et al. 2007; Friston et al. 2014; Razi et 

al. 2015). 

 

Model inversion refers to the estimation of optimal model parameters, given a generative 

model and some observations. In variational Bayesian inference, this is achieved by 

maximizing free energy (𝐹, a lower bound on log model evidence) with respect to the 

approximate posteriors of the parameters, 𝑄(𝜃|𝑦, 𝑚) (Friston et al. 2007; Zeidman et al. 

 

19 Since cross-spectra are the Fourier counterparts of cross-correlations, spectral DCM is essentially a causal 
model of how fMRI functional connectivity is generated. 

20 Hence the units of Hertz for the effective connections encoded in matrix 𝐴. 

21 Blood oxygenation level dependent (BOLD) 
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2022). Notably, free energy offers a trade-off between model accuracy and complexity (F = 

accuracy – complexity), with the latter term protecting against overfitting. Moreover, 

maximized free energy serves as a proxy for log model evidence (𝐹𝑜𝑝𝑡(𝑄) ≈ log 𝑃(𝑦|𝑚)), 

which is used to compare the plausibility of different models explaining the same data. The 

associated optimized posteriors (𝑄𝑜𝑝𝑡(𝜃|𝑦, 𝑚) ≈ 𝑃(𝜃|𝑦, 𝑚)) are used to perform inference 

on the parameters. The most prominent parameters of DCM are the effective connections 

encoded in the 𝐴𝑛×𝑛 matrix. Each off-diagonal entry 𝑎𝑖𝑗 of this matrix denotes the causal 

influence of region 𝑗 on region 𝑖, which can be excitatory (positive) or inhibitory (negative). 

Conversely, the self-connections22 (𝑎𝑖𝑖) are parametrized with negativity constraints to 

ensure dynamical stability of the model (Zeidman et al. 2019a). 

 

This concludes our brief description of the generative model of spectral DCM and the 

associated Bayesian model inversion scheme. Having inverted each subject’s DCM, group 

analysis was conducted using a hierarchical Bayesian framework known as parametric 

empirical Bayes (PEB)—as elaborated next. 

 

3.4.3 Group analysis using parametric empirical Bayes 

PEB is a hierarchical Bayesian model, particularly useful for estimating group effects in DCM 

studies. Operationally, PEB is a Bayesian general linear model (GLM) that partitions 

between-subject variability into certain designed group effects (such as group mean and 

difference) and some additive random effects. In contrast to the summary statistic random 

effects approach based on point estimates, PEB accommodates the full posterior densities of 

the parameters. In its simplest form, PEB can be expressed as: 

𝜃𝑠 = 𝑋𝜃𝑔 + 𝜖           (9) 

where 𝜃𝑁𝑝×1
𝑠  includes the posteriors of 𝑝 DCM parameters for 𝑁 subjects; 𝑋𝑁𝑝×𝑝𝑑 is the 

design matrix for 𝑑 regressors replicated over 𝑝 parameters; 𝜃𝑝𝑑×1
𝑔

 denotes the group 

parameters; and 𝜖𝑁𝑝×1 contains the random effects. The columns of X encode the 

hypothesized sources of inter-subject variability (e.g., group mean). To invert a PEB model, 

subject and group level parameters are estimated iteratively in a variational Bayesian 

scheme (Friston et al. 2007; Friston et al. 2015; Friston et al. 2016; Zeidman et al. 2019b). 

That is, group-level parameters are estimated by assimilating the posteriors of subject-level 

parameters. Then, group parameters act as empirical priors for reinversion of subject-

specific DCMs. This iterative procedure continues until convergence. The empirical priors 

 

22 Self-connections control the region's excitatory-inhibitory balance, or equivalently its gain or sensitivity to 
inputs. 
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are like typical group values, which serve to guide subject-level inferences and help to avoid 

local maxima problems (Friston et al. 2015; Friston et al. 2016; Zeidman et al. 2019b).  

In the present study, PEB was used to compute the group mean value for each effective 

connectivity parameter. The PEB structure was further optimized post-hoc using 

exploratory BMR (Friston et al. 2016; Friston and Penny 2011). These PEB (i.e., group DCM) 

posteriors comprised the directed cyclic graph for which causal centralities of the nodes 

were computed (using Eq. 6) and compared against some major graph theoretical 

centralities—as explained next.  

 Causal vs. graph-theoretical centralities 

The PEB posterior encodes the average causal influences among the regions of eDMN. For 

this cyclic graph, the causal centralities of individual (cortical and subcortical) regions were 

computed using Eq. 6. Then, several graph-theoretical node centralities were computed on 

the same network. These included the strength, betweenness, closeness and eigenvector 

centralities, which are succinctly introduced here, and mathematically defined in Appendix 

C, based on (Bonacich 2007; Bonacich and Lloyd 2001; Freeman 1979; Opsahl et al. 2010). 

 

Briefly, node strength computes how strongly a node is directly connected to the other nodes 

in the network (by summing over the absolute edge weights connected to that node). 

Betweenness centrality quantifies the bridging/flow-passing role of a node in the network 

(by computing how often it lies on the shortest paths between the other nodes). Closeness 

centrality reflects the efficiency of a node in spreading information over the network 

(computed as the reciprocal of the average shortest path from that node to all the other 

nodes). Finally, a node with high eigenvector centrality is connected to multiple other highly 

central nodes (which is formally computed using the first eigenvector of the graph adjacency 

matrix). From the perspective of centrality typology, these measures cover the major three 

types of centralities defined in (Borgatti and Everett 2006), and the same measures have 

been studied by (Dablander and Hinne 2019) in the context of causal inference on DAGs. 

 

Generally, more central nodes in a graph contribute further towards the connectedness or 

the flow of information over the network. So, intuitively, one might expect that these graph-

theoretically central nodes possess high causal power over the network as well. The 

comparative analysis in the next section is meant to demystify this point, through the 

working example of eDMN’s causal network. 

 Causal relevance of different centralities 

DCM adopts a fully Bayesian approach to parameter estimation, with Gaussian shrinkage 

priors (𝑃(𝜃|𝑚)) that constrain the estimates of causal connections (i.e., 𝐴 matrix in Eq. 7). 

The shrinkage priors have zero mean and small identical prior variances, 𝑁(𝜇 = 0 , Σ =
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1

64
𝐼𝑛2), and thus shrink the posterior estimates of the causal connections towards zero. 

