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ABSTRACT

This paper presents a new algorithm for solving the two-layer
channel routing problem with doglegging. Based on a set of intuitive
and reasonable heuristics, the algorithm tries to obtain a channel
routing configuration with a minimum number of tracks. For every
benchmark problem tested, the algorithm gives a routing configuration

with the smallest number of tracks reported in the literature.
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I. INTRODUCTION . y

In this paper we present a new algorithm for solving the two-
layer channel routing problem with restricted doglegging, identical to
the problem considered in [1,3]. Although the algorithm was developed
as part of a silicon compiler [5], it can be applied to any channel
routing environment.

Our algorithm is based on the following new improved ideas:

(a) by viewing each two-pins subnet as a basic component, we eliminate
the need for the "zone" concept introduced in [1];

(b) at each iteration of our algorithm, we identify the set of subnets
to be considered for assignment, based on both the vertical and
horizontal constraints rather than on the horizontal constraint
alone, as proposed in [1];

(c) to determine the assignment of subnets to tracks, we attach weights
onto the edges of the bipartite graph and use the max-min matching
[4], a refinement of the maximum caédinality matching [4] used in
[(11;

(d) by appropriately defining the weight on these edges one can
introduce various heuristics into the algorithm. In our algorithm,
the weight has been defined to control the growth in the length of
the longest path through the vertical constraint graph, which is a
lower bound on the number of tracks needed;

(e) instead of starting from a density column and assigning all the
subnets on one side of the column before considering any subnet
on the other side of the column, our algorithm considers assigning
subnets on both sides of the column simultaneously. We also derive
an algorithm and a theorem to detect the constraint loops for the
bidirectional case, which reduce to those presented in [l] for the
unidirectional case.

We tested our algorithm on four channel routing problems taken
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from the literature and obtained the same best results reported among

various papers [1,3].

The paper is organized as follows: in Sec. II we formulate the
two-layer channel routing problem with restricted doglegging; in
Sec. III we discuss all the important ideas behind our algorithm, using
several examples for illustration; in Sec. IV we present our algorithm
in high level pseudo code; in Sec. V we summarize the experimental
results we obtain; and in Sec. VI we present additional ideas we have

on the channel routing problem.



IT. PROBLEM FORMULATION

Consider a rectangular routing channel with one row of pins
along each of its sides. For each pin, its x-coordinate is fixed but
its y=coordinate is to be determined by the router. A net is a set of
two or more pins which are to be electrically connected by the router.
As shown in Figure la, net 1 consists of two pins, one at the bottom
side and the other at the left side of the channel. A net with p pins
can be viewed as consisting of (p-1) subnets, each of which connects
two neighboring (along x=-axis) pins of the net. As shown in Figure 10,
net 2 which consists of three pins, can be viewed as two subnets 2a
and 2b.

The router is to connect all the pins of each net using a set
of vertical and hotizontal.segments. In the case of no doglegging,
each net consists of a single horizontal segment, as shown in Figure
la. By introducing doglegs at various columns, a net may consist of
several horizontal segments [1,2,3]. As in [1,3], we consider a
restricted form of doglegging in this paper: doglegs of a net can be
introduced only at the column where the net has a pin. In other words,
each subnet will consist of a single horizontal segment and dogleg can
be introduced only at the endpoints of a subnet, as shown in Figure 1lb.

Although this restricted doglegging will, in general, use more
tracks than the unrestricted doglegging of [2], we adopt it for the
following reasons. If it is assumed that the given x-coordinates of the
pins are such that there is enough distance between each pair of
columns to satisfy the process design rules, then introducing doglegs
only at the endpoints of subnets does not require checking for enough
distance between the columns to insert a dogleg. In addition, this
restricted doglegging allows the conceptual simplification of treating
each subnet as a basic component.

The router uses two independent layers for interconnection:



one used for all horizontal segments and the other for all vertical
segments. The electrical connectivity between a horizontal segment and
a vertical segment is achieved through a contact located at their
intersection.

