
����������
�������

Citation: Shen, H.; Shan, X.; Xu, M.;

Tian, Z. A New Chaotic Image

Encryption Algorithm Based on

Transversals in a Latin Square.

Entropy 2022, 24, 1574. https://

doi.org/10.3390/e24111574

Academic Editor: Joanna Tyrcha

Received: 5 October 2022

Accepted: 27 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

A New Chaotic Image Encryption Algorithm Based on
Transversals in a Latin Square

Honglian Shen 1,2,†, Xiuling Shan 1,*,†, Ming Xu 3,† and Zihong Tian 1,†

1 School of Mathematical Sciences, Hebei Normal University, Shijiazhuang 050024, China
2 Department of Mathematics and Computer Science, Hengshui University, Hengshui 053000, China
3 Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
* Correspondence: xiulingshan@hebtu.edu.cn
† These authors contributed equally to this work.

Abstract: In this paper, a new combinatorial structure is introduced for image encryption, which
has an excellent encryption effect on security and efficiency. An n-transversal in a Latin square has
the function of classifying all the matrix’s positions, and it can provide a pair of orthogonal Latin
squares. Employing an n-transversal of a Latin square, we can permutate all the pixels of an image
group by group for the first time, then use two Latin squares for auxiliary diffusion based on a
chaotic sequence, and finally, make use of a pair of orthogonal Latin squares to perform the second
scrambling. The whole encryption process is “scrambling–diffusion–scrambling”. The experimental
results indicated that this algorithm passed various tests and achieved a secure and fast encryption
effect, which outperformed many of the latest papers. The final information entropy was very close
to 8, and the correlation coefficient was approximately 0. All these tests verified the robustness and
practicability of the proposed algorithm.

Keywords: image encryption; chaotic; Latin square; transversals; n-transversal

1. Introduction

In recent years, network communication has developed very rapidly, and a large
amount of public or private image information is transferred via the public Internet. How to
transmit a great deal of image information safely and efficiently has become an increasingly
important issue. Image encryption is the main solution. Digital image encryption is a new
and relatively independent branch of computer cryptography and a research hot spot in
the field of information security. Unlike ordinary text information, a digital image has
a massive amount of data, a strong correlation between pixels, and other particularities,
which make the traditional methods DES, IDEA, and RSA inappropriate. Therefore, various
image encryption algorithms have been put forward in the last few years.

Chaos-based encryption algorithms play an important role in existing image encryp-
tion algorithms [1–3]. Some qualities of a chaotic system such as sensitivity to initial values,
parameter sensitivity, ergodicity, etc., make it particularly appropriate to perform image
encryption. However, there are some disadvantages in chaotic systems, such as being
defined on a set of real numbers, accompanied by short-period phenomena, local linearity,
and uneven distribution, and requiring discretization when used [4]; therefore, they are
vulnerable to chosen plaintext attacks or known plaintext attacks. Accordingly, more and
more high-dimensional chaotic systems [5–7] have been applied, along with increasing
complexity and unpredictability. The higher the dimension of the chaotic system, the
more computation is required. Hence, many new different techniques have been used in
image encryption algorithms, including one-time keys [8], DNA coding [9–11], genetic
manipulation [12–14], compressive sensing [15,16], semi-tensor product theory [17,18],
finite-precision error [19], natural interval extensions [20], fractal sorting matrices [21], and
so on.

Entropy 2022, 24, 1574. https://doi.org/10.3390/e24111574 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24111574
https://doi.org/10.3390/e24111574
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e24111574
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24111574?type=check_update&version=1

Entropy 2022, 24, 1574 2 of 19

Recently, many combinatorial design structures have been applied in cryptography,
such as Latin squares [5,22–25], Latin cubes [6,26–28], the Hadamard matrix [29], etc. In
particular, the Latin square is the most used. A Latin square defined on a finite integer
set S is a square matrix, having uniformity for the same number of occurrences of each
element in S, and the total number of Latin squares is also very large. These characteristics
of Latin squares are very suitable for image encryption, so some algorithms according to
Latin squares have been put forward. As early as 1949, Shannon pointed out that a perfect
password can be expressed by a Latin square in his classic paper [30]. Wu et al. proposed
an image encryption scheme by using Latin squares [22]. In this paper, a Latin square
was used to generate a one-dimensional mapping for the scrambling process. However,
the scrambling efficiency of this algorithm is low and it is vulnerable to attacks. Other
algorithms that use Latin squares have the same problem [5]. Then, some algorithms
using a pair of orthogonal Latin squares appeared [23–25], which can directly generate
a two-dimensional mapping, instantly increasing the scrambling efficiency. In addition,
these Latin squares can provide pseudo-random sequences for the diffusion process. For
example, Xu et al. generated a self-orthogonal Latin square (SOLS) and proposed a new
algorithm for image encryption [24]. The SOLS and its transpose form a pair of orthogonal
Latin squares, and the SOLS can provide a pseudo-random sequence for the diffusion
process. The experimental results showed that this algorithm is safe and highly efficient.
The entropy value of the encrypted Lena image reached 7.997, and the correlation coefficient
was small. The Latin cube is a kind of complex structure in combinatorial design, and the
Latin cube contains several Latin squares. It is more widely used in color image encryption
algorithms or grayscale images represented by a bit matrix. Xu et al. put forward a
new image encryption scheme by using a 3D bit matrix and orthogonal Latin cubes [26].
Each original image was decomposed into a three-dimensional bit matrix, and a pair of
orthogonal Latin cubes was used, not only for confusion, but also for diffusion, which
proved that the algorithm is highly safe and efficient. The same as the algorithm in [27], the
orthogonality of the 3D Latin cube was fully utilized. In 2021, Hua et al. designed a new
CIEA using orthogonal Latin squares and 2D-LSM for color image encryption and realized
point-to-point permutation and the random distribution of the pixels in a plain image [6].
The algorithm in [28] also makes full use of the orthogonality of a group of Latin cubes,
and the images were transformed into one or several cubes.

As can be seen from the above discussion, the Latin cube is suitable for more complex
situations. For grayscale images, the orthogonality and uniformity of Latin squares have
better performance. Therefore, in this paper, we propose a novel chaos-based image
encryption algorithm according to transversals in a Latin square. For a Latin square of
order n, there exist plenty of n-transversals. Employing an n-transversal, we can divide
all n2 positions into n mutually disjoint groups, then permutate the pixels of the image
group by group in the first round of substitution. We can also define two new Latin squares
according to the n-transversal, which can be used for auxiliary diffusion on the basis of
a chaotic sequence. Finally, a pair of orthogonal Latin squares is reused for the second
scrambling. The whole structure is “scrambling–diffusion–scrambling”. The simulation
results showed that the proposed method outperformed many of the latest papers in terms
of some statistical safety indicators. The main contributions of this article are presented as
follows:

• An n-transversal in a Latin square is used for image encryption. This combinatorial
structure has two functions: classify all the positions of a square and generate two
new orthogonal Latin squares.