Crucially, the higher the prior variance is set, the easier it becomes for the posterior 

connection estimates to deviate from the prior expectation of zero—if this is sufficiently 

supported by the observed data.  As such, if apriori we believe that certain causal connections 

are more probable to be nonzero, then incorporating this information during the model 

fitting procedure (by increasing the prior variances of those connections) will improve the 

model evidence. This notion has been validated in the context of structurally-informed 

DCMs, where higher probability of anatomical connections between regions (estimated via 

probabilistic tractography) was encoded as higher probability of causal connections during 

DCM inversion, which resulted in significantly improved group model evidence, and 

confirmed the causal relevance of the anatomical information for models of effective 

connectivity (Sokolov et al. 2019; Sokolov et al. 2020; Stephan et al. 2009). 

In the present work, this method was applied retrospectively; that is, the centrality 

information (computed from the group DCM graph) was translated into revised priors for 

the causal connections, to reinvert the same DCMs. If reinversion with centrality-informed 

priors results in nontrivial improvement in model evidence, this would speak to the causal 

relevance of the centrality pattern. Moreover, different centrality measures can be compared 

in terms of their causal significance, based on the extent of change in model evidence. 

To translate the centrality information into updated priors on the causal connections, the 

node centrality values were first linearly mapped to the [1,8] interval, and then used to scale 

the original (default = 1/64) prior variances of the efferent connections of that node: 

Σnew(𝑎.𝑖) = Σdefault(𝑎.𝑖) × [1 + 7 ×
𝐶𝑒𝑛𝑡(𝑖)−min(𝐶𝑒𝑛𝑡)

max(𝐶𝑒𝑛𝑡)−min(𝐶𝑒𝑛𝑡)
]     (10) 

where 𝐶𝑒𝑛𝑡(𝑖) refers to the centrality of node 𝑥𝑖  and Σ(𝑎.𝑖) denotes the prior variance of the 

connections originating from node 𝑥𝑖 . Intuitively, this means that we expect the nodes with 

higher centrality to exert stronger causal influence over the connected regions. 

Operationally, model reinversion was implemented using BMR, which has closed-form 

solutions for the evidence and posteriors of a model with updated priors (Appendix B). 

Following subject-level DCM reinversion, the updated group-level model evidence was 

computed using PEB (as explained in section 3.4.3). In brief, this analysis was meant to reveal 

whether the centrality information would affect the model evidence at the group level. 

To examine whether any potential change in model evidence was a mere byproduct of 

relaxed (i.e., scaled) priors or whether it was indeed specific to the centrality-guided scaling 

pattern, a control model was set up for each centrality type. In the control models, the 

centrality scores were randomly shuffled before scaling the prior variances (using Eq. 10) 

and reinverting the DCMs. The model evidence from the control models would adjudicate on 

the significance of the original findings. 
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4 Results  

 Causal structure of the eDMN 

Spectral DCM was used to estimate the effective (causal) connections among the regions of 

eDMN (Table 1), for each subject. For each DCM, model fitting was assessed using the 

coefficient of determination, 𝑅2, which reflects the proportion of variance in the 

observations (i.e., cross-spectra) that is explained by the spectral DCM model23 (𝑅2 = 0.91 ±

0.03, across the group). Group analysis was conducted in the PEB framework (section 3.4.3). 

Group effective connectivity results have been plotted in Fig. 3. 

 

Fig. 3: Group DCM results for the eDMN. This figure illustrates the expected PEB posteriors, which specify the 
average causal architecture of the eDMN in 74 healthy subjects. The columns and rows denote the source and 
target regions, respectively. The extrinsic and intrinsic/self connections are in units of Hz and log Hz, 
respectively. Self-connections (on the main diagonal) are always inhibitory, and can be converted to units of 
Hz using −0.5 ∗ exp (𝐴𝑖𝑖). The posterior uncertainties of the connections are illustrated in Fig S4. Abbreviations 
for the eDMN regions are available in Table1. 

 

23 𝑅2 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠
=

PSS

TSS
, where PSS denotes the sum of squares of cross-spectra predicted/modeled 

by spectral DCM, and TSS denotes the total sum of squares of cross-spectra estimated from empirical data. The 
summations (of cross-spectra squared) are performed over frequency bins and pairs of regions for which the 
cross-spectra are computed. In SPM12, 𝑅2 for any fitted DCM can be calculated using spm_dcm_fmri_check.m. 
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As for the causal structure of eDMN, Fig. 3 shows that the causal influences among the 

cortical regions of eDMN are dense and mostly excitatory (apart from some inhibitions 

induced by VLPFC/Tmp). Conversely, the within-subcortical causal architecture seems 

sparser and more balanced in terms of excitatory and inhibitory effects. Among the 

subcorticals, the amygdala and cerebellum act as inhibitors, whereas the parahippocampal 

region and the midbrain assume excitatory roles. Notably, the cortical-to-subcortical causal 

influences are mostly excitatory, whereas the subcortical-to-cortical effects are both 

inhibitory and excitatory (with basal forebrain significantly contributing to both regimes). 

In Fig. S4 the posterior uncertainties of the group effective connections have been illustrated 

in addition to the posterior expectations. After estimating the average causal influences 

among the eDMN regions, the node centralities were computed based on this causal graph. 

 Centrality of the eDMN regions 

The group DCM posteriors encode the average causal influences among the regions of eDMN, 

in 74 healthy subjects. For this graph, the causal and GT centralities were computed for each 

region, as elaborated in section 3.5. The centrality scores and rankings are included in Table 

2. The centrality rankings have also been visualized in Fig. 4-A. In each bar plot, one type of 

GT centrality ranking has been plotted besides the causal centrality ranking of the regions. 

Higher ranks correspond to higher centrality values (with the maximum/best rank = 13 = 

number of regions). 

It is apparent from Fig. 4-A that the GT rankings are quite distinct from the causal ranking. 

Specifically, the GT measures assign the higher centrality ranks to the cortical areas, whereas 

causal centrality attributes the higher ranks to the subcortical regions. For instance, while 

PCC is highly central in a graph-theoretical sense (i.e., always in the top three basket), it has 

the 3rd lowest causal centrality rank. Another example is PFC, which has a relatively high 

rank based on GT measures (average rank = 9.5); however, PFC gets the lowest rank (=1) 

based on causal centrality. Conversely, the midbrain, which is on top of the causal centrality 

ranking (rank =13), has a mediocre GT rank of 5.25 on average. Or, the causally important 

cerebellum (with causal rank = 12), has a very low average GT rank of 2.25. 