In order to avoid unintended electrical connection, two
horizontal segments which belong to two different nets must not
superimpose. Or, equivalently, two subnets which overlap horizontally
and which belong to different nets must be assigned to different
tracks. For example, in Figure lb, subnets 2b and 3 must be assigned
to different tracks. This type of constraint is refered to as

horizontal constraint.

Similarly two vertical segmeﬁts which belong to two different
nets must not superimpose. Hence, if two subnets, which belong to
different nets, have a pair of endpoints aligned in the same column,
then the subnet whose aligned endpoint is to be connected to a pin at
the top side must be assigned a track above the track assigned to the
subnet whose aligned endpoint is to be connected to a pin at the
bottom side. For example, in Figure lb, subnet 2a must stay above
subnet 1, and subnet 3 must stay above subnet 2b. This type of

constraint is refered to as vertical constraint.

Note that the vertical constraint is transitive, i.e. 1if
subnet a must stay above subent b, and subnet b above subnet ¢, then
subnet a must stay above subnet c even though subnets a and ¢ may not
have aligned endpoints or may not even overlap horizontally. Unless
otherwise stated, the term vertical constraint will include both the
direct and indirect (via transitive closure) vertical constraints
throughout this paper.

Obviously if there is a loop of vertical comnstraints, then
there exist no solution to the channel routing problem. However such a

loop can be broken by inserting a new pin into one of the subnets in
Al



the loop, thus splitting the subnet into two subnets which can be
independently assigned to different tracks. Hence without loss of
generality, we assume that there is no loop of vertical constraints in
the given channel routing problem.

A solution to the channel routing problem is to find an

assignment of the subnets to the tracks without violating any

horizontal or vertical constraints, e.g. Figure la and 1lb. In other
words, viewing a track as a set of subnets, a solution to the channel
routing problem 1s simply a partition of the set of all the subnets,
which does not violate the horizontal and vertical constraints.

There are several criteria for evaluating a channel routing
configuration [2] but minimizing the number of tracks used, which is
proportional to the chip area, is the most important. In this paper we
shall present a heuristic algorithm which tries to obtain a channel

routing configuration with a minimum number of tracks.



ITII, UNDERLYING IDEAS

In this section, we will present all the important ideas upon

which our channel routing algorithm is based.

A. Densitz

Given a channel routing problem, the density of the problem is
defined as the largest number of different nets crossing a (vertical)
column of the channel. For example, the density of the problem in
Figure 1 is 2 and that of Figure 2 is 5. As pointed out in Sec. II, in
order to satisfy horizontal constraints, all the subnets of a column
which belong to different nets must be assigned to different tracks.
Therefore the density is a lower bound on the minimum number of tracks
needed for a given channel routing pfoblem.

Let a column which has the largest number of different nets

crossing be known as a density column. For example, Figure 2 has two

density columns next to each other. In our algorithm, we shall first
find all the densit& columns of the given channel routing problem.
For reasons that will become obvious later in ﬁec. ITII.E, we choose to
start with the middle one among all the density columns. We then assign
a different track to each subnet in that column which belongs to a
different net. For example, in Figure 2, subnets 1,2,3,4 and 5 are each
initially assigned to a different track. The reason for starting with
a density column is that since we will need at least density number of
tracks, we might as well use that many tracks from the beginning.
B. Front Line Subnets (FLS)

After assigning each subnet in the chosen density column to a
track, our algorithm enters an iterative loop where at each iteration
a set of yet unassigned subnets closest to the tracks is considered for

assignment. Such a set of subnets is called the front—line subnets and

they are defined below.

Let left (right, respectively) end-point of a track be defined
iy



as the left- (right-, respectively) most end-point of all the subnets
assigned to the track. Let 1x(b) (rx(b), respectively) denote the
x=coordinate of the left (right, respectively) end-point of b where b
can be either a subnet or a track. For the sake of brevity, we will
discuss only the suﬁnets on the right of the tracks. All the ideas
below apply similarly to the subnets on the left of the tracks, with
obvious modification.