• We permutated the pixels of the image group by group in the first round of substitution
according to an n-transversal. Two suitable Latin squares were used for auxiliary
diffusion, and another pair of orthogonal Latin squares was also used for the second
scrambling.

• The experimental results indicated that this algorithm can make full use of the new
combinatorial structure. It passed various tests and had a high security level and a

Entropy 2022, 24, 1574 3 of 19

fast speed. The comparison results indicated that it outperformed many of the latest
papers.

In the rest of this article, some primary definitions and conclusions are introduced
in Section 2. Section 3 is mainly introduces the detailed procedure of encryption and
decryption. In Section 4, the experimental results and analysis are given. At the end, we
summarize this article.

2. Preliminaries
2.1. Latin Squares and Transversals

A Latin square of order n (defined on an n-set S) is an n × n array in which each
cell contains a single symbol, such that each symbol occurs exactly once in each row and
column. For consistency, we set S = {0, 1, . . . , n− 1}.

Two Latin squares of order n A = (aij) and B = (bij) are orthogonal if every ordered
pair (aij, bij) in S× S occurs exactly once.

Figure 1 lists a pair of orthogonal Latin squares of order 4 A = (aij) and B = (bij).
Denote C = (cij) as the juxtaposition array, where cij = (aij, bij). Each ordered pair in S× S
occurs exactly once.

A =

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

, B =

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

, C =

(0, 0) (1, 1) (2, 2) (3, 3)
(1, 2) (0, 3) (3, 0) (2, 1)
(2, 3) (3, 2) (0, 1) (1, 0)
(3, 1) (2, 0) (1, 3) (0, 2)

.

Figure 1. Latin squares A and B and the juxtaposition array C.

Notation: Using a pair of orthogonal Latin squares A = (aij) and B = (bij) can directly
generate a two-dimensional map φ : (i, j)→ (aij, bij), i, j = 0, 1, ..., n− 1.

Suppose M is a Latin square defined on S. A transversal in M is a set of n positions,
with no two in the same row or column, including each of the n symbols exactly once. Two
transversals are disjoint if there are no same positions in them. Any k disjoint transversal is
called a k-transversal. If k = n, there exists an n-transversal in M.

In Figure 1, C is the juxtaposition array of A and B. Treat each column of C as a
position element set of A. There are four positions in the first column; all row numbers
and column numbers are different; the four elements at the four positions of A are 0, 3, 1, 2
respectively, so the first column of C is a transversal of A. The other columns of C are
similar. All the positions of A are divided into four pairwise disjoint groups, so there is a
four-transversal in A.

For an additive group G, a bijection θ of G is called a complete mapping if the mapping
σ : x −→ x + θ(x) is also a bijection of G [31].

Theorem 1 ([32]). The Cayley table M of the additive group G = {g0, g1, ..., gn−1} is a Latin
square with the (i, j)th entry gi + gj. For a bijection θ : G −→ G, Mθ is the Latin square with the
(i, j)th entry gi + θ(gj), and the cells {(gi, θ(gi))|i = 0, 1, ..., n− 1} form a transversal of M if
and only if θ is a complete mapping of G.

Theorem 2. Let F = {g0, g1, ..., gn−1} be a finite field with character p. M is the Cayley table of F.
Let a ∈ F, a 6= 0, 1, and a 6≡ −1 (mod p). Define a mapping γj : x −→ ax + gj (j = 0, 1, ..., n− 1).
Then, the following conclusions hold:
(1) These γjs (j = 0, 1, ..., n− 1) are n different complete mappings over F under addition.
(2) Define an n× n array Mγ with the (i, j)th entry γj (gi) = agi + gj. Then, Mγ is a Latin square
on F.
(3) Define D = (dij) with dij = (gi, γj(gi)). All columns of D form n disjoint transversals of
M (named D as the truncated decomposition array). Define the array M1 with the (i, j)th entry
gi + γj(gi). Then, M, M1, Mγ are pairwise orthogonal Latin squares.

Entropy 2022, 24, 1574 4 of 19

Appendix A shows the proof of Theorem 2. According to this theorem, there are n
disjoint transversals in M, where the ith column index in the jth transversal is the (i, j)th
element of Mγ.

Example 1. Let F be a finite field of order four. Suppose the primitive polynomial is ω2 + ω + 1,
where ω is a primitive root of F. Let F = {g0, g1, g2, g3} with g0 = 0, g1 = 1, g2 = ω,
g3 = ω + 1.

Firstly, define the Cayley table M on the field F under addition with the (i, j)th entry
gi + gj:

M =

0 1 ω ω + 1
1 0 ω + 1 ω
ω ω + 1 0 1

ω + 1 ω 1 0

.

Let a = ω. Construct another Latin square Mγ with the (i, j)th entry γj(gi) = agi + gj:

Mγ =

0 1 ω ω + 1
ω ω + 1 0 1

ω + 1 ω 1 0
1 0 ω + 1 ω

.

Construct the truncated decomposition array D with the (i, j)th entry
(

gi, γj (gi)
)
:

D =

(0, 0) (0, 1) (0, ω) (0, ω + 1)
(1, ω) (1, ω + 1) (1, 0) (1, 1)

(ω, ω + 1) (ω, ω) (ω, 1) (ω, 0)
(ω + 1, 1) (ω + 1, 0)(ω + 1, ω + 1)(ω + 1, ω)

.

The four positions of each column of D form a transversal of M, and the set of all
columns is a four-transversal of M.

Finally, define the array M1 with the (i, j)th entry gi + γj (gi) = (1 + a)gi + gj:

M1 =

0 1 ω ω + 1

ω + 1 ω 1 0
1 0 ω + 1 ω
ω ω + 1 0 1

.

According to Theorem 2, M, M1, Mγ are pairwise orthogonal Latin squares.

2.2. Logistic Map

In this article, we adopted the classical logistic map to generate two new sequences.
One of them was used to generate a finite field, and the other was used to perform diffusion.
We describe the logistic map as follows.

xi+1 = λxi(1− xi), i = 0, 1, 2, ... (1)

where λ is a system parameter, 0 < λ 6 4 and xi ∈ (0, 1). When λ > 3.573815, the sequence
shows chaos.

3. The Proposed Image Encryption Algorithm

For simplicity, some of the symbols are described as follows. n stands for a prime
power. Q is used to represent an n× n original plaintext image. K is the encryption key.
Cipher denotes the corresponding ciphertext. This algorithm is divided into two parts:
Algorithm 1 generates three Latin squares and an n-transversal by the use of K and the
features of Q; Algorithm 2 is mainly used for encryption, including three layers: scrambling,

Entropy 2022, 24, 1574 5 of 19

diffusion, and scrambling, then the encrypted image Cipher is formed. The encryption
diagram is listed in Figure 2.

Figure 2. The encryption process.

3.1. The Generation of Latin Squares M, M1, Mγ and an n-Transversal

We used Algorithm 1 to construct three Latin squares and an n-transversal, all of
which were directly generated on a finite field, using addition and multiplication in the
finite field.