On average, the GT centrality ranks are 8.96 and 5.32, for cortical and subcortical regions, 

respectively; however, the opposite relationship holds for the causal centrality ranks: 

average cortical rank = 4; average subcortical rank = 9.57. In Fig. 4-B, the relationship 

between the rankings of different centrality measures has been formalized using Spearman’s 

rank correlation coefficient. The overall trend speaks to a relative consensus among the GT 

centrality rankings, which stand in striking contrast to the causal centrality results—as 

reflected by the negative correlations in the last row. The causal significance of these 
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centrality measures were assessed next, by incorporating them as prior information in the 

causal models. 

 

Fig. 4: Centrality ranking of the eDMN regions, in the average causal graph (i.e., group DCM graph) of the eDMN. 
(A) In each bar plot, one type of graph-theoretical centrality ranking (in light gray) has been plotted besides 
the (black) causal centrality ranking of the eDMN regions. Higher ranks correspond to higher centrality values, 
which have been listed in Table 2. (B) Rank correlation between the different types of centralities computed on 
the average eDMN causal graph. Significant correlations (p<0.05) have been annotated. Overall, the graph-
theoretical centralities are rather similar in their ranking patterns, while negatively correlated with the causal 
ranking results. 
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Table 2: Centrality scores and ranks of the eDMN regions, based on different centrality measures applied to the 
average causal graph (i.e., group DCM graph) of the eDMN. Higher ranks correspond to higher centrality values. 
The maximum/best rank is 13, which is the number of modeled regions, as listed in Table 1. 

 
Centrality 

 
Strength Betweenness Closeness Eigenvector Causal 

Region Value Rank Value Rank Value Rank Value Rank Value Rank 

PFC 1.45 8 33 13 0.88 12 0.07 5 2626.35 1 

Tmp 1.54 10 6 7 0.77 10 0.09 9 3581.82 2 

PCC 1.67 11 29 12 0.99 13 0.10 11 6321.73 3 

Rsp 1.53 9 1 2 0.53 1 0.09 10 9708.33 7 

PPC 1.24 4 7 9 0.72 9 0.07 7 9305.69 6 

VLPFC 1.73 12 24 11 0.72 8 0.10 12 7878.70 5 

Amy 1.27 5 7 10 0.66 5 0.07 4 12085.05 11 

BF 1.89 13 5 6 0.84 11 0.12 13 6361.08 4 

C 0.87 1 6 8 0.58 2 0.04 1 10745.96 8 

Cb 0.89 2 0 1 0.63 4 0.05 2 12282.63 12 

PH 1.45 7 2 5 0.71 7 0.07 6 11663.28 10 

T 0.98 3 1 3 0.68 6 0.05 3 10930.42 9 

MidB 1.30 6 1 4 0.60 3 0.07 8 16030.32 13 

 

 Causal relevance of different centralities 

Once the node centrality scores were linearly mapped to the [1,8] interval (as shown in Fig. 

5), they were used to scale the prior variances on the efferent connections of the associated 

nodes. The DCMs were then reinverted with these updated priors (using BMR), and group 

analysis was conducted in the PEB framework. The improvement in model evidence (under 

centrality-informed priors) was recorded at the subject and group level. The control models 

were set up similarly, but using randomly permuted centralities. The results have been 

illustrated in Fig. 6.  

 

At first glance, all the centrality-informed models seem to have improved the model evidence 

per subject and over the group (Fig. 6). However, for the GT centralities, this improvement 

is a simple byproduct of relaxing/scaling the priors—not the specific centrality pattern used 

to scale the priors. This can be inferred from Fig. 6-A, which shows that the control models 

(with shuffled centralities) have achieved higher improvement in model evidence than the 

original centrality-informed models. Only when the causal centrality scores were encoded 

as priors did the improvement in model evidence become meaningful—by significantly 

outperforming the control model (Δ𝐹 = Δ𝐹𝑜𝑟𝑖𝑔 − Δ𝐹𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 3659.3). Note that, in the spirit 
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of log Bayes factors24 , |∆𝐹| > 3 nats is interpreted as “strong evidence” in favour of one 

model against another, while |∆𝐹| > 5 nats denotes “very strong evidence” (Kass and Raftery 

1995). 

 

Fig. 5: Mapping the node centrality values to scale factors in the [1,8] interval. The mapped values were used 
to scale the default prior variances on the efferent connections of the associated nodes, based on Eq. 10. 

Also note that, the average subject-level improvements in model evidence (Fig. 6-B) follow 

the same trend as the group-level improvements (Fig. 6-A, black bars); except when 

comparing the closeness and betweenness centralities. That is, while Δ𝐹 is on average higher 

per subject/DCM for the closeness (than betweenness) centrality, the group Δ𝐹 is lower for 

the closeness (than betweenness) centrality-informed model. This is because, the group-

level Δ𝐹 of PEB is not merely the sum of subject-level Δ𝐹’s—unlike a fixed effects approach 

to group Δ𝐹 computation (Stephan et al. 2007b; Stephan et al. 2007a; Summerfield and 

Koechlin 2008). Instead, by virtue of accounting for the between-subject (i.e., random) 

effects, the group-level free energy of PEB is the expected sum of subject-level free energies 

(under the approximate posterior of the group-level parameters) minus the group-level 

complexity term25, as shown in (Friston et al. 2015; Friston et al. 2016). The latter term can 

explain the disparity between the subject and group level change in model evidence, when 

 

24 Bayes factor (BF) is the ratio of model evidences (aka marginal likelihoods, ML) of two competing models 
explaining the same data 𝑦. That is, BF ≜ P(y|M1)/P(y|M2) = ML1/ML2. In the log space, log BF = log (ML1) – 
log (ML2)  F1 – F2 = F. So, when F = 3 nats, model 1 is deemed 𝑒3 ≈ 20 times more plausible than model 2, 
reminiscent of the conventional 0.05 threshold in classical statistics. 

25 The complexity term is the KL-divergence between the approximate posteriors and the priors. For the 
derivations of the group-level free energy of PEB, please refer to (Friston et al. (2015); Friston et al. (2016)) 
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comparing the closeness and betweenness centrality-informed models. This highlights the 

importance of the Bayesian hierarchy of PEB, which explicitly models the between-subject 

variations (i.e., random effects) in the causal networks. As such, the group-level results are 

more complete and reliable. 