To find the rfls (right-front-line-subnets), we first sort all
the right subnets into ascending order of their 1x. Following that
order, we examine each subnet to see if it is a rfls. A right subnet
is said to be a rfls if and only if it has a horizontal or vertical
constraint with every one of the rfls selected thus far. Intuitively,
at each iteration, the set of rfls is the maximal set of right subnets
which are at the front line facing the tracks and should be considered
for assignment without waiting until the next iteration.

Consider the example in Figure 2. Suppose we first choose the
right density column and initially assign subnets 1-5 to tracks 1=5
respectively. Note that all the subnets have been sorted into ascending
order of their 1x. At the first iteration, the first right subnet
considered is subnet 6. Since at this point no rfls has been selected,
subnet 6 satisfies all the requirements of a rfls and is selected as a
rfls. Next, subnet 7 is considered and since it does not have any
horizontal or vertical constraint with subnet 6, subnet 7 is not a
rfls. Similarly, subnets 8-12 do not qualify as rfls at this iteration.
Intuitively, subnets 7-12, not having any constraint with subnet 6,
can be assigned to the same track as subnet 6, and hence should wait
until subnet 6 is assigned before they are considered for assignment.
In other words, subnet 6 shields subnets 7-12 from the tracks so that
they are not at the front line facing the tracks and hence need not be
considered for assignment at this iteration. Now suppose subnet 6 is

=



assigned to track 4 as shown in Figure 2. At the second iteration, the
first right subnet considered is subnet 7 and hence it is a rfls. Next
subnet 8 is considered. Although it does not have horizontal overlaps
with subnet 7, it does have a vertical constraint with subnet 7. Thus
subnet 8 is also a rfls at this iteration. However subnets 9-11 are not
rfls because they do not have any constraint with subnet 7. Subnet 12
is a rfls because it has vertical constraint with both subnets 7 (via
transitive closure) and 8.

The above example illustrates an important idea: by considering
the vertical constraint in addition to the horizontal constraint in the
definition of fls, we enlarge the set of subnets which ought to be
considered at each iteration (e.g. subnet 12 as a rfls). This increase
in the scope of consideration will only help to reduce the chances of
requiring extra tracks because rfls were unwisely assigned in earlier
iterations by arbitrarily choosing one out of several possible
assignments.

C. Max-min Matching

After we have chosen the set of fls at each iteration, we must
decide how to assign these fls to the tracks so as to minimize the
number of tracks required. Following [l], we view this problem as a

bipartite matching problem [4, Chap. 5]: each track corregponds to a
source node on the left-hand-side of the bipartite graph; each fls
corresponds to a destination node on the right-hand-side; and there is
an edge between a track node and a fls node if and only if the fls can
be assigned to the track without violating any horizontal or vertical
constraint. A matching of a bipartite graph is defined as a subset of
the edges where no two edges in it are incident to the same node. Since
every fls not in a matching given by solving the bipartite matching
problem will require a new track, it is clear that we must try to find

the maximum cardinality matching [4,1], i.e. the matching with the
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largest number of the fls matched to the tracks.

In general there are several maximum cardinality matchings
for a given matching problem. In order to make an intelligent choice
among these maximum cardinality matchings, we introduce the weight onto
the edges of the bipartite graph. This serves as a convenient mechanism
for incorporating heuristics into our algorithm by an appropriate
definition of the weight. In the following we shall define the weight
we use 1in our algorithm and explain the heuristics behind it.

At each iteration of our algorithm, we define a vertical
constraint graph [1] based on the state of the channel routing problem

at that iteration, as follows. A vertical constraint graph is a

directed graph where each node correéponds to a track or an unassigned
subnet, and each arc (u,v) denotes node u must stay above node v due to
a direct vertical constraint. The indirect vertical constraint between
two nodes, which arises from transitive closure, corresponds to a
directed path between these two nodes in the graph. Figures 3a and 3b
show a channel routing problem and its vertical constraint graph. Note
that a vertical constraint graph must be acyclic, i.e. free of
constraint loops, for a channel routing solution to exist. (Throughout
this paper, the term edge is used to refer to the undirected edge inm
the bipartite graph, and the term arc is used to refer to the directed
edge in the vertical c;nstraiut graph.)

