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This article introduces a new chaotic system of three-dimensional quadratic autonomous ordi-
nary differential equations, which can display (i) two 1-scroll chaotic attractors simultaneously,
with only three equilibria, and (ii) two 2-scroll chaotic attractors simultaneously, with five equi-
libria. Several issues such as some basic dynamical behaviors, routes to chaos, bifurcations,
periodic windows, and the compound structure of the new chaotic system are then investigated,
either analytically or numerically. Of particular interest is the fact that this chaotic system can
generate a complex 4-scroll chaotic attractor or confine two attractors to a 2-scroll chaotic at-
tractor under the control of a simple constant input. Furthermore, the concept of generalized
Lorenz system is extended to a new class of generalized Lorenz-like systems in a canonical form.
Finally, the important problems of classification and normal form of three-dimensional quadratic
autonomous chaotic systems are formulated and discussed.

Keywords : Multi-scroll chaotic attractor; chaotification; three-dimensional quadratic au-
tonomous system; Lorenz-like system; normal form.

1. Introduction

Chaos as a very interesting complex nonlinear

phenomenon has been intensively studied in the last

four decades within the science, mathematics and

engineering communities.

Recently, chaos has been found to be very use-

ful and has great potential in many technological

disciplines such as in information and computer
sciences, power systems protection, biomedical
systems analysis, flow dynamics and liquid mix-
ing, encryption and communications, and so on
[Chen & Dong, 1998; Chen, 1999; Lü et al., 2002e;
Chen & Lü, 2003, and references therein]. There-
fore, academic research on chaotic dynamics has
evolved from the traditional trend of analyzing and

1507



1508 J. Lü et al.

understanding chaos [Hao, 1984] to the new direc-
tion of controlling and utilizing it [Ott et al., 1990;
Chen, 1993; Chen & Dong, 1998; Chen, 1999; Wang
& Chen, 2000; Lü et al., 2002e; Chen & Lü, 2003].
In a broader sense, chaos control can be divided
into two categories: one is to suppress the chaotic
dynamical behavior when it is harmful [Ott et al.,
1990; Chen, 1993], and the other is to create or
enhance chaos when it is desirable — known as
chaotification or anticontrol of chaos [Chen & Lai,
1998; Chen & Dong, 1998; Wang & Chen, 1999;
Wang et al., 2000; Lü et al., 2002f; Chen & Lü,
2003; Lü et al., 2003]. Very recently, there has been
increasing interest in exploiting chaotic dynamics
in engineering applications, where some attention
has been focused on effectively creating chaos via
simple physical systems such as electronic circuits
[Tang et al., 2001; Wang & Chen, 2000] and switch-
ing piecewise-linear controllers [Lü et al., 2002f; Lü
et al., 2003].

Chaotification is a very attractive theoretical
subject, which however is quite challenging tech-
nically. This is because it involves creating some
very complicated but well-organized dynamical be-
haviors, which usually also involves bifurcations or
fractals. For a given system, which may be linear
or nonlinear and originally may even be stable, the
question is how to generate chaos out of it, by using
a simple and easily implementable controller such as
a state or output feedback controller, or using an ac-
cessible parameter tuner. During the last few years,
a great deal of effort has been made toward this
goal, not only via computer simulations but also by
development of rigorous mathematical theories. In
the endeavor of chaotification, purposefully creating
discrete chaos has gained great success [Chen & Lai,
1998; Wang & Chen, 1999]. At the same time, chao-
tification in continuous-time systems is also devel-
oping rapidly. For example, a simple linear partial
state-feedback controller is able to drive the Lorenz
system [Lorenz, 1963] from its nonchaotic state to
chaotic state. This engineering design has led to
the discovery of the chaotic Chen system [Chen &
Ueta, 1999], which is a dual of the Lorenz system

[C̆elikovský & Chen, 2002, 2003], and led to the dis-
covery of a transition system between the Lorenz
system and the Chen system [Lü & Chen, 2002].

In 1963, Lorenz discovered chaos in a simple
system of three autonomous ordinary differential
equations that has only two quadratic nonlineari-
ties, in order to describe the simplified Rayleigh–

Bénard problem [Festa et al., 2002]. It is no-
table that the Lorenz system has seven terms
on the right-hand side, two of which are nonlin-
ear (xz and xy). In 1976, Rössler found a three-
dimensional quadratic autonomous chaotic system
[Rössler, 1976], which also has seven terms on the
right-hand side, but with only one quadratic non-
linearity (xz). Obviously, the Rössler system has
a simpler algebraic structure as compared to the
Lorenz system.

It was believed that the Rössler system might
be the simplest possible chaotic flow [Lorenz, 1993],
where the simplicity refers to the algebraic represen-
tation rather than the physical process described
by the equations or the topological structure of
the strange attractor. It is therefore interesting to
ask whether or not there are three-dimensional au-
tonomous chaotic systems with fewer than seven
terms including only one or two quadratic nonlin-
earities? The fact is that Rössler actually had pro-
duced another even simpler chaotic system in 1979,
which has only six terms with a single quadratic
nonlinearity (y2) [Rössler, 1979]. Thus, the ques-
tion becomes “How complicated must a three-
dimensional autonomous system be in order to pro-
duce chaos?” The well-known Poincaré–Bendixson
theorem shows that chaos does not exist in a
two-dimensional continuous-time autonomous sys-
tem (or a second-order equation) [Wiggins, 1990].
Therefore, a necessary condition for a continuous-
time autonomous system to be chaotic is to have
three variables with at least one nonlinear term. As
a side note, it is also known that there is a direct
connection between three-dimensional quadratic
chaotic systems and Lagrangian mixing [Schmalzl
et al., 1995; Funakoshi, 2001]. Lagrangian mixing
poses some interesting questions about dynamical
systems; however, since realistic models are mainly
experimental and numerical, this subject is still in
its early involving phase of development.

Three-dimensional quadratic autonomous sys-
tems are very important for studying bifurcations,
limit cycles and chaotic flows. Recently, it is proved
[Zhang & Jack, 1997] that three-dimensional dis-
sipative quadratic systems of ordinary differential
equations, with a total of four terms on the right-
hand side, cannot exhibit chaos. Very recently,
this result was extended to three-dimensional con-
servative quadratic systems [Jack & Zhang, 1999;
Yang & Chen, 2002]. Later, it was known that
autonomous chaotic flow could be produced by
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a three-dimensional quadratic autonomous system
having five terms on the right-hand side, with at
least one quadratic nonlinearity, or having six terms
with a single quadratic nonlinearity. Lately, chaotic
flow in an algebraically simplest three-dimensional
quadratic autonomous system was found by using
jerky functions [Sprott & Linz, 2000], which has
only five terms with a single quadratic nonlinearity
(y2). In fact, this system is simpler than any others
previously found, regarding both its jerky represen-
tation and its representation as a dynamical system.