 

Fig. 6: Causal relevance of different centralities. (A) Improvement in group model evidence, following DCM 
reinversion under centrality-informed priors (black bars), and for control models with shuffled centralities 
(light gray bars).  (B) Improvement in subject model evidence, following DCM reinversion under centrality-
informed priors. Each dark circle in the violin plots corresponds to Δ𝐹 for one subject/DCM. Median values are 
marked with white circles.  
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5 Discussion 

When it comes to assessing centrality in dynamic causal models, graph-theoretical measures 

fall short. This is because, topology-based GT centralities do not account for the dynamics of 

the specific generative model behind the graph (Borgatti 2005) and they are not qualified to 

deliver causal verdicts either (Dablander and Hinne 2019). Hence, a new causal centrality 

measure was introduced in this paper, based on the notion of intervention on the edges of a 

graphical model. It was shown that this measure is identifiable by means of Bayesian model 

reduction. As a proof of concept - and to compare the new measure with major GT centralities 

- a worked example was presented using the dynamic causal model of the extended default 

mode network (Alves et al. 2019). After estimating the average DCM graph of the eDMN 

(from 74 healthy subjects), causal centrality was computed for each region, and compared 

against common GT centralities. Moreover, the causal relevance of different centralities were 

assessed in a model comparison framework, where the centrality information modulated the 

prior (variance) of the causal connections in the DCM—and the ensuing change in model 

evidence reflected the causal relevance of the centrality information. In the following, the 

key aspects of this study and their implications are discussed. 

 

Causal centrality was defined as the distributional divergence induced by intervention on 

the edges of the causal graph (Janzing et al. 2013; Pearl 2010). This interventional approach 

is conceptually similar to “lesioning” (Deco et al. 2017; Irimia and van Horn 2014), “hub-

opathy” (Bell and Shine 2016) and “vulnerability analysis” (Iturria-Medina et al. 2008; Rawls 

et al. 2022) in network (neuro)science, which measure the effect of edge/node removal on 

the network integrity and performance (Gol'dshtein et al. 2004). Notably, since causal 

centrality is conditioned on the generative model of the DCM associated with the graph, it 

explicitly accounts for the network dynamics. This is important because, classical centrality 

measures rely only on network topology, while the role of individual elements in collective 

behavior depends inevitably on the specificities of the network dynamics (Borgatti 2005; 

Borgatti and Everett 2006; Bringmann et al. 2019; Klemm et al. 2012; Li et al. 2012). 

 

For instance, in an epidemic spreading model with given topology, picking the GT centrality 

that can best identify the influential spreaders depends critically on the infection rate—

which is a dynamical parameter (Liu et al. 2016). As such, a “dynamics-sensitive” centrality 

measure was proposed by (Liu et al. 2016) for epidemic processes, which integrates 

topology and (epidemiological) dynamics. Other “dynamical influence” measures have also 

been proposed in different contexts, based on spectral decomposition of the Laplacian or 

adjacency matrix (Klemm et al. 2012; Masuda and Kori 2010; Restrepo et al. 2006) and 

information flow on undirected graphs (van Elteren et al. 2022). In neuroscience, (Deco et 

al. 2017) used computational modeling and sequential node removal to show (using an 

information-theoretic measure) that the critical regions for “information encoding and 
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integration” in the brain are not necessarily the “highest-degree” or “rich-club” members 

from GT analysis of the structural connectome. The present work extends their findings, and 

argues that GT analysis on the effective connectome is not indicative of the dynamical (causal) 

influence of the regions either—and that dynamics-sensitive measures like causal centrality 

are needed for this purpose. 

 

Operationally, causal centrality was computed using Bayesian model reduction. BMR can 

analytically compute the approximate model evidence and posteriors of a submodel, from 

the same quantities (and the priors) already available for the full model. A submodel (aka a 

reduced model) includes a subset of the original model’s parameters, with the rest of the 

parameters fixed to zero (using precise null priors). Hence, given the priors and posteriors 

of the full model, BMR can answer the question: what would the posteriors have been, had 

the priors assumed a reduced form?26 The answer that BMR estimates would render the 

post-intervention distribution (in Eq. 4) identifiable. As such, even though the main function 

of BMR has so far been in post-hoc model optimization and structure learning (Beckers et al. 

2022; Friston et al. 2016; Friston et al. 2018; Friston and Penny 2011; Jafarian et al. 2019; 

Neacsu et al. 2022), another useful application is in the computation of causal centrality. 

 

We now review the results from dynamic causal modeling the extended default mode 

network. In the causal architecture of the eDMN (Fig. 3), cortical regions had dense and 

(mostly reciprocal) excitatory connections among themselves, except for some inhibitions 

induced by the VLPFC and temporal regions. Conversely, the within-subcortical effective 

connections were sparser and rather balanced in terms of excitation and inhibition. In this 

causal model, the amygdala and cerebellum exerted inhibitory influences on the other 

(subcortical and cortical) regions, whereas the parahippocampal and midbrain regions had 

excitatory roles. The basal forebrain exerted a mixture of excitatory and inhibitory effects, 

and it was the only subcortical structure of this causal model that affected all the cortical 

regions of the eDMN—mostly as an inhibitor. Overall, the subcortical-to-cortical effects were 

both inhibitory and excitatory, whereas the cortical-to-subcortical influences were 

predominantly excitatory. The latter is reminiscent of the presumed “funneling” (i.e., 

information integration) role of the subcortical nuclei (Bell and Shine 2016; Parent and 

Hazrati 1995), while the former could echo the subcortical “neuromodulatory” effects (Avery 

and Krichmar 2017; Robbins and Arnsten 2009). 

 

Subsequently, based on the average causal graph (from DCM group analysis), the eDMN 

regions were assessed in terms of their causal and GT centralities. Overall, the subcortical 

regions turned out to be more causally central, whereas the cortical regions were more 

 

26 In this sense, BMR for DCM is similar to counterfactual analysis for SEM Glymour et al. (2016); Pearl (2010). 
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graph-theoretically central (Fig. 4-A). Specifically, the midbrain achieved the highest causal 

centrality, followed by the cerebellum, amygdala, parahippocampal region, thalamus and 

caudate. The only subcortical structure with low causal centrality (and high GT centrality) 

was the basal forebrain. The basal forebrain has high degree and betweenness centrality in 

the structural connectome of the eDMN, as reported in (Alves et al. 2019). Herein, the basal 

forebrain achieved the highest strength and eigenvector centralities in the effective 

connectome (i.e., the causal graph) of the eDMN (Fig. 4-A), but in terms of causal centrality it 

occupied a low rank (of 4). This is an example of divergent GT and causal centrality 

judgements based on the same causal graph. Another example is the thalamus, which is 

reportedly highly central in the structural connectome of the eDMN (Alves et al. 2019), and 

causally central in the effective connectome as well (rank = 9), whereas graph theory 

assigned a low centrality value to the thalamus (average rank = 3.75) in the causal graph. 