Let the length of a directed path be defined as the number of
nodes in that path, or equivalently, 1 plus the number of arcs in that
path, Let the critical path length of a node u in a vertical constraint
graph, denoted by cpl(u), be defined as the length of the longest path
through u in the vertical constraint graph. Let the critical path
length of a vertical constraint graph, denoted by EEl' be defined as
the length of the longest path through the graph. In other words,

cpl = max {cpl(u) | all nodes u in the graph} 1)

-9-



In Figure 3b, cpl=3.

Since each node in a directed path has a vertical constraint
with all other nodes in the path, it must be assigned to a track
different from all other nodes in the path. Hence the minimum number
of tracks required in a channel routing problem cannot be smaller than
its cpl. In other words, cpl is a lower bound on the minimum number of
tracks needed for a givenm channel routing problem. In Figure 3a,
density (which is another lower bound on the number of tracks required)
is 2, cpl is 3, and it is easy to see that at least 3 tracks are needed
to satisfy the vertical constraints among the subnets.

However, unlik? density, which is a fixed quantity for a given
channel routing problem, cpl tends to increase as the subnets are
assigned to the tracks while solving the problem. It is because after
a subnet 1is assigned to a track, the resultant new track will have all
the vertical constraints of both the old track and the assigned subnet
since they must remain together on the same horizontal position
hereafter. In terms of vertical constraint graphs, the resultant graph
can be derived from the original graph by moving all the constraint
arcs incident with the subnet onto its assigned track, and then
deleting the isolated subnet.

Consider the example in Figure 4. Its density=2 as shown in
Figure 4a, and before any subnet is assigned, its cpl=2 as shown in
Figure 4b. Suppose subnets 1 and 2 are first assigned to tracks 1 and 2
respectively. At the first iteration, subnets 3 and 4 are the fls
whereas subnet 5 is shielded by subnet 4. Suppose subnets 3 and 4 are
assigned to tracks 1 and 2 respectively as shown in Figure 4c. Then the
cpl of the resultant graph is increased to 3, a number greater than its
density, as shown in Figure 4d (where we use u+v to denote the track
which consists of subnets u and v). On the other hand, if subnets 3 and

4 are assigned to tracks 2 and 1 respectively, then the cpl remains at

10~



2 and, as shown in Figure 4e, only 2 tracks are needed to solve the
given channel routing problem. Thus there is a need to choose among the
maximum cardinality matchings the one which minimizes the increase in
cpl.

Based on this observation, we incorporate the following
heuristics into our algorithm. Let the weight W(u,v) of an edge (u,v)
between track u and subnet v be defined as -1 times the cpl through
the track resulting from assigning subnet v into track u.

W(u,v) = =1 * cpl(u+v) (2)
From (1) and (2) we have,
cpl of the resulting vertical constraint graph
GEQ max {cpl(u+v) | all (u,v) in the matching}
= max {-1*W(u,v) | all (u,v) in the matching}
= =1 * min{W(u,v) | all (u,v) in the matching}
Hence in order to keep the cpl of the resulting vertical constraint
graph minimum, our problem becomes that of finding a maximum
cardinality matching for which the minimum of the weights of the edges

in the matching is maximum, i.e. the max-min matching problem [4]. We

use the Threshold Method [4, pp. 198] to find the max-min matching.
The term cpl(u+v) can easily be computed as follows. Given a
vertical constraint graph, let us assign/ the top-down level numbers

(tdl) to the nodes as follows:
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Top-down level assignment algorithm:

BEGIN
i:=0;
WHILE not all nodes are assigned a tdl, DO
BEGIN
fr=1413
FOR each node u with no incoming arc, DO
BEGIN
set tdl(u):=1i;
delete u and all the arcs incident to it, from the graph
END
END
END
In other words, tdl(u) is the length of the longest path from the top
to node u. Similarly, we define the bottom-up level number (bul) of a
node. Hence
cpl(u) = tdl(u) + bul(u) = 1 (3)
Since the longest path from the top to node u+v, resulting from
assigning node v into node u, is simply the longer of the two longest
paths from the top to node u and to node v,
tdl(u+v) = max { tdl(u) , tdl(v) } (4)
Similarly,
bul(u+v) = max { bul(u) , bul(v) } (5)
Applying (3) to u+v and substituting (4) and (5), we have

cpl(u+v) = max{tdl(u),tdl(v)}+max{bul(u),bul(v)}~-1 (6)