Algorithm 1: The generation of M, M1, Mγ and an n-transversal.

Input: An n× n plain image Q, encryption key K = (µ0, key0, key1), public
parameter a.

Output: Latin squares M, M1, Mγ and the truncated decomposition array D.
Step 1: Compute the sum of all pixels in Q, denoted as sumQ. Let

s = f loor(sumQ/255× 1015)/1015, (2)

where floor is the downward integer function. Compute key0_new = (key0 + s)/2,
key1_new = (key1 + s)/2. It is very essential because sumQ reflects the
characteristics of the plaintext image. When the plaintext image changes a little,
the chaotic sequence will change greatly because of the changed key. In other
words, only one round of encryption is needed to achieve a high sensitivity to the
plaintext image.

Step 2: Generate a logistic sequence of length n x1 = {xi | i = 0, 1, 2, ..., n− 1} with
system parameter µ0 and initial value x0 = key0_new. Sort x1 as follows:

[f x, lx] = sort(x1), (3)

where sort is the function that sorts a sequence in ascending order. f x is the new
sequence reordered by x1, and lx is the index position.

Step 3: Redefine the operations of addition and multiplication in lx, then generate
a finite field Fn with character p. Denote Fn = {g0, g1, ..., gn−1}. Select a ∈ Fn,
a 6= 0, 1, and a 6≡ −1(mod p), and generate three Latin squares M, M1, Mγ with
the (i, j)th entry gi + gj, (1 + a)gi + gj, and agi + gj, respectively. According to
Theorem 2, M, M1, Mγ are pairwise orthogonal.

Step 4: Generate the truncated decomposition array D with the (i, j)th entry
(gi, agi + gj). Then, the column set of D is an n-transversal of M.

3.2. Image Encryption

We used Algorithm 2 to complete the rest of the encryption process. First of all, with
the help of the truncated decomposition array D, we can permutate the image pixels of Q
group by group. Secondly, we used two Latin squares M and M1 for auxiliary diffusion
based on another chaotic sequence x2. Finally, a pair of orthogonal Latin squares M1

Entropy 2022, 24, 1574 6 of 19

and Mγ was used for the second scrambling. The following is the detailed procedure of
Algorithm 2.

Algorithm 2: The proposed encryption algorithm.

Input: An n× n plain image Q, encryption key K = (µ0, key0, key1), public
parameters a, c1, and c2.

Output: Ciphertext image Cipher.
Step 1: Make use of Algorithm 1, Q, K, and a to generate M, M1, Mγ, and D.
Step 2: Scramble Q for the first time. At first, convert D into a natural column

index array Dθ by bijection θ : gi → i. Starting from the first transversal, the first
pixel of Q at Dθ(0, 0) is placed at the position Dθ(1, 0), the second pixel at the
position Dθ(2, 0) is placed at the position Dθ(3, 0), and so on, until the last pixel
at the position Dθ(n− 1, 0) is placed at the position Dθ(0, 0). After scrambling n
times based on n transversals, we can obtain a temporary image P_1. The specific
process is shown below.

P_1(Dθ(i + 1, j)) = Q(Dθ(i, j)),

P_1(Dθ(0, j)) = Q(Dθ(n− 1, j)),

0 ≤ i ≤ n− 2, 0 ≤ j ≤ n− 1.

(4)

Figure 3 shows a fourth-order example to illustrate the scrambling process in this
step. In Figure 3a, a Latin square M (generated on the field of Example 1) is
converted into digital form. Select an element a = 2, then generate Mγ with the
(i, j)th entry (1 + a)gi + gj, resulting in a four-transversal D, distinguished by
four different colors. All 16 positions of a fourth-order matrix are divided into
four pairwise disjoint groups. Because gi = i, Dθ = D, we can scramble Q
according to D. In Figure 3b, starting from the first transversal, the first pixel ′1′

at (0,0) is placed at (1,2), the second pixel ′7′ at (1,2) is placed at (2,3), the third
pixel ′12′ at (2,3) is placed at (3,1), and finally, the fourth pixel ′14′ at (3,1) is
placed at (0,0), as is the scrambling of the other transversals. Because D is a
four-transversal, the first scrambling can be completed after four times.

Step 3: Firstly, convert P_1 into a row vector P_2, then generate another new
chaotic sequence of length n2 + 100 with system parameter µ0 and initial value
key1_new. To eliminate the effect of the initial value, delete the first 100 digits and
the rest form a new chaotic sequence x2. M and M1 are transposed into row
vectors LM and LM1, which are used as two pseudo-random sequences for
auxiliary diffusion to form a new row vector {P_3(i)}n2−1

i=0 . The detailed diffusion
formula is as follows.{

b = mod(f loor(x2(i) ∗ (103 + c1 ∗ LM(i) + c2 ∗ LM1(i))), 256),

P_3(i) = P_2(i)⊕ b⊕ P_3(i− 1),
(5)

where the initial value P_3(−1) = 0, b is a temporary variable, and mod is the
module integer function.

Step 4: Transpose P_3 to an array P_4. By using the orthogonality of M1 and Mγ,
we conducted the second scrambling according to (6), and the final ciphertext
image Cipher was obtained.{

P_4(M1(i, j), Mγ(i, j))→ Cipher(i, j),

0 ≤ i, j ≤ n− 1.
(6)

Entropy 2022, 24, 1574 7 of 19

(a) (b)

Figure 3. A 4-order example: (a) the generation of a 4-transversal D; (b) the scrambling process
according to D.

3.3. Image Decryption

When we performed image decryption, followed the reverse procedure, and we
needed to know the value sumQ in advance. The following Figure 4 is the decryption
diagram.

Figure 4. The decryption process.

4. Simulation Results and Security Analysis

We conducted simulation experiments and list all the results in this section. In order
to reflect the superiority of this algorithm, we compared it with some representative
algorithms [2,5,24,25,33–36].

In our experiments, a total of six different 256× 256 images were selected for testing,
which were chosen from the USC-SIPI2 and CVG-UGR3 image sets. Every experiment re-
quired only one round of encryption, and the secret key K was: µ0 = 3.99999, key0 = 0.123456,
key1 = 0.234567. There were three public parameters a = ω (ω is a primitive root of Fn),
c1 = 1.3, c2 = 1.5.

The algorithm was tested from the following aspects: key space and sensitivity analy-
sis, histogram test, correlation test, information entropy test, differential attack resistance
test, robustness test, computational complexity, time efficiency analysis, and resistance to
classical types of attacks.

4.1. Key Space and Sensitivity Analysis
4.1.1. Key Space Analysis

There are three real numbers in K = (µ0, key0, key1), and the computational accuracy
of each value is 10−15, so this algorithm can achieve a key space of 1045 ≈ 2149, greater than
2128 [37,38]. There are also three public parameters to select, so the algorithm has a large
enough key space. In summary, it can resist brute-force attacks.