Overall, the four GT centrality rankings were more consistent with each other, whereas they 

were negatively correlated (or uncorrelated) with the causal centrality ranks (Fig. 4-B). This 

is important because, causal centrality accounts for the dynamics of the (biophysical) 

generative model of DCM, whereas the graph-theoretical measures are either dynamics-free 

or uninformed of the specific dynamics on the graph (Borgatti 2005; Borgatti and Everett 

2006). As a result, only the (dynamics-aware) causal centrality detected the influential role 

of the subcortical regions in the extended DMN (Fig. 4). 

There is accumulating evidence about the contribution of subcortical structures to the 

integration of large-scale networks (Bell and Shine 2016). Specifically, the implication of 

subcortical regions in the organization of the DMN has been acknowledged in recent 

structural (Alves et al. 2019; Bzdok et al. 2013; Cunningham et al. 2017), functional (Alves et 

al. 2019; Bär et al. 2016; Buckner et al. 2011; Bzdok et al. 2013; Choi et al. 2012; Cunningham 

et al. 2017; Di Martino et al. 2008; Fransson 2005; La Cruz et al. 2021; Lee and Xue 2018; Li 

et al. 2021; Roy et al. 2009; Stoodley and Schmahmann 2009) and effective connectivity 

(Harrison et al. 2022; La Cruz et al. 2021; Nair et al. 2018) analyses, as well as 

electromagnetic (Elias et al. 2021; Gratwicke et al. 2013; Kakusa et al. 2020; Schiff et al. 

2007), ultrasonic (Cain et al. 2021a; Cain et al. 2021b; Monti et al. 2016) and optogenetic 

(Klaassen et al. 2021; Lozano-Montes et al. 2020) stimulation studies, and pharmacological 

experiments (Carhart-Harris et al. 2013; Kelly et al. 2009; Kunisato et al. 2011; Metzger et al. 

2016; van de Ven et al. 2013; van Wingen et al. 2014). 

Subcortical structures contain rich neurochemical nuclei, and large receptive and projective 

fields. As such, the neuromodulation of small subcortical nuclei can affect large and 

distributed portions of the cortex (Horn et al. 2017; Horn et al. 2019; Horn and Fox 2020; Li 

et al. 2021; Schiff et al. 2007). Importantly, classical GT centrality measures seem unable to 

reflect this critical subcortical functionality. For instance, in the graph-theoretical study of 
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(Bär et al. 2016), the dopaminergic midbrain nuclei were not identified as central nodes 

within the DMN, whereas the VMPFC and PCC showed up as the usual “key-hubs”. This is in 

line with the graph-theoretical results of the present study (Fig. 4-A), where the PCC, VLPFC 

and PFC achieved rather high GT centralities, while the subcortical regions received the 

lower values. However, when the network dynamics were accounted for, the midbrain 

achieved the highest causal centrality rank, followed by the other subcortical structures—

and the cortical regions moved down the list. Importantly, only the causal centrality pattern 

improved the model evidence nontrivially in the model comparison framework (Fig. 6). 

The model comparison revealed that: if the prior probabilities of the causal influences are 

increased in proportion to the causal centralities of their source regions, then the DCM model 

evidence would improve significantly—i.e., beyond the mere effect of relaxed priors. 

However, for the GT centralities, the improvement in model evidence was insignificant; i.e., 

the centrality-informed models were outperformed by the control models (with randomly 

permuted centralities). As such, the only causally-relevant measure turned out to be causal 

centrality, which happened to be the sole centrality that endorsed the prominent role of 

subcortical structures in the causal architecture of the eDMN. 

Notably, many of the subcortical structures – which contain rich neurochemical nuclei - are 

structurally and functionally disrupted in various neurological and psychiatric disorders 

(Bocchetta et al. 2021; Dandash et al. 2014; Jauhar et al. 2018; Kirschner et al. 2022; 

Koshiyama et al. 2018; Lecciso and Colombo 2019; Lorenzini et al. 2021; Panda et al. 2022; 

Park et al. 2019; Sabaroedin et al. 2023a; Sabaroedin et al. 2023b; Výtvarová et al. 2017; Wolf 

et al. 2011; Yamamoto et al. 2022; Zeng et al. 2023; Zhao et al. 2022). Specifically, 

neurodegenerative disorders that are characterized by early and selective subcortical 

pathology − such as Parkinson’s disease and Huntington’s disease (Braak et al. 2003; 

Vonsattel et al. 1985) − are also associated with fragmentation of the global network 

topology in early-stage disease (Harrington et al. 2015; Luo et al. 2015; McColgan et al. 2015; 

Olde Dubbelink et al. 2014; Sang et al. 2015), which deteriorates with disease progression 

(Harrington et al. 2015; McColgan et al. 2015; Olde Dubbelink et al. 2014). Such indirect 

evidence for the “integrative” role of subcortical structures (Bell and Shine 2016) 

corroborates the neuroanatomical evidence about their large projective and receptive fields, 

which has led to their inclusion as potential therapeutic intervention targets (Alosaimi et al. 

2022; Georgiev et al. 2021; Horn et al. 2017; Horn et al. 2019; Horn and Fox 2020; Schiff et 

al. 2007). 

Unraveling the mechanisms of different clinical interventions, and designing suitable 

stimulation protocols are trending topics in computational and clinical neuroscience, which 

draw upon methods from perturbation analysis (Deco et al. 2019; Mana et al. 2022; Sanz Perl 

et al. 2022; Vohryzek et al. 2022) and control theory (Gu et al. 2017; Gu et al. 2022; Kamiya 
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et al. 2023; Srivastava et al. 2020; Yang et al. 2021). Despite technical variations, the 

conceptual procedure remains the same: model the brain as a dynamical system; fit this 

model to the spatiotemporal features of the brain in the unperturbed state; add a stimulation 

term to the model (or modulate some model parameters) to trigger transition to a new brain 

state; finally, optimize the location and profile of the stimulation or modulation for (in silico) 

transition to the new state. Depending on the study, the source/target brain states may 

correspond to the profiles of transient brain dynamics in normal/pathological (Mana et al. 

2022; Vohryzek et al. 2022) or sleep/awake (Deco et al. 2019) scenarios; alternatively, the 

states may be defined as the spatiotemporal patterns of rest/task (Kamiya et al. 2023) or 

rest/stimulation (Yang et al. 2021) conditions. 