We can further refine the definition of the weight by noting
that if there is an edge (u,v), and if rx(u)=1x(v), then the right-most
subnet assigned to track u and subnet v belongs to the same net
(because the existence of edge (u,v) implies that u and v do not have
vertical constraint and with rx(u)=1x(v), we can conclude that they

=12=



share the pin located at rx(u)). By adding 0.5 to the weight of such
(u,v) to encourage (u,v) from being chosen in the max-min matching, we
will tend to reduce unnecessary doglegging.

D. Delay Assignment

At each iteration of our algorithm, after finding the max-min
matching between the tracks and the fls, we assign the fls to the
tracks according to the max-min matching. However not all fls need to
be assigned at this point for the problem solving process to progress,
i.e. to introduce new fls from the remaining subnets. Since the
assignment of the remaining subnets depends critically on the past
assignments, intuitively it is a good strategy to avoid any premature
assignment, (i.e. commiting a subnet to a track before it is necessary
for the introduction of new fls,) and thus retain as much flexibility
as possible. The following example illustrates the advantage of such a

delay assignment strategy.

Consider the channel routing problem in Figure 5a which has
density=3. Suppose subnets 1,2 and 3, which intersect a density column,
are initially assigned to tracks 1,2 and 3 respectively. At the first
iteration, we have the vertical constraint graph as shown in Figure 5b,
and the weighted bipartite graph as shown in Figure 5c. Suppose the
max-min matching obtained is {(1,4),(2,5)}. If we assign both subnets
4 and 5 accordingly, we get the vertical constr;int graph shown in
Figure 5d and the weighted bipartite graph shown in Figure 5e. Clearly
only one of subnets 6 and 7 can be assigned to track l+4, and a new
track is needed for the other subnet. Observe that subnets 6 and 7 are
shielded by subnet 4 only and after subnet 4 is assigned to a track,
subnets 5, 6 and 7 form a legitimate set of fls. If at the end of the
first iteration we assign only subnet 4 to track 1, then we get the
vertical constraint graph in Figure 5f and the weighted bipartite graph
in Figure 5g. There is a max-min matching {(3,5),(1+4,6),(2,7)} which

=13-



matches all the fls and hence does not require any new track.

Therefore the delay assignement strategy is incorporated into
our algorithm as follows. After finding a max-min matching, our
algorithm assigns to the tracks only those fls which are to the left
of the first subnet not yet chosen as a fls (recall that those unchosen
subnets are sorted in ascending order of their 1x). In other words,
only those fls with rx<lx of the left-most non-fls subnet are assigned,
all other fls remain as fls for the next iteration, and new fls are
chosen in the same manner as presented in Sec. III.B. The delay
assignment strategy is also incorporated in Algorithm #2 of [1]
where at Step 4 only nets terminating at the current zone are assigned.

E. Bidirectional Search

Thus far we have presented our ideas and examples for the case
with no subnet on the left of the chosen density column. Since a
density column can be at any x-coordinate of the channel, we must
consider the general case where there are subnets on both sides of the
chosen density column. One obvious approach, taken in [1], is to
consider one side of the chosen density column first, iteratively
assign all the subnets on that side, then turn around and iteratively
assign the subnet on the other side of the chosen density column. Our
experience with this approach indicates that because the second side
is completely ignored while assigning the subnets on the first side,
it tends to require more tracks when assigning the subnets on the
second side. Therefore we adopt the following bi~directional search
strategy: at each iteration we consider both sides of the tracks
simultaneously by building a weighted bipartite graph and finding a
max-min matching for each side. Since a density column is the column
where the largest number of subnets intersect, it tends to be the
critical area where new tracks are added. To spread these difficult

areas evenly on both sides of the chosen density column, we take the
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chosen density column to be the middle one among all the density
columns of a given channel routing problem. With this bidirectional
strategy, we do get channel routing configurations with smaller
number of tracks.