However, it is noticed that the simplicity of
a system can be measured in various ways. Alge-
braic simplicity of system’s structure is one way,
and topological simplicity of chaotic attractor is
another. Rössler’s attractor and most of Sprott’s
examples are topologically simpler than the two-
scroll Lorenz attractor [Sprott, 1994, 1997; Sprott
& Linz, 2000]. In fact, Rössler attractor has a single-
fold band structure. Furthermore, its one-scroll
structure is the simplest topological structure for
a three-dimensional quadratic autonomous chaotic
system. Thus, it is interesting to ask whether
or not there are three-dimensional quadratic au-
tonomous chaotic systems that can display attrac-
tors with more complex topological structures than
the two-scroll Lorenz attractor. That is, “Is the two-
scroll Lorenz attractor the most complex topologi-
cal structure of this class of chaotic systems?” The
answer is no. In fact, the recently discovered Chen
attractor and its associate transition attractor have
more complex topological structures than the orig-
inal Lorenz attractor [Ueta & Chen, 2000; Lü &
Chen, 2002]. Nevertheless, these newly found at-
tractors also have two-scrolls but not more than
that.

Therefore, in combining these two points of
views on simplicity (or complexity) of a chaotic
system, it would be truly interesting to seek for
lower-dimensional chaotic systems that have a sim-
ple algebraic system structure but with a com-
plex topological attractor structure. This is not just
for theoretical interest; such chaotic systems would
be useful in some engineering applications such as
secure communications.

In the endeavor of finding three-dimensional
quadratic autonomous chaotic systems, other than
luckily encountering chaos in unexpected simula-
tions or experiments, there seems to be two sen-
sible methods: one is Sprott’s exhaustive searching
via computer programming [Sprott, 1994], and the

other is Chen’s theoretical approach via chaotifica-
tion [Chen & Lai, 1998; Wang & Chen, 1999; Chen
& Ueta, 1999; Lü & Chen, 2002].

For nearly 40 years, one of the classic icons of
modern nonlinear dynamics has been the Lorenz
attractor. In 2000, Smale described eighteen chal-
lenging mathematical problems for the twenty-first
century [Smale, 2000], in which the fourteenth prob-
lem is about the Lorenz attractor. In this regard,
one concerned problem has been: “Does it really
exist?” Only very recently, the Lorenz attractor
was mathematically confirmed to exist [Tucker,
1999; Steward, 2000]. Another interesting ques-
tion regarding chaotic systems is: “How complex
can the topological structure of the chaotic attrac-
tor, if exists, of a three-dimensional quadratic au-
tonomous system be?” Here, it is noted that the
complexity of the topological structure of a chaotic
attractor may be measured in two aspects: the
number of subattractors and the number of parts
(“scrolls” or “wings”) of the attractor.

It has been well known that piecewise-linear
functions can generate n-scroll attractors in Chua’s
circuit [Suykens & Vandewalle, 1993; Elwakil et al.,
2001; Elwakil et al., 2002], and in a circuit with
the absolute value as the only nonlinearity, they
can also create a complex n-scroll chaotic attrac-
tor [Tang et al., 2002]. Recently, Liu and Chen
[2003] found a simple three-dimensional quadratic
autonomous chaotic system, which can display a
2-scroll and also (visually) a 4-scroll attractor.
Motivated by these works, this article introduces
one more simple three-dimensional quadratic au-
tonomous system, which can generate two 1-scroll
chaotic attractors simultaneously, or two com-
plex 2-scroll chaotic attractors simultaneously. It
is believed that a three-dimensional quadratic au-
tonomous chaotic system can have at most two
chaotic attractors simultaneously, and the system
to be discussed here is one such simple but interest-
ing chaotic system.

More precisely, the objective of this article is
to present and further study a simple, interesting,
and yet complex three-dimensional quadratic au-
tonomous chaotic system, which can display two
1-scroll attractors simultaneously or two complex
2-scroll chaotic attractors simultaneously. This new
chaotic system is introduced in Sec. 2. Section 3
explains how to find this new chaotic system, and
Sec. 4 further investigates the dynamical behaviors
of this chaotic system, by employing some tools used
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in [Ueta & Chen, 2000; Lü et al., 2002b]. The com-
pound structure of chaotic attractors [Elwakil &
Kennedy, 2001; Lü et al., 2002c, 2002g] is analyzed
for the two 2-scroll attractor of this new system
in Sec. 5. Then, Secs. 6 and 7 explore the rela-
tionship and connecting function for the 2-scroll at-
tractor. The concept of generalized Lorenz system
[C̆elikovský & Chen, 2002, 2003] is then extended,
and a class of generalized Lorenz-like systems
are defined and discussed in Sec. 8. Furthermore,
classification and normal form of three-dimensional
quadratic autonomous chaotic systems are studied
in Sec. 9. Finally, conclusions and discussions are
given in Sec. 10, with a rather detailed list of refer-
ences provided at the end of the article.

2. A New Chaotic System

Consider the following simple three-dimensional
quadratic autonomous system, which can display
two chaotic attractors simultaneously:























ẋ = − ab

a + b
x − yz + c

ẏ = ay + xz

ż = bz + xy ,

(1)

where a, b, c are real constants.
This system is found to be chaotic in a wide

parameter range and has many interesting complex
dynamical behaviors. For example, it is chaotic for
the parameters a = −10, b = −4, and |c| < 19.2,
and for a = −10, b = −4, c = 18.1, it displays two
1-scroll chaotic attractors as shown in Fig. 1.

The Lyapunov exponent spectrum of system
(1) is found to be λ1 = 0.253223, λ2 = 0, λ3 =
−11.3944, and the Lyapunov dimension is dL =
2.0221 for initial value (1, 1, 1). Obviously, when
a = −10, b = −4, c = 18.1, the system has only
three equilibria:

E1(−6.335, 0, 0) ,

E2

(

2
√

10,

√

80

7
+ 3.62

√
10,

1

2

√

800

7
+ 36.2

√
10

)

,

E3

(

2
√

10, −
√

80

7
+ 3.62

√
10, −1

2

√

800

7
+ 36.2

√
10

)

.

It is a strange phenomenon to have two co-
existing chaotic attractors in a three-dimensional

quadratic autonomous chaotic system with only
three equilibria.

Furthermore, when a = −10, b = −4, c = 0,
this system can display two complex 2-scroll chaotic
attractors, as shown in Fig. 2. According to their
geometric locations, these two coexisting attractors
are called upper-attractor and lower-attractor here
for convenience.