Notably, optimizing the stimulation locations(s) is usually performed using exhaustive 

search, which is computationally expensive (Deco et al. 2019; Mana et al. 2022; Vohryzek et 

al. 2022). Recent work suggests that the nodes’ controllability27 at rest can help to identify 

the optimal stimulation locations (Yang et al. 2021). Since average controllability of a node 

is strongly correlated with its causal outflow28 (Cai et al. 2021), and network controllability 

mediates the dynamical flexibility29 of the brain to transition between states (Gu et al. 2022), 

one might speculate that causal measures of centrality may be used as proxies for 

controllability metrics, to constrain the search space for optimal intervention sites that can 

induce specific state transitions. The advantage of using causal centrality - as a proxy for 

controllability - would be in the computational efficiency of the former by virtue of Bayesian 

model reduction. Further research is required to formalize the relationship between causal 

centrality and controllability metrics in neuronal networks, and to study the implications for 

identifying therapeutic stimulation targets (Alosaimi et al. 2022; Eraifej et al. 2023; Ezzyat 

et al. 2018; Georgiev et al. 2021; Wang et al. 2022; Zangen et al. 2023). 

The more immediate application of causal centrality would be to elucidate the influence of 

different regions in the causal models of neurotypical functional networks (such as the eDMN 

(Alves et al. 2019) and attention network (Alves et al. 2022)), during resting state and task 

conditions. A follow-up application would be to compare the neurotypical (causal centrality) 

results with those obtained in pathological conditions, e.g., in schizophrenia (Zarghami et al. 

 

27 Controllability quantifies the capability of a node/module to drive the dynamical system towards a desired 
state, using external input. Higher controllability reflects lower average control energy needed to drive the 
network from that node or set of nodes (Cai et al. (2021); Gu et al. (2022); Liu and Barabási (2016); Pasqualetti 
et al. (2014)). 

28 Causal outflow has been defined as the absolute weighted out-degree of a node on a causal graph (Cai et al. 
(2021)). 

29 Dynamical flexibility refers to the brain’s propensity to transition between multiple functional states (Gu et 
al. (2022)). 
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2020; Zarghami et al. 2023). In a recent study, (Mana et al. 2022) used perturbation analysis 

to identify a set of “critical” regions whose modulation can push a healthy brain towards the 

pathological dynamics of schizophrenia. Comparing these critical regions with the causally 

central hubs in the healthy and schizophrenic brain would be mechanistically insightful. 

Especially if applied to early-onset unmedicated patients (Anticevic et al. 2015), alterations 

in causal centrality might shed light on the aetiology of the disorder. Moreover, treatment 

response to different antipsychotic medications, which has previously been studied based 

on dynamics-free GT measures (Hadley et al. 2016), could be analyzed from the perspective 

of dynamics-sensitive causal centrality alterations.  

As for the limitation of the current work, note that although the dynamics on the network 

were accounted for by the DCM, the dynamics of the network (i.e., the temporal evolution of 

the graph structure (Bassett and Sporns 2017)) were not modeled here. As such, the 

estimated causal centralities represent session-average values. More advanced DCMs can 

model the dynamics of the network as well, in continuous or discrete time (Jafarian et al. 

2021; Zarghami and Friston 2020). In future work, these models can be combined with the 

formalism of multilayer networks (Huang and Yu 2017; Kivela et al. 2014) in applied 

mathematics to derive causal centrality measures for evolving causal networks. Moreover, 

even though the present paper dealt with nodal causal centrality, it is perfectly possible to 

quantify edge causal centrality (Faskowitz et al. 2020; Novelli and Razi 2022; Zamani 

Esfahlani et al. 2020) using the same interventional approach. 

Finally, although dynamic causal modeling is best known in the field of neuroimaging where 

it was first introduced (Friston et al. 2003; Moran et al. 2013), the overall framework (which 

consists of generative modeling of coupled dynamical systems plus Bayesian model 

inversion) and the computational devices that come along with it (such as hypothesis testing, 

uncertainty quantification, Bayesian model reduction, Bayesian group analysis, etc.) are 

quite generic. For instance, a recent epidemiological DCM has been developed to model viral 

spread among geographical regions (Friston et al. 2020). As such, causal centrality can be 

applied to different sorts of DCMs—in neuroimaging and other fields—to identify the key 

players in the collective dynamics of the causal model. 

6 Conclusions 

This paper introduced causal centrality, a dynamics-sensitive measure for assessing the 

causal importance of nodes/edges in a class of time-dependent cyclic graphs, known as 

dynamic causal models. The measure was defined as the normalized KL-divergence between 

the pre- and post-intervention distributions of the causal model, which simplified to an 

identifiable expression using Bayesian model reduction. Face and construct validation was 

established by dynamic causal modeling the extended DMN (in 74 healthy subjects), 
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following which causal centralities of the regions were computed for the group-average 

causal graph, and contrasted against major graph-theoretical centralities. As such, the 

subcortical regions of the eDMN turned out to be highly causally central, even though the 

(dynamics-free) graph-theoretical centralities downplayed their roles. Notably, model 

comparison revealed that only the pattern of causal centrality was causally relevant. These 

results are consistent with the crucial role of the subcortical structures in the 

neuromodulatory systems of the brain, and highlight their implication in the organization of 

large-scale networks. Finally, the potential applications of this new measure - for studying 

neurotypical and pathological functional networks - were discussed. Future work can 

elucidate the relationship between causal centrality and controllability metrics, with the 

prospect of effective target selection for intervention in the brain networks. Causal centrality 

can also be applied to DCMs developed for applications other than neuroimaging.  

 

Software note: 

A demo code for the computation of causal centrality is available at: 

https://github.com/tszarghami/CausalCentrality. SC-ICA is part of the Group ICA of fMRI 

Toolbox (GIFT): http://trendscenter.org/software/gift/. Spectral DCM, PEB and BMR have 

been implemented in SPM12: https://www.fil.ion.ucl.ac.uk/spm/. Graph-theoretical 

measures can be computed using the centrality function in MATLAB. 
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Appendices  

Appendix A- Causal centrality derivation 

In this appendix, the identifiable expression in Eq. 6 is derived from the definition of causal 

centrality in Eq. 4, and the normalization constant (Z in Eq. 4) is clarified. To start, we expand 

the KL-divergence between the pre- and post-intervention distributions: 

𝐷𝐾𝐿 (𝑃(𝜃, 𝑌|𝑚) ∥ 𝑃𝑅(𝜃, 𝑌|𝑚𝑅)) = ∫ 𝑃(𝑌, 𝜃|𝑚) 
𝜃

log
𝑃(𝑌, 𝜃|𝑚)

𝑃𝑅(𝑌, 𝜃|𝑚𝑅
)
  

= ∫ 𝑃(𝜃|𝑌, 𝑚) 𝑃(𝑌|𝑚) 
𝜃

log
𝑃(𝜃|𝑌, 𝑚) 𝑃(𝑌|𝑚) 

𝑃𝑅(𝜃|𝑌, 𝑚𝑅
) 𝑃𝑅(𝑌|𝑚𝑅

)
 𝑑𝜃     (A1) 

The first equality is just the definition of KL-divergence: 𝐷𝐾𝐿(𝑃1 ‖ 𝑃2) ≜  ∫ 𝑃1(𝑧) log
𝑃1(𝑧)

𝑃2(𝑧)
𝑑𝑧

𝑧
. 