4.1.2. Key Sensitivity Analysis

An excellent image encryption algorithm desires strong sensitivity to the key, so
sensitivity analysis is often considered a crucial indicator of resistance to brute-force attacks.
It is usually evaluated from two aspects: sensitivity during encryption and sensitivity
during decryption.

(1) Key sensitivity analysis during encryption:

Entropy 2022, 24, 1574 8 of 19

Take the Lena image for example. Firstly, set K = (3.99999, 0.123456, 0.234567), then
modify each value slightly by adding 10−15 after the decimal point. We used two sets
of secret keys to encrypt Lena, Cipher1 being the image encrypted with the original key
K and Cipher2 being the image encrypted with the modified key. Figure 5 shows the
comparison of the results of the two ciphertext images. The percentages of different pixels
were computed as shown in Table 1, which were all greater than 99.59%, fully indicating
that the algorithm is extremely sensitive to the key during encryption.

(a) (b) (c)

Figure 5. Comparisons of encryption results with key changed. The keys that cipher2 used are:
(a) K1 = (3.99999 + 10−15, 0.123456, 0.234567); (b) K2 = (3.99999, 0.123456 + 10−15, 0.234567);
(c) K3 = (3.99999, 0.123456, 0.234567 + 10−15).

Table 1. Key sensitivity test results during encryption.

The Comparison Ciphers Figure 5a Figure 5b Figure 5c

Number of different pixels 65,270 65,276 65,288
Percentage 99.5941% 99.6033% 99.6216%

(2) Key sensitivity analysis during decryption:
Similarly, Lena was also used to perform key sensitivity analysis during decryption.

Given the encrypted image Cipher, make a tiny change to the value 10−15 in each value of
K = (3.99999, 0.123456, 0.234567), then use the two sets of secret keys to decrypt Cipher.
From Figure 6, we can find that the original image can only be obtained with the original
key, while, when using the modified key, we cannot decrypt correctly. In addition, Table 2
records the percentages of different pixels of two deciphered images, all greater than 99.5%.
From these results, we can discover that even though the key changes a little, we will fail to
obtain the original image. Therefore this algorithm is key-sensitive during decryption.

(a) (b) (c)

Figure 6. Comparisons of decryption results with the key changed. The keys that decipher uses
are: (a) K1 = (3.99999 + 10−15, 0.123456, 0.234567); (b) K2 = (3.99999, 0.123456 + 10−15, 0.234567);
(c) K3 = (3.99999, 0.123456, 0.234567 + 10−15).

Table 2. Key sensitivity test results during decryption.

Original and Decrypted Image Figure 6a Figure 6b Figure 6c

Number of different pixels 65,274 65,290 65,227
Percentage 99.6002% 99.6246% 99.5285%

Entropy 2022, 24, 1574 9 of 19

4.2. Statistical Analysis

A good algorithm for image encryption should be capable of resisting any statistical at-
tacks. The main statistical indicators include histogram analysis, the correlation coefficients
of adjacent pixels (usually considering three directions), and information entropy analysis.

4.2.1. Histogram Analysis

In an image, the histogram is a representation of the frequency of each gray-level pixel.
A well-encrypted image has as uniform a histogram distribution as possible. In general, it
can be measured by variance S, and the formula is as follows:

S =
1

256

255

∑
i=0

(histi − aver)2, (7)

where histi denotes the frequency of the ith gray-level pixel, and aver = 1
256

255
∑

i=0
histi. S

represents the variance of the histogram. Set the significance level as α = 0.05; if S < 293.25,
the histogram can be regarded as a uniform distribution [39]. The smaller the value of S is,
the better.

Figure 7 shows the histogram distribution of six images before and after encryption.
All the histograms of the ciphertext images tend to be evenly distributed. Table 3 shows
the histogram values of the six images before and after encryption. All the values of S
were smaller than 293.25, satisfying the requirements. All encrypted images passed the
histogram analysis; especially, the encrypted Lena image’s variance was as low as 195.766.
The above results indicate that this algorithm can effectively resist histogram analysis.

4.2.2. Correlation Test

In a plaintext image, there exist strong correlations among adjacent pixels. To resist
statistical analysis, the correlation in ciphertext images should be as small as possible [40].
We randomly selected 4000 pairs of neighboring pixels, including three directions (horizon-
tal, vertical, and diagonal) to measure the correlations. The required calculation formula is
listed in (8):

ruv =
cov(u, v)√

D(u)
√

D(v)
. (8)

where

cov(u, v) =
1
N

N

∑
i=1

(ui − E(u))(vi − E(v))

D(u) =
1
N

N

∑
i=1

(ui − E(u))2

E(u) =
1
N

N

∑
i=1

ui

(9)

where u and v represent the grayscale values of two neighboring pixels in the image.
To visualize the distribution of the pixels before and after encryption, Figure 8 displays

the correlation distributions of six different images in three directions. Observing the
original image, we can note that the neighboring dots are mainly distributed around the
diagonal, whereas, in an encrypted image, the dots are evenly distributed throughout
the whole plane. That is, the plaintext images are highly correlated in any direction, but
after encryption, the correlations were very low. Using the calculation formula in [24],
we computed the correlation coefficients of six images before and after encryption and
present the results in Table 3. We can see that, before encryption, the correlation coefficients
were very large, the largest number being approximately 1. However, after encryption, all
numerical results were very small, approximately 0. For comparison with other algorithms,

Entropy 2022, 24, 1574 10 of 19

Table 4 lists the comparison results in the case of Lena. Although the average correlation
coefficient was inferior to [2,33,36], it was better than the other five References. The accuracy
of the decimal point was 10−3, which implies that this algorithm passed the correlation test
and achieved a good confusion effect.

(a) (b) (c) (d)

Figure 7. Histograms of “Lena, Baboon, Cameraman, Clock, Couple, Man”: (a) plaintext images;
(b) the corresponding histograms of (a); (c) ciphertext images; (d) the corresponding histograms
of (c).

Entropy 2022, 24, 1574 11 of 19

(a) (b)

(c) (d)

(e) (f)

Figure 8. The correlation distribution of plaintext and ciphertext images in the horizontal, vertical,
and diagonal directions: (a) Lena; (b) Baboon; (c) Cameraman; (d) Clock; (e) Couple; (f) Man.

Table 3. All the results before and after encryption.

Image
Testing Direction Average

Value Variance Entropy
H V D

Lena 0.94034 0.97136 0.92288 0.94486 41,398.1016 7.42489
Ciphertext image of Lena −0.00064 −0.00356 −0.00157 0.00192 195.7656 7.99784
Baboon 0.78885 0.74049 0.68020 0.73651 46,866.8281 7.37811
Ciphertext image of Baboon −0.00291 −0.00005 0.00402 0.00233 238.9062 7.99737
Cameraman 0.96099 0.97463 0.92712 0.95425 105,604.8672 7.03056
Ciphertext image of Cameraman 0.00198 0.00045 0.00202 0.00148 227.3594 7.99748
Clock 0.95009 0.97750 0.93230 0.95330 282,061.5625 6.70567
Ciphertext image of Clock 0.00135 0.00365 −0.00194 0.00231 205.8984 7.99775
Couple 0.87446 0.88660 0.80207 0.85438 86,692.7031 7.05625
Ciphertext image of Couple −0.00067 −0.00159 −0.00023 0.00083 252 7.99723
Man 0.93943 0.95108 0.91287 0.93446 37,058.7812 7.53608
Ciphertext image of Man 0.00347 −0.00098 −0.00128 0.00191 234.7734 7.99741

Entropy 2022, 24, 1574 12 of 19

Table 4. Comparison with other algorithms.