For three-dimensional autonomous systems,
Vanĕc̆ek and C̆elikovský [1996] gave a classification
in terms of a12a21, where a12, a21 are the corre-
sponding entries of the linear part of the system
described by the constant matrix A = [aij ]3×3.
According to this condition, the Lorenz system
satisfies

a12a21 > 0 ,

the Chen system satisfies

a12a21 < 0 ,

and system (1) here satisfies

a12a21 = 0 .

This is similar to the system studied in [Lü & Chen,

2002] and then further discussed in [C̆elikovský &
Chen, 2002]. This means that system (1) is also
a transition system that bridges the gap between
the Lorenz and Chen systems. However, system (1)
has similar but different dynamical behaviors with
the transition system found by Lü and Chen [2002],
investigated in [Lü et al., 2002b].

By a suitable nonsingular transform, it is
assumed without loss of generality that A =
[aij ]3×3 = diag{a, b, c}. In this setting, Liu and
Chen [2003] derived another classification condition
in terms of ab + ac + bc for the three-dimensional
quadratic autonomous systems. Using this condi-
tion, the 4-scroll system discovered in [Liu & Chen,
2003] satisfies

ab + ac + bc 6= 0 ,

while system (1) here satisfies

ab + ac + bc = 0 .

Therefore, system (1) is a new and particular sys-
tem that satisfies two different classification condi-
tions as described above. Moreover, this system has
many interesting complex dynamical behaviors, as
will be seen below.
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Fig. 1. Two coexisting 1-scroll chaotic attractors. (a) Initial value (x0, y0, z0)(z0 > 0), (b) initial value (x0, y0, z0)(z0 < 0).
(a = −10, b = −4, c = 18.1.)
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Fig. 2. Two coexisting 2-scroll chaotic attractors. (a) Upper-attractor, (b) lower-attractor. (a = −10, b = −4, c = 0.)

3. The Upper-Attractor and

Lower-Attractor

This section provides a brief discussion of how the
idea of chaotification leads to the discovery of the
system (1) that has two coexisting 2-scroll chaotic
attractors.

Start with the following general form of a three-
dimensional quadratic autonomous system:



















ẋ = − ab

a + b
x + c + dyz

ẏ = ay + exz

ż = bz + fxy ,

(2)

where a, b, c, d, e, f are all real constant
parameters.

The system Jacobian, evaluated at (x0, y0, z0),
is given by

J(x0,y0,z0) =













− ab

a + b
dz0 dy0

ez0 a ex0

fy0 fx0 b













. (3)

To find the equilibria of system (2), let

dx

dt
=

dy

dt
=

dz

dt
= 0 . (4)

Clearly, if

ab

ef
> 0, A = − ab2

(a + b)df
+

bc

df

√

ef

ab
> 0 ,
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and

B = − ab2

(a + b)df
− bc

df

√

ef

ab
≤ 0 ,

then there exist three equilibria:

S1

(

(a + b)c

ab
, 0, 0

)

S2

(

x+,
√

A, −f

b

√
Ax+

)

S3

(

x+, −
√

A,
f

b

√
Ax+

)

;

if ab/ef > 0, A ≤ 0, and B > 0, then system (2)
has another set of three equilibria:

S1

(

(a + b)c

ab
, 0, 0

)

S4

(

x−,
√

B, −f

b

√
B x−

)

S5

(

x−, −
√

B,
f

b

√
B x−

)

;

yet if ab/ef > 0, A > 0, and B > 0, then sys-
tem (2) has five equilibria: S1, S2, S3, S4, S5; but
if ab/ef > 0, A < 0, and B < 0, or ab/ef ≤ 0,
then the system has a unique equilibrium S1, where
x± = ±

√

ab/ef .
In order to ensure system (2) be chaotic,

just like the typical three-dimensional autonomous
chaotic systems such as the Lorenz system, it is re-
quired that

• system (2) is dissipative, that is, ∆V = (∂ẋ/∂x)+
(∂ẏ/∂y) + (∂ż/∂z) = −(ab/(a + b)) + a + b =
(a2 + ab + b2)/(a + b) < 0;

• system (2) has three or five equilibria, and all
these equilibria are unstable.

It is noticed that a three-dimensional conserva-
tive quadratic autonomous system can also display
chaos. Indeed, Sprott [1997] found an example of
three-dimensional conservative autonomous chaotic
system. Here, only the dissipative system case is
discussed.

Since a2 +ab+b2 = (a+(1/2)b)2 +(3b2/4) > 0,
one has a + b < 0. When ab/ef > 0 and A, B are
not simultaneously zero, system (2) has three or five
equilibria. We may choose |d| = 1, |e| = 1, |f | = 1
for the simplicity because the constants d, e, f de-
termine the sign of the quadratic items. To have
chaotic behavior, these equilibria cannot be sta-
ble, that is, the Jacobian should have at least one

unstable eigenvalue when it is evaluated at each
of these equilibria. Thus, theoretical analysis and
various trial tests reveal two sets of parameters:

• a < 0, b < 0, c ∈ R, d = −1, e = 1, f = 1
• a < 0, b < 0, c ∈ R, d = 1, e = −1, f = −1 ,

which yield the new chaotic system (1) and the
following system:



















ẋ = − ab

a + b
x + c + yz

ẏ = ay − xz

ż = bz − xy .

(5)

It is noticed that systems (1) and (5) are equivalent
under the transformation (x, y, z) → (−x, y, z).
In the following, therefore, only system (1) is
considered.

Furthermore, for simplicity, assume c = 0,
which yields the following system:



















ẋ = − ab

a + b
x − yz

ẏ = ay + xz

ż = bz + xy ,

(6)

where a, b are real constants. This is the system to
be further analyzed in the rest of this article.

First, Fig. 2 shows the two coexisting 2-scroll
chaotic attractors — upper-attractor and lower-
attractor — of system (6). More detailed dynamical
behaviors of system (6) will be further investigated
in the following sections.

4. Dynamical Behaviors of the New

Chaotic System

4.1. Some basic properties

System (6) shares various properties with some
known three-dimensional quadratic autonomous
systems, such as the Lorenz system. These are listed
in the following:

4.1.1. Symmetry and invariance

First, note the invariance of the system under the
transforms (x, y, z) → (x, −y, −z), (x, y, z) →
(−x, −y, z), and (x, y, z) → (−x, y, −z). That is,
system (6) is symmetrical about the three coordi-
nate axes x, y, z, respectively. Furthermore, these
symmetries persist for all values of the system pa-
rameters. Also, it is clear that the three coordi-
nate axes x, y, z themselves are solution orbits of
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the system. Moreover, the orbits on the y-axis and
z-axis tend to the origin, while the orbits on the
x-axis tend to infinity, as t → ∞. This chaotic sys-
tem is robust to various small perturbations due to
its highly symmetric structure.