F. Constraint Loops Detection

Although an edge (u,v) in the bipartite graph guarantees that
subnet v can be assigned into track u without violating horizontal or
vertical constraints, a simultaneous assignment of two or more subnets
to the tracks according to a matching may create a vertical constraint
loop. To see this point, consider the example in Figure 6a which has
density=2. Suppose subnets 1 and 2 are initially assigned to tracks 1
and 2. For the first iteration, the vertical constraint graph and the
bipartite graph are shown in Figure 6b and 6¢c. Since {(2,4),(1,3)} is
the only maximum cardinality matching, it is also the only max-min
matching. If we make the assignment accordingly, we find that there is
a vertical constraint loop between tracks 1+3 and 2+4 as shown in
Figure 6d.

In [1], an algorithm was given to remove the edges in a
matching which create constraint loop. However that algorithm cannot be
adopted into our algorithm because it works only for a unidirectional
search and not a bi-directional search. Instead we use the following
algorithm to detect constraint loops. The input to the algorithm
consists of a matching of the bipartite graph and the associated
vertical comstraint graph. The nodes and the edges are deleted from
the bipartite graph. For the remainder of Sec. IIIL.F, the term nodes
refers to the track and fls nodes in the bipartite graph (a subset of
those in the vertical constraint graph). The term nabove of a node is
defined to be the number of nodes which is above the node in the

vertical constraint graph.
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Constraint loops detection algorithm:

BEGIN
compute nabove of every node;
WHILE NOT every node is deleted, DO
BEGIN
DO
BEGIN.
(a)delete every matching edge between nodes with nabove=0;
(note: if a track has two matching edges, one on each side,
then all three nodes must have nabove=0 in order to delete)
(b)delete every node with nabove=0 and with no matching edge;
(c)decrement nabove of every node which has an arc from each
node just deleted
END
UNTIL no deletion is possible;
IF every node is deleted THEN done ELSE
BEGIN
(d)choose as an EX edge, a matching edge which has a node with
nabove=0 (its other node must have nabove>0);
(e)delete the chosen EX edge
END
END
END
To illustrate the algorithm, consider the matching and the
vertical constraint graph shown in Figure 7a and 7b respectively. At
the first iteration, no matching edge can be deleted. Although both
track 1 and subnet 5 have nabove=0, their matching edge (1,5) cannot
be deleted because track 1 is matched to subnet 3 on the other side
which has nabove=1. Suppose matching edge (2,4) is chosen over (1,3)

as an EX edge and is then deleted. At the second iteration, node 4 1is
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first deleted which causes node 3 to have nabove=0. Next matching edges
(1,5) and (1,3) are deleted since all three nodes now have nabove=0.
Since there are no matching edges left, all the remaining nodes are
deleted in the order of their top-down level: 1,3,5 and 2.

The following theorem guarantees that a matching without any
EX edge will not result in a constraint loop after the assignment is
made according to the matching. Thus for each set of fls, we iterate
on the process of finding the max-min matching of the new bipartite
graph, and remove all its EX edges from the bipartite graph, until a
max-min matching with no EX edge is found.

THEOREM

A matching has no EX edge if and only if the subnet=-to-track
assignment made according to the matching will not result in a
constraint loop.

PROOF :

We will first prove that if there is no EX edge there is no
constraint loop. Since a constraint loop must consist of at least two
nodes (resulting from the assignment of two fls nodes to two tracks
nodes) which have mutual vertical constraint on each other, these
resultant nodes must both have nabove>0. Since every node of the
matching edges deleted in Step (a) has nabove=0, the node resulting
from the assignment based on these deleted edges will have nabove=0
and hence cannot be part of a constraint loop. Since every node deleted
in Step (b) will only result in a node with nabove=0 after the
assignment, they can be forgotten as far as the possibility of creating
constraint loops is concerned. Applying the same reasoning in the
subsequent iterations of Steps (a) and (b) until all nodes are deleted,
we conclude that no EX edge implies no constraint loop.