Image
Testing Direction Average

Value Entropy NPCR
(%)

UACI
(%)

Encryption
Time (s)

Decryption
Time (s)H V D

Ciphertext image in
the proposed algorithm −0.0006 −0.0036 −0.0016 0.0019 7.9978 99.617 33.5426 0.3077 0.2709

Ciphertext image in [5] 0.0023 0.0158 0.0147 0.0583 – 99.6101 33.4583 0.325 –
Ciphertext image in [24] 0.0179 0.022 7 × 10−6 0.0133 7.9970 99.6107 33.4232 0.425 –
Ciphertext image in [25] 0.0018 0.0016 −0.0027 0.002 7.9974 99.6095 33.4649 0.2–0.23 0.13–0.17
Ciphertext image in [33] 0.0009 0.0001 0.0000 0.0003 7.9974 99.6102 33.3915 0.1062 –
Ciphertext image in [34] −0.0059 −0.0146 0.0211 0.0139 7.9973 99.6100 33.4800 0.3243 –
Ciphertext image in [2] −0.0003 −0.0007 −0.0001 0.0004 7.9977 99.6000 33.4500 1.3 –
Ciphertext image in [35] 0.0026 0.0051 0.0003 0.0027 7.9973 99.5800 33.5400 – –
Ciphertext image in [36] −0.0005 0.0012 0.0008 0.0008 7.9975 99.6037 33.4606 – –

4.2.3. Information Entropy Analysis

An important measure of testing randomness is information entropy, usually denoted
as H, which can be measured according to (10):

H(m) = −
l−1

∑
i=0

p(mi)log2 p(mi), (10)

where mi is the gray value, and there are l kinds of gray values in an image. p(mi) represents
the probability of mi, and ∑l−1

i=0 p(mi) = 1. Generally, an image has 256 gray values. Only
when the frequency of each gray level is the same, information entropy H reaches the
theoretical ideal value of 8 [41].

We used (10) to calculate the entropy values of six images before and after encryption,
then list the results in Table 3. From the table, we can see that all values were very close to 8,
which shows a good encryption effect. Especially, the information entropy of Lena reached
7.99784, and the strong uncertainty of this algorithm was achieved. Table 4 lists Lena’s
entropy values in different algorithms. Our result was closest to 8, which was superior to
the other contrast algorithms. Therefore, the ciphertext images have strong uncertainty,
and our algorithm can resist entropy attacks.

4.3. Differential Attack Analysis

A good algorithm can resist differential analysis, requiring different plaintext images
(even if with only one different pixel) corresponding to significantly different ciphertext
images. In general, there are two commonly used criteria for testing resistance to differential
attacks, NPCR and UACI. Let C1 = (C1

i,j) and C2 = (C2
i,j) denote two ciphertext images of

size M× N, where their plaintext image has only one different pixel. Define the binary
sequence of the images C1 and C2:

Di,j =

{
0, C1

i,j = C2
i,j

1, C1
i,j 6= C2

i,j

. (11)

Then, define NPCR as (12), which means the percentage of different pixels between
two ciphertext images.

NPCR =
∑M−1

i=0 ∑N−1
j=0 D(i, j)

M× N
× 100%. (12)

Furthermore, define UACI as (13), which means the average of the absolute difference
between two ciphertext images.

Entropy 2022, 24, 1574 13 of 19

UACI =
∑M−1

i=0 ∑N−1
j=0 |C

1
i,j − C2

i,j|
255×M× N

× 100%. (13)

Table 5 shows the encrypted Lena image’s NPCR and UACI at four specific positions,
from which we can discover that the values are different at different positions. That is to
say, these two indicators have randomness. For unity, let us reduce the first pixel at position
(0,0) by 1 and calculate the values of the NPCR and UACI of the six images based on (12)
and (13). The numerical results are listed in Table 6.

Table 5. Lena’s NPCR and UACI at specific positions (%).

Location (209,232) (33,234) (162,26) (72,140)

NPCR 99.6353 99.6185 99.6292 99.6246
UACI 33.4139 33.4155 33.416 33.4107

Table 6. The NPCR and UACI of the six images.

Image NPCR (%) UACI (%)

Lena 99.6170 33.5426
Baboon 99.6307 33.4622
Cameraman 99.6292 33.2594
Clock 99.6124 33.51
Couple 99.6307 33.5925
Man 99.6078 33.3822

With a significance coefficient of 0.05, the ideal NPCR is 99.5693%, and the UACI is
33.2824% for images of size 256× 256 [42]. Most results in Table 6 were all higher than
the expected values, which proved that the algorithm in this article effectively passed the
differential attack capability test. For the comparison with other algorithms in the case of
Lena, the reader can refer to Table 4. The values of NPCR and UACI were all higher than
the contrast algorithms. This means our results were better, indicating our algorithm’s
superiority.

4.4. Robustness Test

In the process of transmitting ciphertext images over the network, the data may be
lost or attacked by noise, which requires the ciphertext image to have good anti-cutting
and anti-noise attack performance. In other words, a good algorithm for image encryption
should have robustness [43]. In addition, we can use the PSNR to evaluate the quality of
the decrypted image and the original image. The higher the value is, the more similar the
two images, and the formula (14) is as follows:

PSNR = 10× log10
M× N × 2552

∑M−1
i=0 ∑N−1

j=0 (P(i, j)− C(i, j))2
. (14)

Taking Lena as an example, from the encrypted Lena image, we, respectively, cut off
1/16, 1/8, 1/4, and 1/2 of the data at the top left corner, then decrypted the cut ciphertext
images with the correct key. Figure 9 displays the results, which clearly show that, even
after its data are cut in half, the body of the image is still visible. The corresponding PSNRs
of Figure 9 and other images are shown in Table 7. It is obvious that all PSNR values were
larger than 8, which means that this algorithm has a good cutting resistance.

Still taking Lena as an example, we, respectively, used salt and pepper noise with
a density of 0.05 and 0.1 and Gaussian noise with a variance 0.01 and 0.1 to attack. As
shown in Figure 10, the image is still visible, and the corresponding PSNRs of Figure 10

Entropy 2022, 24, 1574 14 of 19

and other images are listed in Table 7. All PSNR values were larger than 9, indicating a
good performance to resist noise attacks.

(a) (b) (c) (d)

Figure 9. The ciphertext images of cutting off and the corresponding decryptions: (a) cut 1/16; (b) cut
1/8; (c) cut 1/4; (d) cut 1/2.