4.1.2. Dissipativity and existence of

attractor

For system (6), it is noticed that

∇V =
∂ẋ

∂x
+

∂ẏ

∂y
+

∂ż

∂z
= − ab

a + b
+ a + b

=

(

a +
1

2
b

)2

+
3

4
b2

a + b
.

So, when a + b < 0, system (6) is dissipative, with
an exponential contraction rate:

dV

dt
=

a2 + ab + b2

a + b
V .

That is, a volume element V0 is contracted by the

flow into a volume element V0e
a
2
+ab+b

2

a+b
t in time t.

This means that each volume containing the sys-
tem trajectory shrinks to zero as t → ∞ at an ex-
ponential rate, (a2 + ab + b2)/(a + b). Therefore, all
system orbits are ultimately confined to a specific
subset of zero volume, and the asymptotic motion
settles onto an attractor.

4.1.3. Diffeomorphism and topological

equivalence

Theorem 1. System (1) is not diffeomorphic and,
further, not topologically equivalent with any known

three-dimensional quadratic autonomous chaotic

system.

Proof. For simplicity of notation and discussion, de-
note any of the known three-dimensional quadratic
autonomous chaotic system, e.g. the Lorenz system,
by

ẋ = f(x) , (7)

and the new chaotic system (1), by

ẏ = g(y) . (8)

If the numbers of equilibria for systems (7)
and (8) are not the same, then they are not dif-
feomorphic. For example, the Lorenz system has
three equilibria, while system (1) with two 2-scroll

attractors has five equilibria. So they are not
diffeomorphic.

If the numbers of subattractors for systems (7)
and (8) are not the same, then they are not diffeo-
morphic. For example, the Lorenz system has a sin-
gle 2-scroll chaotic attractor, while system (1) with
three equilibria has two coexisting 1-scroll chaotic
attractors. So they are not diffeomorphic.

In the following, assume that the numbers of
equilibria and subattractors for systems (7) and (8)
are the same.

If systems (7) and (8) are diffeomorphic, then
there would be a diffeomorphism,

y = h(x) , (9)

such that

f(x) = M−1(x)g(h(x)) , (10)

where M(x) = dh(x)/dx is the Jacobian of h(x)
evaluated at x. Let x0 and y0 = h(x0) be such
equilibria and let A(x0) and B(y0) denote the cor-
responding Jacobians. Then, differentiating (10)
would yield

A(x0) = M−1(x0)B(y0)M(x0) . (11)

Therefore, the characteristic polynomials for the
matrices A(x0) and B(y0) should coincide.

However, because the eigenvalues of the corre-
sponding Jacobians are not equivalent, systems (7)
and (8) are not diffeomorphic.

Furthermore, chaotic system (1) is not topolog-
ically equivalent with any known three-dimensional
quadratic autonomous chaotic system. Actually, if
the numbers of equilibria or subattractors for sys-
tems (7) and (8) are not the same, then they are not
topologically equivalent. Similarly, we can verify the
topological equivalent by rather tedious algebraical
operation and is omitted here. The proof is thus
completed. �

4.2. Equilibria and bifurcations

It is easily verified that if ab > 0 then system (6)
has five equilibria:

S1(0, 0, 0)

S2

(

√
ab, |b|

√

a

a + b
, −a

√

b

a + b

)

S3

(

√
ab, −|b|

√

a

a + b
, a

√

b

a + b

)
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S4

(

−
√

ab, |b|
√

a

a + b
, a

√

b

a + b

)

S5

(

−
√

ab, −|b|
√

a

a + b
, −a

√

b

a + b

)

.

If ab ≤ 0, then system (6) has a unique equilibrium,
S1(0, 0, 0).

Pitchfork bifurcation of the null solution at
a = 0 (or b = 0) can be observed, if b (or a) is
fixed but a (or b) is varied.

Moreover, any two nonzero equilibria are sym-
metric about one of the axes x, y, z, that is,

• S2 and S3, S4 and S5 are symmetric with respect
to the x-axis.

• S2 and S4, S3 and S5 are symmetric with respect
to the y-axis.

• S2 and S5, S3 and S4 are symmetric with respect
to the z-axis.

It is also noticed that the origin is always a
saddle point in the three-dimensional space for any
nonzero real numbers a, b.

Linearization of system (6) about the null solu-
tion S1 gives three eigenvalues: λ1 = −ab/(a + b),
λ2 = a, and λ3 = b.

Next, linearizing the system about the nonzero
equilibria S2, S3, S4, S5 yields the following same
characteristic equation:

f(λ) = λ3 − a2 + ab + b2

a + b
λ2 − 4a2b2

a + b
= 0 . (12)

Theorem 2. Hopf bifurcation will not appear at

any equilibrium Si(i = 1, . . . , 5) of system (6).

Proof. Since the characteristic equation for equi-
librium S1(0, 0, 0) has three eigenvalues: λ1 =
−ab/(a + b), λ2 = a, and λ3 = b, one can see that
there is no Hopf bifurcation at S1.

For equilibria S2, S3, S4, S5, they have the
same characteristic equation (12), so only the equi-
librium S2 is discussed. If Hopf bifurcation appears
at equilibrium S2, then it may be assumed that two
zeros are λ = ±ωi for some real ω, and the sum of
the three zeros of the cubic polynomial f is

λ1 + λ2 + λ3 =
a2 + ab + b2

a + b
.

Hence, λ3 = (a2 + ab + b2)/(a + b). However

f

(

a2 + ab + b2

a + b

)

= −4a2b2

a + b
= 0 ,

that is, ab = 0. This contradicts with the condition
ab > 0. Therefore, there is no Hopf bifurcation at
S2. This completes the proof of the theorem. �

Remarks

(1) It is quite a strange phenomenon to have
no Hopf bifurcation in a three-dimensional
quadratic autonomous chaotic system. All
known three-dimensional quadratic auto-
nomous chaotic systems have Hopf bifurcations
at some of their equilibria, such as in the Lorenz
system [Lorenz, 1963], Chen system [Chen &
Ueta, 1999; Lü et al., 2002g, 2002h], transition
system [Lü & Chen, 2002; Lü et al., 2002b],
unified chaotic system [Lü et al., 2002a].

(2) Since the coefficient of λ in Eq. (12) is zero,
Eq. (12) does not have two conjugate imagi-
nary roots for any parameters a, b. However,
the coefficient of λ in the characteristic equation
is nonzero for most known three-dimensional
quadratic autonomous chaotic systems such as
those just mentioned.