Next we will prove that if there is an EX edge then there is a

constraint loop. Let (u(l),v(l)) be an EX edge. Without loss of
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generality, assume that u(l) has nabove=0, and v(1l) has nabove>O0.
Since the vertical constraint graph before assignment is acyclic,
there exists a node u(2) with nabove=0 which is an ancestor of v(l).
Since u(2) is not yet deleted, there exists a matching edge (u(2),v(2))
where v(2) has nabove>0. Applying the same reasoning repeatedly, we
have an infinite sequence of matching edges (u(l),v(1)),(u(2),v(2)),...
Since the graph is finite and the sequence is not, there exists an k
such that u(l)=u(k) and v(l)=v(k). Since u(i+l) is an ancestor of v(i),
after assigning according to the matching, u(i+1)+v(i+l) is an ancestor
of u(i)+v(i). Hence there is a constraint loop around u(l)+v(l) after
the assignment.
Q.E.D.
Observe that our constraint loop detection algorithm and the

theorem reduce to those in [l1] for the unidirectional case.
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IV. ALGORITHM

Combining the ideas presented in the previous section, we
arrive at the following heuristic algorithm for solving a two-layer
channel routing problem with a minimum number of tracks.

Channel routing algorithm:

BEGIN
initialize each subnet in the middle density column as a track;
WHILE a subnet is not yet assigned, DO
BEGIN'

find left and right sets of fls;

build left and right weighted bipartite graphs;

DO
BEGIN

delete EX edges of last matchings from bipartite graphs;

find left and right max-min matchings of new bipartite graphs;
END

UNTIL the new matchings have no EX;
determine which fls should be assigned in order to get new fls;
FOR each of these fls, DO
BEGIN
IF it is in the matching, THEN assign to track accordingly
ELSE create a new track for it
END
END;
position the tracks to satisfy vertical constraints among them

END.
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V. EXPERIMENTAL RESULTS

The algorithm presented in the previous section has been
implemented in the programming language MAINSAIL on a DEC 20 computer
and a HP 9826 desk—=top computer. The algorithm was tested on four
channel routing problems taken from the literature. They range in size
and complexity and the last one is the well=known "Difficult Example"
[1,3]. For each problem our algorithm uses the same number of tracks
as the minimum reported among various papers. Table 1 summarizes
for each benchmark problem, its source, the number of subnets it has,
its density, the minimum number of required tracks reported in the
literature along with its reference, and the number of tracks used by
our algorithm. Note that our algorithm uses only the density number of
tracks for the first two problems, and one plus density for the other
two. The channel routing configuration obtained by our algorithm are
presented in Figures 2,8,9 and 10.

In order to determine the effectiveness of our algorithm, it
should be tested against many more benchmark channel routing problems.
However they are not readily available in the machine readable form and

to code them by hand is a tedious and error-prone process.
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VI. ADDITIONAL COMMENTS
A. Wire Length
In addition to the number of tracks used, the total length of
the wire is also an important criterion in evaluating a channel routing
configuration., Given a channel routing problem, the total length of its
horizontal segments is fixed. Given a channel routing configuration,
the length of a vertical segment can be reduced in two ways: (a) by
reassigning a subnet which causes a dogleg to a new track to reduce or
even eliminate the length of the dogleg; (b) by reassigning a subnet,
which is not a subnet with one pin at the top side and another at the
bottom side of the channel, to a new track closer to the (top or
bottom) side where the pins are. Of éourse, the new assignment must
still satisfy the vertical and horizontal constraints. For example in
Figure 8, we can reassign subnet 1 from track 8 to track 6 to eliminate
its dogleg of length=2, and reassign subnet 2 from track 7 to track 11
to reduce wire length by 2*(11-7).
B. Contacts
Another important criterion to evaluate a channel routing

configuraton is the number of contacts, or vias, used to electrically
connect the two independent interconnect layers. Each pin along the top
or bottom sides of a channel needs one contact to connect to its
horizontal segment(s) if there is no dogleg, and it needs two contacts
if there is a dogleg in that column. Besides, for a vertical segment
which is not intersected by any horizontal segment, it can be routed
in the layer used for horizontal segments and thus will not need a
contact between itself and its horizontal segment(s). Hence we have

number of contacts required
= (number of pins on the top and bottom sides of the channel) +

(number of doglegs) = (number of vertical segments which are (7)

not intersected by any horizontal segments)
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Given a channel routing problem the number of pins in the top
and bottom sides are fixed. However given a routinh configuration,
one can reassign the subnets to new tracks, within the restriction
imposed by the vertical and horizontal constraints, to decrease the
number of doglegs and to increase the number of vertical segments not
intersected by any horizontal segments.