(a) (b) (c) (d)

Figure 10. The ciphertext images attacked by different types of noise and the corresponding de-
cryptions: (a) salt and pepper noise with density 0.05; (b) salt and pepper noise with density 0.1;
(c) Gaussian noise with variance 0.01; (d) Gaussian noise with variance 0.1.

Entropy 2022, 24, 1574 15 of 19

Table 7. PSNRs with different cutting attacks and noise attacks.

Image
PSNR Values (dB) PSNR Values (dB)

Cut 1/16 Cut 1/8 Cut 1/4 Cut 1/2 Salt and Pepper
Noise (0.05)

Salt and Pepper
Noise (0.1)

Gaussian
Noise (0.01)

Gaussian
Noise (0.1)

Lena 18.4952 15.6102 12.7567 10.3489 19.3543 16.5183 13.2037 11.9735
Baboon 18.5505 15.5962 12.7419 10.4122 19.3658 16.2732 13.1195 11.9209
Cameraman 17.6986 14.8126 12.0811 9.6798 18.4388 15.6301 12.2959 11.1939
Clock 16.6901 13.6156 10.7295 8.1282 17.4574 14.4200 11.0870 9.9733
Couple 18.8945 15.8033 12.9758 10.5872 19.4215 16.4731 13.0921 12.0530
Man 17.7603 14.6126 11.7237 9.4005 18.1337 15.3696 11.7741 10.7375

4.5. Computational Complexity and Time Efficiency

Any effective image encryption algorithm requires low computational complexity. In
Algorithm 1, one chaotic sequence is generated with computational complexity O(n), and
three Latin squares are constructed with computational complexity O(3n2). In Algorithm 2,
there is a three-layer encryption structure, the first scrambling, diffusion, and the second
scrambling. The computational complexity is O(n3), so the computational complexity of
this algorithm is O(n3).

The fast encryption speed of the proposed algorithm can meet the requirements
of instant encryption. The experimental environment was MATLAB R2019b, Microsoft
Windows 10 with Intel core i5-1135G7, 2.40 GHz processor, and 16 GB RAM. Table 8
shows the encryption and decryption time of the six images, which is the mean value of
20 calculations. We can find that all encryption times were approximately equal to 0.31 s,
and the decryption times were approximately equal to 0.27 s. The comparison results of
Lena and other algorithms are listed in the Table 4. It can be seen that our algorithm had a
relatively faster encryption speed than the other algorithms.

Table 8. The encryption and decryption time of the six images.

Image Encryption Time (s) Decryption Time (s)

Lena 0.30769 0.27087
Baboon 0.30816 0.27063
Cameraman 0.30946 0.27259
Clock 0.30812 0.27233
Couple 0.30727 0.27219
Man 0.30769 0.27266

4.6. Resistance to Classical Types of Attacks

There are four classical types of attacks: ciphertext only, known plaintext, chosen
plaintext, chosen ciphertext. Among them, the chosen plaintext attack is the most powerful
attack. If an algorithm can resist this attack, it can resist others [27].

The proposed algorithm only needs one round of encryption to achieve a safe effect.
It depends on the plaintext image and is very sensitive to the initial parameters µ0 and
initial values key0, key1. If the plaintext image or one key has changed, M, M1, Mγ, and
D would be totally different. Furthermore, in the diffusion stage, the encrypted value
is not only related to the plaintext value and former ciphered value, but also related to
the second chaotic sequence. Therefore, the proposed algorithm can resist the chosen
plaintext/ciphertext attack, as well as other types of attacks. In addition, hackers often
use all-black or all-white images to attack the encryption algorithm. We also performed
experiments on these images. The performances are shown in Table 9 and Figure 11.

Entropy 2022, 24, 1574 16 of 19

Table 9. The performances of all-black and all-white images.

Image
256 × 256

Testing Direction Average
Value Variance Entropy NPCR (%) UACI (%)

H V D

All-black −0.00260 0.00045 −0.00286 0.00197 282.6875 7.99688 99.6292 33.2993
All-white −0.00308 0.00091 −0.00193 0.00197 277.7813 7.99693 99.5728 33.2807

0 0.5 1
0

100

200

300

400

500

600

(a)
0 0.5 1

0

100

200

300

400

500

600

(b)

Figure 11. The plain image, encrypted image, and histogram of the encrypted images: (a) all-black;
(b) all-white.

From Figure 11, the encrypted images became meaningless, and the histograms were
uniformly distributed. In addition, from Table 9, we can see that the correlation coefficients
were approximately equal to 0.02, the NPCR and UACI were close to the ideal values, and
the information entropy was equal to 7.9969. In [15], the information entropy of encrypted
all-black and all-white images was 7.9943 and 7.9941, respectively. Therefore, our algorithm
performed better. Therefore, the proposed algorithm has the ability to resist the known
plaintext attacks and chosen plaintext attacks.

5. Conclusions

In this article, a new combinatorial structure was introduced to perform image en-
cryption. An n-transversal in a Latin square can not only group all the positions, but also
provide a pair of orthogonal Latin squares. The good performance of the n-transversal is
fully utilized throughout the encryption process. At first, we realized the first substitution
group by group according to the n-transversal, then we selected two suitable and uniform
Latin squares to perform auxiliary diffusion based on a chaotic sequence, achieving good
diffusion results. In the end, a pair of orthogonal of Latin squares was made full use of by
performing the second scrambling. Three layers of encryption structure were formed. The
proposed algorithm successfully encrypted all test images and passed the key sensitivity
test, statistical test, plaintext sensitivity test, robustness test, etc. Moreover, the entropy of
each encrypted image was very close to 8, and the correlation coefficient was very small,
close to 0. From the above analysis, the proposed algorithm had an excellent encryption
effect on security and efficiency, outperformed many of the latest papers in terms of some
statistical safety indicators, and simultaneously showed robustness and practicability.

This work established the link between the theory of combinatorial designs and image
encryption. In the future, we will introduce more combinatorial structures into the image
encryption algorithms.

Author Contributions: Conceptualization, X.S.; data curation, H.S.; formal analysis, H.S. and X.S.;
funding acquisition, M.X. and Z.T.; investigation, H.S.; methodology, H.S., X.S., and Z.T.; project
administration, H.S.; resources, M.X.; software, H.S.; supervision, X.S. and Z.T.; validation, H.S. and
X.S.; visualization, H.S.; writing—original draft, H.S.; writing—review and editing, H.S., X.S., M.X.,
and Z.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China of Fun-
der Grant Numbers 11871019, 11771119, and 61703149 and the Foundation of Hebei Education
Department of China of Funder Grant Numbers QN2019127 and YKCZ2021037.

Data Availability Statement: Not applicable.

Entropy 2022, 24, 1574 17 of 19

Acknowledgments: The authors would like to thank the Editor and the anonymous reviewers for their
valuable comments and suggestions to improve the quality of this paper, and the authors are grateful
to Jianguo Lei for some helpful discussions on the subject.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Proof of Theorem 2

(1) Let F = {g0, g1, ..., gn−1} be a finite field with character p. Cayley table M is a Latin
square. The (i, j)th entry is gi + gj. By the definition of γj, it is easy to see that these γjs
(j = 0, 1, ..., n− 1) are n different bijections.