If system (6) is dissipative, then a+b < 0. Since
ab > 0, one has a < 0, b < 0. Note that the coef-
ficients of the cubic characteristic polynomial are
all positive, so that f(λ) > 0 for all λ > 0. It is
noted that instability appears (Re(λ) > 0) only if
there are two complex conjugate zeros of f . In fact,
Eq. (12) has one negative real root and two complex
conjugate roots with positive real part.

Consider Eq. (12). Denote

A = −a2 + ab + b2

a + b
> 0, B = 0, C = −4a2b2

a + b
> 0

and assume that λ = −(A/3) + Λ, then, Eq. (12)
becomes

f(Λ) = Λ3 + PΛ + Q ,

where

P = −A2

3
+ B = −A2

3

and

Q =
2A3

27
− AB

3
+ C =

2A3

27
+ C .

This third-order polynomial in Λ can be solved by
using the Cardan formula, whereby one may set
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∆ = 4P 3+27Q2 = 27C2+4A3C > 0. Consequently,
Eq. (12) has a unique real eigenvalue.

λ1 = −A

3
+ Λ

= −A

3
+

1

6
− 3

√

−108Q + 12
√

12P 3 + 81Q2

− 2P

3

√

−108Q + 12
√

12P 3 + 81Q2

, (13)

along with two complex conjugate eigenvalues,

λ2,3 = −A

3
− 1

12

3

√

−108Q + 12
√

12P 3 + 81Q2

+
P

3

√

−108Q + 12
√

12P 3 + 81Q2

±
√

3

2
i





1

6

3

√

−108Q + 12
√

12P 3 + 81Q2

+
2P

3

√

−108Q + 12
√

12P 3 + 81Q2



 , (14)

when a < 0, b < 0, λ1 < 0 and Re(λ2,3) > 0.
Therefore, the equilibria Si(i = 1, . . . , 5) are unsta-
ble and, in fact, they are saddle-foci.

4.3. Dynamical structure of the

new chaotic system

The dynamical behaviors of system (6) are further
investigated by means of Poincaré mapping, pa-
rameter phase portraits, and calculated Lyapunov
exponents and power spectra.

Figure 3 shows some dynamical behaviors in
the a–b plane for system (6). In this figure, gener-
ally there exist three divisions in the plane, that
is, limit cycles, a chaotic region, and then limit cy-
cles again. The parameter values that detach these
regions are calculated with Lyapunov exponents
and then analyzing the resulting phase portraits,
Poincaré mapping and power spectra.

Region A is a limit cycle region, where all or-
bits converge to some limit cycles. Furthermore,
when the initial point (x0, y0, z0) is above the plane
z = 0, that is, for z0 > 0, all trajectories converge
to the upper limit cycle as shown in Fig. 4(a). How-
ever, when the initial point (x0, y0, z0) is below the
plane z = 0, that is, when z0 < 0, all orbits converge
to the down limit cycle displayed in Fig. 4(a).

Region B has the onset of chaos, and it is a
region with period-doubling bifurcations. Similarly,
if z0 > 0 then the period-doubling bifurcations
for the upper-attractor will appear, as displayed
in Fig. 4(b); if z0 < 0, then the period-doubling
bifurcations for the lower-attractor will appear, as
shown in Fig. 4(b). The forming procedure for the
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Fig. 3. Dynamical behaviors of system (6).
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−10

−5

0

5

10

15

−10

−5

0

5

10

−15

−10

−5

0

5

10

15

x
y

z

(a)

−15
−10

−5
0

5
10

15

−10

−5

0

5

10

−15

−10

−5

0

5

10

15

x
y

z

(b)

−20

−10

0

10

20

−15

−10

−5

0

5

10

15

−20

−15

−10

−5

0

5

10

15

20

x
y

z

(c)

−30

−20

−10

0

10

20

30

−30

−20

−10

0

10

20

30

0

5

10

15

20

25

30

(d)

−30
−20

−10
0

10
20

30

−20

−10

0

10

20

−25

−20

−15

−10

−5

0

x
y

z

(e)

−20

−10

0

10

20

30

−20

−10

0

10

20

0

5

10

15

20

25

x
y

z

(f)

Fig. 4. Phase portraits of the stable attractors. (a) b = −2.3, (b) b = −2.5, (c) b = −4.485, (d) b = −5.5 (1, 1, 1),
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Fig. 4. (Continued )
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Fig. 6. The Lyapunov exponent spectra. (a) a = −10, (b) a = −20.

upper-attractor and lower-attractor can be clearly
seen from Fig. 4(b).

Region C is a chaotic region, where there
are three typical periodic windows denoted by
W1, W2, W3. Figure 4(c) shows the typical periodic
orbits in the periodic window W3. When z0 > 0,
all orbits will converge to the upper periodic orbit,
while if z0 < 0, then they tend to the down periodic
orbit. In region C, if z0 > 0 then the system dis-
plays a chaotic attractor above the plane z = 0, as
shown in Fig. 4(d); if z0 < 0 then the system shows

another chaotic attractor below the plane z = 0, as
displayed in Fig. 4(e).

Region D is a region with period-doubling bifur-
cations. When z0 > 0, the period-doubling bifurca-
tions for the upper-attractor are shown in Fig. 4(f);
when z0 < 0, the period-doubling bifurcations for
the lower-attractor are displayed in Fig. 4(g). From
Figs. 4(f) and 4(g), one can clearly see the form-
ing mechanisms for the upper-attractor and lower-
attractor. In addition, there is a periodic window
W4 in Region D.
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Fig. 7. Poincaré mappings. (a) x = 2
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10, (b) y = (4/7)
√

35, (c) z = (10/7)
√

14, (d) y = 0.
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Fig. 7. (Continued )

Region E is a limit cyclic region, where all orbits
converge to one of the two limit cycles, as shown in
Fig. 4(h). Moreover, the trajectories converge to the
upper limit cycle for z0 > 0, but to the lower limit
cycle for z0 < 0.

Obviously, there are two period-doubling bi-
furcation regions, B, D, in the above-described
diagram, that is, there are two routes to chaos.
Especially, these two routes are typical of period-

Table 1. A summary of the parameter range for behaviors
of system (6) as determined by both theoretical analysis and
numerical computation (a = −10).