Therefore by post-processing a channel routing configuration,
one can decrease the wire length and the number of contacts required.

C. Three-layer Channel Routing

With the recent advance in the process technology, in
particular the second metal layer, it is possible to have three
independent layers for interconnection. For such process technology
the channel routing problem becomes relatively simple. The three-=layer
channel routing problem can be formulated as in Sec. II except that
the first layer is used for the horizontal segments, the second layer
for the vertical segments connected to pins along the top side of the
channel, and thé third layer for the vertical segments connected to
pins along the bottom. Since the second and the third layers can
superimpose without causing any electrical connection, one no longer
needs to be concerned about the vertical constraints. Hence the three-
layers channel routing problem becomes that of finding the minimum
cardinality set of paths through the horizontal constraint graph, where
each node corresponds to a subnet and each edge (u,v) indicates that
node v is to the left of node u, i.e. v can be assigned to the same
track as u. A solution to this problem can be found by using the greedy
strategy, i.e. assign each subnet to the track closest to it. It is
also easy to show that for any three-layer channel routing problem
there always exists an optimal solution which uses the same number of

tracks as its density.
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VII. CONCLUSION

We have presented a new algorithm for solving the two-layer
channel routing problem along with the insight and the experimental
results. It will be used as part of a general routing system now being
implemented based on the ideas developed by Mr. G. Clow and myself.
Although our general routing system was initially intended as part of
a silicon compiler [5], our ideas apply just as well in an interactive

graphic computer—aided design environment.
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benchmark problem # of subnets density best result reported our result

15 Els Fisura 1] 12 5 5 (14 S

2. [1. Figure 251 uy 12 12 E1] 12

3. [3s Figure 111 1306 18 19 [3] 18

4. [3. Figure 18] 218 19 28 [11] 20
Table 1.
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CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.
Figure 9.

Figure 10.

Minimum tracks routing configurations,
(a) without doglegging;
(b) with restricted doglegging.

A simple channel routing problem.

An example of cpl>density,
(a) routing configuration;
(b) vertical constraint graph.

Controlling the growth in cpl,

(a) the given channel routing problem;

(b) initial vertical comstraint graph;

(¢) final routing configuration if 3 and 4 are assigned to
1 and 2 respectively;

(d) final vertical constraint graph if 3 and 4 are assigned
to 1 and 2 respectively;

(e) final routing configuration if 3 and 4 are assigned to
2 and 1 respectively;

(£f) final vertical constraint graph if 3 and 4 are assigned
to 2 and 1 respectively.

Advantage of delay assignment strategy,

(a) the given channel routing problem;

(b) initial vertical constraint graph;

(c) initial weighted bipartite graph;

(d) vertical constraint graph if 4 and 5 are assigned to
1 and 2 respectively;

(e) bipartite graph if 4 and 5 are assigned to 1 and 2
respectively;

(f) vertical constraint graph if only 4 is assigned to 1;

(g) bipartite graph if only 4 is assigned to 1.

Constraint loops created by simultaneous assignment,

(a) the given channel routing problem;

(b) initial vertical constraint graph;

(c) initial bipartite graph;

(d) vertical constraint graph after 4 and 3 are assigned to
1 and 2 respectively.

An example for constraint loop detection algorithm,

(a) bidirectional bipartite graph;

(b) vertical constraint graph.

Routing configuration generated for benchmark problem #2.

Routing configuration generated for benchmark problem #3.

Routing configuration generated for benchmark problem #4.

Table 1. Summary of experimental results.

=T -