For any x ∈ F, define the mapping σj : x → x + γj(x), j = 0, 1, ..., n− 1. Then,

σj(x) = x + γj(x) = x + (ax + gj) = (1 + a)x + gj. (A1)

Obviously, σj is bijective, then γj is a complete mapping of F under addition. By the
definition of γj, these γjs are n different complete mappings of F.

(2) By the definition of Mγ, it is easy to see that each element of F occurs exactly once
in each row and column of Mγ. Therefore Mγ is a Latin square as well.

(3) According to Theorem 1 and the definition of D, all columns of D form n disjoint
transversals of M.

Firstly, let us prove that M1 is orthogonal to M. By the definition of M1, the (i, j)th
entry is gi + γj(gi). That is,

gi + γj(gi) = gi + (agi + gj) = (1 + a)gi + gj. (A2)

Because a 6= 0, 1 and a 6≡ −1(mod p), M1 is still a Latin square different from M, Mγ.
Assuming M1 is not orthogonal to M, there must exist two positions (i, j), (i′, j′),

where (i, j) 6= (i′, j′), such that (gi + gj, (1 + a)gi + gj) = (gi′ + gj′ , (1 + a)gi′ + gj′), namely{
gi + gj = gi′ + gj′

(1 + a)gi + gj = (1 + a)gi′ + gj′
(A3)

Then, either (i, j) = (i′, j′) or a ≡ −1(mod p). Whichever the case, it is a contradiction
with the definition of a or the assumption. Therefore, M1 is orthogonal to M.

Similarly, we can prove M1 and Mγ and M and Mγ are pairwise orthogonal Latin
squares. Theorem 2 is proven.

References
1. Wang, X.; Liu, C.; Jiang, D. A novel triple-image encryption and hiding algorithm based on chaos, compressive sensing and 3D

DCT. Inform. Sci. 2021, 574, 506–527. [CrossRef]
2. Zhou, S.; Wang, X.; Zhang, Y.; Ge, B.; Wang, M.; Gao, S. A novel image encryption cryptosystem based on true random numbers

and chaotic systems. Multimed. Syst. 2022, 28, 95–112. [CrossRef]
3. Nardo, L.G.; Nepomuceno, E.G.; Bastos, G.T.; Santos, T.A.; Butusov, D.N.; Arias-Garcia, J. A reliable chaos-based cryptography

using Galois field. Chaos Interdiscip. J. Nonlinear Sci. 2021, 31, 091101. [CrossRef] [PubMed]
4. Li, S.; Chen, G.; Mou, X. On the dynamical degradation of digital piecewise linear chaotic maps. Int. J. Bifurc. Chaos 2005,

15, 3119–3151. [CrossRef]
5. Zhang, X.; Wu, T.; Wang, Y.; Jiang, L.; Niu, Y. A novel chaotic image encryption algorithm based on latin square and random shift.

Comput. Intel. Neurosci. 2021, 2021, 2091053. [CrossRef]
6. Hua, Z.; Zhu, Z.; Chen, Y.; Li, Y. Color image encryption using orthogonal Latin squares and a new 2D chaotic system. Nonlinear

Dyn. 2021, 104, 4505–4522. [CrossRef]
7. Liu, J.; Zhang, M.; Tong, X.; Wang, Z. Image compression and encryption algorithm based on 2D compressive sensing and

hyperchaotic system. Multimed. Syst. 2022, 28, 595–610. [CrossRef]
8. Liu, H.; Wang, X. Color image encryption based on one-time keys and robust chaotic maps. Comput. Math. Appl. 2010,

59, 3320–3327. [CrossRef]
9. Wang, X.; Zhang, Y.; Bao, X. A novel chaotic image encryption scheme using DNA sequence operations. Opt. Lasers Eng. 2015,

73, 53–61. [CrossRef]

http://doi.org/10.1016/j.ins.2021.06.032
http://dx.doi.org/10.1007/s00530-021-00803-8
http://dx.doi.org/10.1063/5.0061639
http://www.ncbi.nlm.nih.gov/pubmed/34598465
http://dx.doi.org/10.1142/S0218127405014052
http://dx.doi.org/10.1155/2021/2091053
http://dx.doi.org/10.1007/s11071-021-06472-6
http://dx.doi.org/10.1007/s00530-021-00859-6
http://dx.doi.org/10.1016/j.camwa.2010.03.017
http://dx.doi.org/10.1016/j.optlaseng.2015.03.022

Entropy 2022, 24, 1574 18 of 19

10. Chai, X.; Chen, Y.; Broyde, L. A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng.
2017, 88, 197–213. [CrossRef]

11. Dong, W.; Li, Q.; Tang, Y.; Hu, M.; Zeng, R. A robust and multi chaotic DNA image encryption with pixel-value pseudorandom
substitution scheme. Opt. Commun. 2021, 499, 127211. [CrossRef]

12. Abdullah, A.H.; Enayatifar, R.; Lee, M. A hybrid genetic algorithm and chaotic function model for image encryption. AEU-Int. J.
Electron. Commun. 2012, 66, 806–816. [CrossRef]

13. Premkumar, R.; Anand, S. Secured and compound 3-D chaos image encryption using hybrid mutation and crossover operator.
Multimed. Tools Appl. 2018, 78, 9577–9593. [CrossRef]

14. Zhang, Y.; He, Y.; Li, P.; Wang, X. A new color image encryption scheme based on 2DNLCML system and genetic operations. Opt.
Lasers Eng. 2020, 128, 106040. [CrossRef]

15. Xu, Q.; Sun, K.; Cao, C.; Zhu, C. A fast image encryption algorithm based on compressive sensing and hyperchaotic map. Opt.
Lasers Eng. 2019, 121, 203–214. [CrossRef]

16. Khan, J.S.; Kayhan, S.K. Chaos and compressive sensing based novel image encryption scheme. J. Inf. Secur. Appl. 2021,
58, 102711. [CrossRef]

17. Wang, X.; Gao, S. Image encryption algorithm for synchronously updating Boolean networks based on matrix semi-tensor
product theory. Inform. Sci. 2020, 507, 16–36. [CrossRef]

18. Wang, X.; Gao, S. Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by
a Boolean network. Inform. Sci. 2020, 539, 195–214. [CrossRef]

19. Nardo, L.G.; Nepomuceno, E.G.; Arias-Garcia, J.; Butusov, D.N. Image encryption using finite-precision error. Chaos Soliton. Fract.
2019, 123, 69–78. [CrossRef]

20. Nepomuceno, E.G.; Nardo, L.G.; Arias-Garcia, J.; Butusov, D.N.; Tutueva, A. Image encryption based on the pseudo-orbits from
1D chaotic map. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 061101. [CrossRef]

21. Xian, Y.; Wang, X. Fractal sorting matrix and its application on chaotic image encryption. Inform. Sci. 2021, 547, 1154–1169.
[CrossRef]

22. Wu, Y.; Zhou, Y.; Noonan, J.P.; Agaian, S. Design of image cipher using latin squares. Inform. Sci. 2014, 264, 317–339. [CrossRef]
23. Li, G. A digital image scrambling method based on orthogonal Latin square. J. North China Univ. Tech. 2001, 13, 14–16.
24. Xu, M.; Tian, Z. A novel image encryption algorithm based on self-orthogonal Latin squares. Optik 2018, 171, 891–903. [CrossRef]
25. Wang, X.; Su, Y.; Xu, M.; Zhang, H.; Zhang, Y. A new image encryption algorithm based on Latin square matrix. Nonlinear Dyn.