For −2.34 < b < 0, there are limit cycles;
For −2.8 ≤ b ≤ −2.34, there are period-doubling

bifurcations;
For b = −2.34, there is a period-2 bifurcation point;
For b = −2.37, there is a period-4 bifurcation point;
For −5.6 ≤ b < −2.8, the system has two 2-scroll chaotic

attractors, and one is above the plane z = 0 while the
other is below the plane z = 0;

For −3.141 ≤ b ≤ −3.139, there is a periodic window;
For −3.285 ≤ b ≤ −3.278, there is a periodic window;
For −4.511 ≤ b ≤ −4.484, there is a periodic window;
For −5.93 ≤ b < −5.6, there are period-doubling

bifurcations;
For −5.611 ≤ b ≤ −5.604, there is a periodic window;
For b = −5.82, there is a period-4 bifurcation point;
For b = −5.93, there is a period-2 bifurcation point;
For b < −5.93, there are two period-1 limit cycles,

and one is above the plane z = 0 whilst the other is below
the plane z = 0.

doubling bifurcations to chaos. However, they
are different from many known three-dimensional
quadratic autonomous chaotic systems such as the
Lorenz system. The Lorenz system has two routes
to chaos, but only one route via the typical period-
doubling bifurcations. Moreover, the coexistence of
period-doubling bifurcations and intermittency is
observed in Regions B and D here. Also, there are
two limit cycle regions, A, E, in the diagram. Most
of known three-dimensional quadratic autonomous
chaotic systems such as the Lorenz and Chen sys-
tems have only one limit cycle region together with
a sink region.

Notice also that in the diagram there are four
typical periodic windows, W1, W2, W3, W4, marked
by cyan, yellow, green, and blue, respectively, in
Fig. 3. These periodic windows play an impor-
tant role in the evolution of the dynamical behav-
iors. Figure 4 displays the abundant and complex
phenomena of system (6). It is very interesting to
observe that the maximum periodic window W2 is
located inside the chaotic regions.

In order to investigate detailed dynamical be-
haviors for system (6), several situations are further
analyzed in the following.

Case 1 (a = −10). When a = −10, b = −4,
system (6) has five equilibria: S1 (0, 0, 0),
S2(2

√
10, (4/7)

√
35, (10/7)

√
14), S3(2

√
10,

(−4/7)
√

35, (−10/7)
√

14), S4(−2
√

10, (4/7)
√

35,
(−10/7)

√
14), S5(−2

√
10, (−4/7)

√
35, (10/7)

√
14).
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The characteristic roots for S1 are λ1 = 20/7,
λ2 = −10, λ3 = −4, so S1 is a saddle point. And
the characteristic roots for the other equilibria are
λ1 ≈ −13.6106, λ2,3 ≈ 1.2339 ± 5.6626i, thus the
equilibria S2, S3, S4, S5 are all saddle-foci.

Figure 5 further displays the projections of the
upper-attractor and lower-attractor onto the x–y,
x–z and y–z planes, respectively.

Figure 6(a) shows the corresponding Lyapunov
exponents versus the varying parameter b.

Figure 7 shows the Poincaré mapping on
several sections, with several sheets of the attrac-
tors visualized. It is clear that some sheets are
folded.

Table 1 lists the domains of the parameter
b, in which system (6) has complex dynamical
behaviors.

Case 2 (a = −20). Figure 6(b) shows the cor-
responding maximum Lyapunov exponents versus
the varying parameter b. There are eleven periodic
windows in the Lyapunov exponent spectra:

W1[−4.981, −4.979], W2[−4.963, −4.946] ,

W3[−6.284, −6.278], W4[−6.575, −6.555] ,

W5[−9.022, −8.951], W6[−9.44, −9.437] ,

W7[−9.531, −9.529], W8[−9.97, −9.948] ,

W9[−10.352, −10.348], W10[−10.851, −10.849] ,

W11[−11.451, −11.439] .

These periodic windows play an important role
in the evolution of dynamical behaviors of system
(6). Other parameter ranges for behaviors of system
(6) can be similarly obtained, which are however
omitted here.

5. Compound Structure of the

Upper-Attractor and

Lower-Attractor

It was found that the Chen attractor [Chen & Ueta,
1999] and transition attractor [Lü & Chen, 2002]
both have a compound structure [Lü et al., 2002c,
2002g]. That is, they can be obtained by merging
together two simple attractors after performing a
mirror operation. It is therefore interesting to ask
if the upper-attractor and lower-attractor here also
have a compound structure of two simpler attrac-
tors, respectively. This section provides a positive
answer to this question.

In order to investigate the compound structures
of the upper-attractor and the lower-attractor, a
constant control term is added to the first equation
of system (6), thereby obtaining system (1), that is,



















ẋ = − ab

a + b
x − yz + u

ẏ = ay + xz

ż = bz + xy

(15)

where u = c. Assume that a = −10, b = −4. When
u = 9, one obtains the right-attractors of the orig-
inal upper-attractor and lower-attractor, and their
projections on the x–z plane are shown in Figs. 8(a)
and 8(b); while when u = −9, one has their mirror
images, i.e. the two left-attractors and their pro-
jections on the x–z plane, as shown in Figs. 8(c)
and 8(d). Detailed theoretical as well as numerical
analysis has confirmed that the upper-attractor and
lower-attractor both have a compound structure
obtained by merging together the two correspond-
ing simple left- and right-attractors via a mirror
operation, respectively.

In order to study the forming mechanisms of the
upper-attractor and lower-attractor, and to clarify
their topological structures, the dynamical behav-
iors of the controlled system (15) is further stud-
ied here. It turns out to be possible to confine
the chaotic dynamics to either one of the upper-
attractor and lower-attractor, by changing the con-
stant controller u, or to form two simple attractors
which, when merged together, produces the upper-
attractor or lower-attractor. By tuning the parame-
ter u, as listed in Table 2, one can observe different
dynamical behaviors of the controlled system.

Remarks

(1) It can be seen from Table 2 that (i) when
|u| is large enough, e.g. |u| > 31.4, system
(15) has two period-1 limit cycles, as shown
in Fig. 9(a); (ii) when |u| decreases gradu-
ally, there appear period-doubling bifurcations
[Fig. 9(b)] and then the two attractors evolve
into only one half of the original upper-attractor
and lower-attractor; (iii) when |u| is relatively
small, the two 2-scroll attractors are bounded
and form two partial chaotic attractors, as dis-
played in Fig. 9(d); (iv) when |u| is small
enough, two complete 2-scroll attractors are
obtained.
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Fig. 8. The right- and left-forming attractors and their projections, for the upper-attractor and lower-attractor. (a and b)
u = 9; (c and d) u = −9.

Table 2. A summary of the parameter domains for behaviors of system (15),
determined by both theoretical analysis and numerical computation.