The second equality uses the product rule of probability: 𝑃(𝑌, 𝜃|𝑚) = 𝑃(𝜃|𝑌, 𝑚) 𝑃(𝑌|𝑚). 

Herein, R as a superscript refers to the reduced/post-intervention model, whereas the 

full/pre-intervention model bears no superscript. With some re-arrangement, Eq. A1 

simplifies to: 

=  𝑃(𝑌|𝑚) ∫ 𝑃(𝜃|𝑌, 𝑚) [log
𝑃(𝜃|𝑌, 𝑚) 

𝑃𝑅(𝜃|𝑌, 𝑚𝑅
)

+ log
𝑃(𝑌|𝑚)

𝑃𝑅(𝑌|𝑚𝑅
)
]  𝑑𝜃

𝜃
  

=  𝑃(𝑌|𝑚)  [∫ 𝑃(𝜃|𝑌, 𝑚) log
𝑃(𝜃|𝑌, 𝑚) 

𝑃𝑅(𝜃|𝑌, 𝑚𝑅
)

 𝑑𝜃 + ∫ 𝑃(𝜃|𝑌, 𝑚) log
𝑃(𝑌|𝑚)

𝑃𝑅(𝑌|𝑚𝑅
)

 𝑑𝜃
𝜃

 
𝜃

]  

=  𝑃(𝑌|𝑚) [ 𝐷𝐾𝐿(𝑃(𝜃|𝑌, 𝑚)‖ 𝑃𝑅(𝜃|𝑌, 𝑚𝑅)) + log
𝑃(𝑌|𝑚)

𝑃𝑅(𝑌|𝑚𝑅
)
 ∫ 𝑃(𝜃|𝑌, 𝑚)

𝜃
𝑑𝜃]  

=  𝑃(𝑌|𝑚) [ 𝐷𝐾𝐿(𝑃(𝜃|𝑌, 𝑚)‖ 𝑃𝑅(𝜃|𝑌, 𝑚𝑅)) + log
𝑃(𝑌|𝑚)

𝑃𝑅(𝑌|𝑚𝑅
)

 × 1]  (A2) 

In variational Bayesian inference, the optimized variational density and free energy replace 

the posterior density and log model evidence: 𝑄(𝜃|𝑌, 𝑚) ≈ 𝑃(𝜃|𝑌, 𝑚) and 𝐹 ≈ log 𝑃(𝑌|𝑚). 

Hence, Eq. A2 simplifies to: 

≈ exp(𝐹) [𝐷𝐾𝐿(𝑄(𝜃|𝑌, 𝑚) ∥ 𝑄𝑅(𝜃|𝑌, 𝑚𝑅)) + (𝐹 − 𝐹𝑅)]     (A3) 

Causal centrality is estimable as the normalized version of Eq. A3, where the normalization 

constant 𝑍 = 𝑃(𝑌|𝑚) ≈ exp(𝐹). As such, we arrive at Eq. 6: 

𝐶𝑎𝑢𝑠𝑎𝑙 𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 ≜
1

𝑃(𝑌|𝑚)
𝐷𝐾𝐿 [𝑃(𝜃, 𝑌|𝑚) ∥ 𝑃𝑅(𝜃, 𝑌|𝑚𝑅)]  

≈  𝐷𝐾𝐿[𝑄(𝜃|𝑌, 𝑚) ∥ 𝑄𝑅(𝜃|𝑌, 𝑚𝑅)] + (𝐹 − 𝐹𝑅)    (A4) 
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where the posterior and free energy of the reduced model can be computed analytically 

using Bayesian model reduction, as elaborated in Appendix B. Moreover, under Gaussian 

assumptions on the posterior distributions in variational Laplace (Friston et al. 2007; 

Zeidman et al. 2022), the KL-divergence between the two (full and reduced) Gaussian 

posteriors can be readily computed as: 

𝐷𝐾𝐿(𝒩𝐹‖𝒩𝑅) =
1

2
{𝑡𝑟(Σ𝑅

−1Σ𝐹) − 𝑑 + (𝜇𝑅 − 𝜇𝐹)𝑇Σ𝑅
−1(𝜇𝑅 − 𝜇𝐹) + ln  (

det Σ𝑅

det Σ𝐹
)}  (A5) 

where 𝜇 and Σ denote the mean vector and the covariance matrix, respectively; 𝑑 is the 

dimensionality of the multivariate Gaussians; 𝐹 and 𝑅 subscripts refer to the full and reduced 

models, respectively; 𝑡𝑟 stands for the trace of a matrix, and ln = log𝑒.  

Appendix B- Bayesian model reduction derivations 

Bayesian model reduction refers to the analytic inversion of reduced models using the priors 

and posteriors of a full model. Reduced models are nested within a full model; that is, they 

include only a subset of the parameters of the full model after “switching off” the other 

parameters (by imposing very precise null priors, which shrinks them to zero). Consider 

Bayes rule replicated for the full and reduced models (denoted by 𝑚 and 𝑚𝑅, respectively) 

(Friston et al. 2016; Friston et al. 2018; Friston and Penny 2011): 

𝑃(𝜃|𝑦, 𝑚) =
𝑃(𝑦|𝜃, 𝑚)𝑃(𝜃|𝑚)

𝑃(𝑦|𝑚)
        (B1) 

𝑃𝑅(𝜃|𝑦, 𝑚𝑅) =
𝑃(𝑦|𝜃, 𝑚𝑅

)𝑃(𝜃|𝑚𝑅
)

𝑃(𝑦|𝑚𝑅
)

        (B2) 

Since the models differ only in terms of their priors, the likelihood terms are identical: 

𝑃𝑅(𝑦|𝜃, 𝑚𝑅) = 𝑃(𝑦|𝜃, 𝑚)         (B3) 