2021, 107, 1277–1293. [CrossRef]
26. Xu, M.; Tian, Z. A novel image cipher based on 3D bit matrix and latin cubes. Inform. Sci. 2019, 478, 1–14. [CrossRef]
27. Zhou, J.; Zhou, N.; Gong, L. Fast color image encryption scheme based on 3D orthogonal Latin squares and matching matrix.

Opt. Laser Technol. 2020, 131, 106437. [CrossRef]
28. Li, T.; Shi, J.; Li, X.; Wu, J.; Pan, F. Image encryption based on pixel-level diffusion with dynamic filtering and DNA-level

permutation with 3D Latin cubes. Entropy 2019, 21, 319. [CrossRef]
29. Sam, I.S.; Devaraj, P.; Bhuvaneswaran, R. An efficient quasigroup based image encryption using modified nonlinear chaotic

maps. Sens. Imaging 2014, 15, 1–21. [CrossRef]
30. Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
31. Evans, A.B. Orthogonal Latin Squares Based on Groups; Springer Science and Business Media LLC: Cham, Switzerland, 2018;

Volume 57, pp. 13–14.
32. Colbourn, C.J.; Dinitz, J.H. Handbook of Combinatorial Designs, 2nd ed.; CRC Press/Chapman & Hall: Boca Raton, FL, USA, 2007;

pp. 143, 345–348.
33. Liu, H.; Zhao, B.; Huang, L. A novel quantum image encryption algorithm based on crossover operation and mutation operation.

Multimed. Tools Appl. 2019, 78, 20465–20483. [CrossRef]
34. Cao, C.; Sun, K.; Liu, W. A novel bit-level image encryption algorithm based on 2D-LICM hyperchaotic map. Signal Process. 2018,

143, 122–133. [CrossRef]
35. Wang, X.; Gao, S.; Ye, X.; Zhou, S.; Wang, M. A new image encryption algorithm with cantor diagonal scrambling based on the

PUMCML system. Int. J. Bifurc. Chaos 2021, 31, 2150003. [CrossRef]
36. Wang, M.; Wang, X.; Zhao, T.; Zhang, C.; Xia, Z.; Yao, N. Spatiotemporal chaos in improved cross coupled map lattice and its

application in a bit-level image encryption scheme. Inf. Sci. 2021, 544, 1–24. [CrossRef]
37. Jin, C.; Liu, H. A color Image encryption scheme based on arnold scrambling and quantum chaotic. IJ Netw. Secur. 2017,

19, 347–357. [CrossRef]
38. Patro, K.A.K.; Acharya, B. Secure multi-level permutation operation based multiple colour image encryption. J. Inf. Secur. Appl.

2018, 40, 111–133. [CrossRef]
39. Belazi, A.; Talha, M.; Kharbech, S.; Xiang, W. Novel medical image encryption scheme based on chaos and DNA encoding. IEEE

Access 2019, 7, 36667–36681. [CrossRef]
40. Behnia, S.; Akhshani, A.; Mahmodi, H.; Akhavan, A. A novel algorithm for image encryption based on mixture of chaotic maps.

Chaos Soliton. Fract. 2008, 35, 408–419. [CrossRef]
41. Sun, X. Image Encryption Algorithm and Practice-Based on C Sharp Language Implementation; Science Press: Beijing, China, 2013; pp.

313–315.

http://dx.doi.org/10.1016/j.optlaseng.2016.08.009
http://dx.doi.org/10.1016/j.optcom.2021.127211
http://dx.doi.org/10.1016/j.aeue.2012.01.015
http://dx.doi.org/10.1007/s11042-018-6534-z
http://dx.doi.org/10.1016/j.optlaseng.2020.106040
http://dx.doi.org/10.1016/j.optlaseng.2019.04.011
http://dx.doi.org/10.1016/j.jisa.2020.102711
http://dx.doi.org/10.1016/j.ins.2019.08.041
http://dx.doi.org/10.1016/j.ins.2020.06.030
http://dx.doi.org/10.1016/j.chaos.2019.03.026
http://dx.doi.org/10.1063/1.5099261
http://dx.doi.org/10.1016/j.ins.2020.09.055
http://dx.doi.org/10.1016/j.ins.2013.11.027
http://dx.doi.org/10.1016/j.ijleo.2018.06.112
http://dx.doi.org/10.1007/s11071-021-07017-7
http://dx.doi.org/10.1016/j.ins.2018.11.010
http://dx.doi.org/10.1016/j.optlastec.2020.106437
http://dx.doi.org/10.3390/e21030319
http://dx.doi.org/10.1007/s11220-014-0092-x
http://dx.doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/10.1007/s11042-019-7186-3
http://dx.doi.org/10.1016/j.sigpro.2017.08.020
http://dx.doi.org/101142/s0218127421500036
http://dx.doi.org/10.1016/j.ins.2020.07.051
http://dx.doi.org/106633/IJNS.201703.19(3).04
http://dx.doi.org/10.1016/j.jisa.2018.03.006
http://dx.doi.org/10.1109/ACCESS.2019.2906292
http://dx.doi.org/10.1016/j.chaos.2006.05.011

Entropy 2022, 24, 1574 19 of 19

42. Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. Cyber J. Multidiscip. J. Sci. Technol. J. Sel.
Areas Telecommun. (JSAT) 2011, 1, 31–38.

43. Wang, X.; Li, Z. A color image encryption algorithm based on Hopfield chaotic neural network. Opt. Lasers Eng. 2019, 115, 107–118.
[CrossRef]

http://dx.doi.org/10.1016/j.optlaseng.2018.11.010

	Introduction
	Preliminaries
	Latin Squares and Transversals
	Logistic Map

	The Proposed Image Encryption Algorithm
	The Generation of Latin Squares M,M1,M and an n-Transversal
	Image Encryption
	Image Decryption

	Simulation Results and Security Analysis
	Key Space and Sensitivity Analysis
	Key Space Analysis
	Key Sensitivity Analysis

	Statistical Analysis
	Histogram Analysis
	Correlation Test
	Information Entropy Analysis

	Differential Attack Analysis
	Robustness Test
	Computational Complexity and Time Efficiency
	Resistance to Classical Types of Attacks

	Conclusions
	Appendix A
	References