For |u| > 31.4, system (15) has two period-1 limit cycles [Fig. 9(a)];
For 21.5 ≤ |u| ≤ 31.4, system (15) has two period-2 limit cycles;
For 19.2 ≤ |u| < 21.5, there are period-doubling bifurcations [Fig. 9(b)];
For 8.4 ≤ |u| < 19.2, system (15) has two left-attractors (or right-attractors) (Fig. 8);
For 11.9 < |u| ≤ 14.7, there is a big periodic window [Fig. 9(c)];
For 2.0 ≤ |u| < 8.4, system (15) has two partial and bounded attractors [Fig. 9(d)];
For |u| < 2, system (15) has two complete 2-scroll chaotic attractors (Fig. 2).
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Fig. 9. Phase portraits of system (15). (a) u = 50, (b) u = 19, (c) u = 14.7, (d) u = 7.
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Fig. 10. The maximum Lyapunov exponent spectrum for
the controlled system (15). (a = −10, b = −4, initial value
(1, 1, 1).)

(2) From Figs. 9(a)–9(d), one can see that the
two 2-scroll attractors — upper-attractor and
lower-attractor — both have a compound struc-
ture, composed of two simple attractors re-
spectively, and each emerges from some simple
limit cycles [Fig. 9(c)]. Furthermore, the form-
ing attractors of the upper-attractor and lower-
attractor are obtained simultaneously by tuning
the simple controller u.

(3) There are two big periodic windows, [11.9, 14.7]
and [−14.7, −11.9], in system (15), which play a
key role in the forming of the two left-attractors
or right-attractors.

(4) u = ±31.4 are the period-2 bifurcation points
and u = ±21.5 are the period-4 bifurcation
points.

(5) The controller u can change the topologi-
cal structures (shapes) of the original chaotic
attractors, rather than their qualitative
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properties. Therefore, the controller is used
here to provide a better view of the topological
structures of the system is chaotic attractors.

According to Table 2, one can see that the
controlled system (15) is chaotic for |u| ≤ 19.2.
Figure 10 displays the maximum Lyapunov expo-
nent spectrum of system (15) for 0 ≤ u ≤ 19.2.
It can be clearly seen that there are seven peri-
odic windows in Fig. 15: W1 (3.79, 3.81), W2 (7.64,
7.71), W3 [8.78, 8.91], W4 [11.1, 11.13], W5 [11.93,
14.77], W6 [16.67, 16.78], W7 [18.25, 18.34]. These
periodic windows play a key role in the evolution of
the dynamics for the controlled system (15).

It is known that the number of system equilib-
ria and their stabilities are very important for the
emergence of chaos. In the following, consider the
equilibria of system (15).

Theorem 3

(i) If u ≥ (−ab/(a + b))
√

ab, then system (15) has
three equilibria:

S′

1

(

a + b

ab
u, 0, 0

)

S′

2

(

√
ab,

√

b

(

ab

a + b
− u√

ab

)

,

√

a

(

ab

a + b
− u√

ab

)

)

S′

3

(

√
ab,−

√

b

(

ab

a + b
− u√

ab

)

,−
√

a

(

ab

a + b
− u√

ab

)

)

.

(ii) If u ≤ (ab/(a + b))
√

ab, then system (15) has

three equilibria:

S′

1

(

a + b

ab
u, 0, 0

)

S′

4

(

−
√

ab,−
√

b

(

ab

a + b
+

u√
ab

)

,

√

a

(

ab

a + b
+

u√
ab

)

)

S′

5

(

−
√

ab,

√

b

(

ab

a + b
+

u√
ab

)

,−
√

a

(

ab

a + b
+

u√
ab

)

)

.

(iii) If |u| < (−ab/(a + b))
√

ab, then system (15)
has five equilibria: S ′

1(((a + b)/ab)u, 0, 0), S ′
2,

S′
3, S′

4, S′
5.

Let a = −10, b = −4. Then the equilibria of
the controlled system (15) are obtained as follows:

When u ≥ (−40/7)
√

10 ≈ 18.0702, system (15)
has three equilibria:

S′

1

(

−7u

20
, 0, 0

)

,

S′

2



2
√

10,

√

80

7
+

√
10

5
u,

√

200

7
+

√
10

2
u



 ,

S′

3



2
√

10, −

√

80

7
+

√
10

5
u, −

√

200

7
+

√
10

2
u



 ;
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Fig. 11. The x–z plane projections of the two chaotic attractors of system (15). (a) Initial value (x0, y0, z0) (z0 > 0);
(b) initial value (x0, y0, z0) (z0 < 0); (a = −10, b = −4, u = 18.1).
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when u ≤ (−40/7)
√

10, the system (15) has three
equilibria:

S′

1

(

−7u

20
, 0, 0

)

,

S′

4



−2
√

10, −

√

80

7
−

√
10

5
u,

√

200

7
−

√
10

2
u



 ,

S′

5



−2
√

10,

√

80

7
−

√
10

5
u, −

√

200

7
+

√
10

2
u



 ;

when |u| < (−40/7)
√

10, system (15) has five
equilibria:

S′
1, S′

2, S′
3, S′

4, S′
5. According to Table 2, system

(15) also has two 2-scroll chaotic attractors for
(40/7)

√
10 ≤ |u| ≤ 19.2. However, for |u| ≥ (40/7)√

10, system (15) has only three equilibria. This is
quite a strange phenomenon in three-dimensional
quadratic chaotic systems. Assume that u =
18.1 > (40/7)

√
10, then system (15) has three equi-

libria: S ′
1(−6.335, 0, 0), S ′

2(6.3246, 4.7829, 7.5624),
S′

3(6.3246, −4.7829, −7.5624). Figure 11 shows the
x–z plane projections of the two chaotic attractors
for system (15).

6. Connecting the Upper-Attractor

and Lower-Attractor

As mentioned, system (6) has five equilibria:
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Fig. 12. The 4-scroll chaotic attractor of system (16) and its projections on various planes. (a) 3D phase portrait, (b) x–y
plane projection, (c) x–z plane projection, (d) y–z plane projection. (a = −10, b = −4, v = 5.)



A New Chaotic System and Beyond: The Generalized Lorenz-Like System 1525

S1, S2, S3, S4, S5, in which S2, S3 are above the
plane z = 0 while S4, S5 are below this plane.
Furthermore, there is a close correlation between
the equilibria S1, S2, S3 and the upper-attractor.
Also, there is a close correlation between the equi-
libria S1, S4, S5 and the lower-attractor.

Especially, the upper-attractor and lower-
attractor are symmetric. It is therefore interesting
to ask if there is a simple controller that can con-
nect the upper-attractor and lower-attractor. This
section gives a positive answer to this question.
In fact, a constant controller works well and can

Table 3. A summary of the parameter intervals for behaviors of system (16), determined by both theoretical
analysis and numerical computation.