Hence, equating the expressions in Eq. B1 and Eq. B2 over the likelihood gives: 

𝑃𝑅(𝜃|𝑦, 𝑚𝑅
)𝑃𝑅(𝑦|𝑚𝑅

)

𝑃𝑅(𝜃|𝑚𝑅
)

= 𝑃(𝑦|𝜃, 𝑚) =
 𝑃(𝜃|𝑦, 𝑚)𝑃(𝑦|𝑚)

𝑃(𝜃|𝑚)
     (B4) 

By re-arranging Eq. B4, we get the posterior distribution over the parameters of the reduced 

model: 

𝑃𝑅(𝜃|𝑦, 𝑚𝑅) = 𝑃(𝜃|𝑦, 𝑚)
𝑃𝑅(𝜃|𝑚𝑅

)

𝑃(𝜃|𝑚)

𝑃(𝑦|𝑚)

𝑃𝑅(𝑦|𝑚𝑅
)
        (B5) 
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On the R.H.S. of Eq. B5 only 𝑃𝑅(𝑦|𝑚𝑅) is unknown, which is the model evidence for the 

reduced model. This term can be obtained by integrating both sides of Eq. B5 over 𝜃: 

∫ 𝑃𝑅(𝜃|𝑦, 𝑚𝑅) 𝑑𝜃 = 1 = ∫ 𝑃(𝜃|𝑦, 𝑚)
𝑃𝑅(𝜃|𝑚𝑅

)

𝑃(𝜃|𝑚)

𝑃(𝑦|𝑚)

𝑃𝑅(𝑦|𝑚𝑅
)

 𝑑𝜃    (B6) 

→ 
𝑃𝑅(𝑦|𝑚𝑅

)

𝑃(𝑦|𝑚)
= ∫ 𝑃(𝜃|𝑦, 𝑚)

𝑃𝑅(𝜃|𝑚𝑅
)

𝑃(𝜃|𝑚)
 𝑑𝜃        (B7) 

→ log 𝑃𝑅(𝑦|𝑚𝑅) = log 𝑃(𝑦|𝑚) + log ∫ 𝑃(𝜃|𝑦, 𝑚)
𝑃𝑅(𝜃|𝑚𝑅

)

𝑃(𝜃|𝑚)
 𝑑𝜃    (B8) 

→𝐹𝑅 =  𝐹 +  log ∫ 𝑄(𝜃|𝑦, 𝑚)
𝑃𝑅(𝜃|𝑚𝑅

)

𝑃(𝜃|𝑚)
 𝑑𝜃        (B9) 

In the last line, the optimized variational density and free energy have replaced the posterior 

density and log model evidence: 𝑄(𝜃|𝑌, 𝑚) ≈ 𝑃(𝜃|𝑌, 𝑚) and 𝐹 ≈ log 𝑃(𝑌|𝑚). Under 

Gaussian assumptions for the distributions (in variational Laplace), the reduced posterior 

and free energy take simple forms, as elaborated in (Friston et al. 2016; Friston et al. 2018; 

Friston and Penny 2011). 

Appendix C- Graph theoretical centralities 

This appendix includes the mathematical expressions for several graph-theoretical 

centrality measures. These measures are defined for weighted networks, based on (Opsahl 

et al. 2010), which generalizes the definitions originally proposed for binary networks 

(Freeman 1979).  

Node strength is the generalization of node degree (i.e., the number of connections of a node) 

for weighted networks, which is defined for node 𝑥𝑖  as: 

𝐶𝑠(𝑥𝑖) = ∑ |𝑎𝑖𝑗|𝑛
𝑗=1           (C1) 

where 𝑛 is the number of nodes, |.| denotes the absolute value function, and 𝑎𝑖𝑗 is the (𝑖, 𝑗)𝑡ℎ 

entry of the weighted adjacency matrix 𝐴.  

Closeness centrality is defined as: 

𝐶𝑐(𝑥𝑖) = (∑ 𝑑(𝑖, 𝑗)𝑛
𝑗=1 )

−1
         (C2) 

where 𝑑(𝑖, 𝑗) denotes the shortest path between nodes 𝑥𝑖  and 𝑥𝑗 , which is the path that 

minimizes the cost of travelling from 𝑥𝑖  to 𝑥𝑗; the cost of travelling is the inverse of the weight 

of the (directed) edges connecting the two nodes—as encoded in the adjacency matrix. 

Betweenness centrality is defined as: 
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𝐶𝐵(𝑥𝑖) = ∑ ∑
𝑔𝑗𝑘(𝑥𝑖)

𝑔𝑗𝑘

𝑛
𝑘=1

𝑛
𝑗=1          (C3) 

where 𝑔𝑗𝑘(𝑥𝑖) is the number of shortest paths between nodes 𝑥𝑗  and 𝑥𝑘 that go through node 

𝑥𝑖; and 𝑔𝑗𝑘 is the total number of shortest paths between nodes 𝑥𝑗  and 𝑥𝑘. 

Note that in the formulation of DCM (Eq. 7), 𝐴 encodes the directed causal influences; hence, 

it corresponds to the adjacency matrix of a (directed weighted) signed graph, in which 

excitatory (positive) and inhibitory (negative) effects are equally important. So, to compute 

the closeness and betweenness centralities (based on the notion of shortest paths), 𝐴 was 

converted to an unsigned matrix first, using the absolute function: 𝐴 → |𝐴|. 

Finally, for a node to have high eigenvector centrality, it should be connected to many other 

nodes that also have high eigenvector centrality. In other words, connection to an important 

node counts more than connection to a less important node. This notion is formalized using 

the first eigenvector of the adjacency matrix (Bonacich 2007; Bonacich and Lloyd 2001): 

𝐶𝐸(𝑥𝑖) =
1

𝜆
∑ 𝜈𝑗𝑗∈𝑁(𝑥𝑖)           (C4) 

where 𝜆 is the largest eigenvalue of an undirected adjacency matrix, and 𝜈𝑗is the 𝑗𝑡ℎ element 

of the corresponding eigenvector; 𝑁(𝑥𝑖) denotes the set of nodes that are adjacent/neighbor 

to 𝑥𝑖 . Since eigenvector centrality is defined for undirected graphs, the (unsigned weighted) 

directed adjacency matrix |𝐴| was first symmetrized as follows: |𝐴| →
|𝐴|+|𝐴𝑇| 

2
= |𝐴|𝑠𝑦𝑚; 

where 𝑇 denotes the transpose operator. 

The graph-theoretical centrality measures were computed using the centrality function in 

MATLAB R2021b. 
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