For |u| > 26.0, the trajectories of system (16) converge to one of the two points [Fig. 13(a)];
For 24.1 ≤ |u| ≤ 26.0, the trajectories of system (16) converge to one of the two limit cycles — upper-limit

cycle and lower-limit cycle [Fig. 13(b)];
For 23.1 ≤ |u| < 24.1, the trajectories of system (16) converge to a limit cycle [Fig. 13(c)];
For 0.7 ≤ |u| < 23.1, the system (16) has a 4-scroll chaotic attractor (Fig. 12);
For 11.70 ≤ |u| ≤ 12.31, there is a periodic window [Fig. 13(d)];
For |u| < 0.7, system (16) has two 2-scroll attractors (Fig. 2).
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Fig. 13. Phase portraits of system (16). (a) v = 30, (b) v = 25, (c) v = 24, (d) v = 12. (a = −10, b = −4.)
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Fig. 14. The maximum Lyapunov exponent spectrum for
the controlled system (16). (a = −10, b = −4, initial value
(1, 1, 1).)

connect the upper-attractor and lower-attractor to
form a 4-scroll chaotic attractor.

In order to connect the upper-attractor and
lower-attractor, a simple constant controller v
is added to the second equation of system (6),
giving



















ẋ = − ab

a + b
x − yz

ẏ = ay + xz + v

ż = bz + xy

(16)

Let a = −10, b = −4. When v = 5, system (16)
displays a 4-scroll chaotic attractor, as shown in
Fig. 12.

In order to study the forming mechanism of the
4-scroll chaotic attractor and clarify its topological
structure, the dynamical behaviors of the controlled
system (16) are further investigated here. By vary-
ing the control parameter v, as listed in Table 3,
one can obtain different dynamical behaviors.

Remarks

(1) One can see from Table 3 that (i) when |v|
is large enough, e.g. |v| > 26, the trajecto-
ries of system (16) converge to one of the two
points, as shown in Fig. 13(a); (ii) when |v|
decreases gradually, there appear two limit cy-
cles — upper-limit cycle and lower-limit cycle
[Fig. 13(b)], and then the two limit cycles merge
into one limit cycle, as displayed in Fig. 13(c);

(iii) when |v| is relatively small, the two 2-
scroll attractors — upper-attractor and lower-
attractor — are connected and form a 4-scroll
chaotic attractor, as shown in Fig. 12; (iv) when
|v| is small enough, system (16) has two 2-scroll
attractors.

(2) There are two big periodic windows,
[11.70, 12.31] and [−12.31, −11.70], in system
(16), which play an important role in forming
the 4-scroll chaotic attractor.

(3) From Table 3, one can see that the dynamical
behavior of the controlled system (16) is very
complicated.

Figure 14 displays the maximum Lyapunov
exponent spectrum of system (16) for 0 ≤ u ≤
23.1. It is clear that there are seven periodic win-
dows in Fig. 14: W1(2.51, 2.53), W2[11.70, 12.31],
W3(16.96, 16.99), W4[17.33, 17.57], W5[18.79,
18.86], W6[19.49, 19.55], W7[20.31, 20.42]. These
periodic windows play a key role in the evolution
of the complex dynamics for the controlled system
(16).

To find the equilibria of system (16), let
dx/dt = dy/dt = dz/dt = 0.

Theorem 4

(i) If v ≥ ab
√

a/(a + b), then system (16) has

three equilibria:

S′′
1

(

0, −v

a
, 0
)

S′′
2



−

√

ab + v

√

a + b

a
, b

√

a

a + b
,

√

√

√

√

a

a + b

(

ab + v

√

a + b

a

)





S′′
3





√

ab + v

√

a + b

a
, b

√

a

a + b
,

−

√

√

√

√

a

a + b

(

ab + v

√

a + b

a

)



 ;

(ii) If v ≤ −ab
√

a/(a + b), then system (16) has
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three equilibria:

S′′
1

(

0, −v

a
, 0
)

S′′
4





√

ab − v

√

a + b

a
, −b

√

a

a + b
,

√

√

√

√

a

a + b

(

ab − v

√

a + b

a

)





S′′
5



−

√

ab − v

√

a + b

a
, −b

√

a

a + b
,

−

√

√

√

√

a

a + b

(

ab − v

√

a + b

a

)



 ;

(iii) If |v| < ab
√

a/(a + b), then system (16) has
five equilibria: S ′′

1 (0, −v/a, 0), S ′′
2 , S′′

3 , S′′
4 , S′′

5 .

Assume that a = −10, b = −4. The equilib-
ria of the controlled system (16) are as follows:
when v ≥ 40

√

5/7 ≈ 33.8062, system (16) has three
equilibria:

S′′
1

(

0,
v

10
, 0
)

,
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√
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√
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5
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√
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√

√

√
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)
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√
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√
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5
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√
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7
, −

√

√

√

√
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7

(
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√

7

5

)



 ;

when v ≤ −40
√

5/7, the system has three
equilibria:

S′′
1

(
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)

,

S′′
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√
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5
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5

7
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√

√

√

√

5

7

(

40 + v

√

7

5

)



 ;

when |v| < 40
√

5/7, the system has five equilibria:
S′′

1 , S′′
2 , S′′

3 , S′′
4 , S′′

5 . According to Table 3, system
(16) is chaotic for |v| < 23.1 < 33.8062. However,
for |v| < 33.8062, the system has five equilibria
and different dynamical behaviors, including chaos,
limit cycles, and sinks.

7. Controlling in between the

Upper-Attractor and

Lower-Attractor

As is known now, system (6) can display two 2-scroll
chaotic attractors — upper-attractor and lower-
attractor. It is therefore interesting to ask what is
the relationship between the upper-attractor and
lower-attractor, and if the two 2-scroll chaotic at-
tractors can be confined to either one of them via
a simple constant control? This section provides a
positive answer to this question.
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Fig. 15. The 2-scroll chaotic attractors of system (17). (a) m = 1, (b) m = −1. (a = −10, b = −4.)
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Fig. 16. Phase portraits of system (17). (a) m = 15, (b) m = 6.4. (a = −10, b = −4.)

To do so, a constant controller m is added to
the third equation of system (6), [Shilnikov, 1993]
so as to obtain



















ẋ = − ab

a + b
x − yz

ẏ = ay + xz

ż = bz + xy + m.

(17)

When a = −10, b = −4, m = 1, system (17) dis-
plays a 2-scroll chaotic attractor — upper-attractor
— as shown in Fig. 15(a); when m = −1, the system
shows another 2-scroll chaotic attractor — lower-
attractor — as displayed in Fig. 15(b). Therefore,
the original upper-attractor and lower-attractor of
system (6) are confined to only one, either the
upper-attractor or the lower-attractor, via a simple
constant control.

In fact, system (17) establishes a kind of
connection [Lü et al., 2002d] between the upper-
attractor and the lower-attractor. When the con-
troller m is large, e.g. m = 1, system (17) only
displays the upper-attractor; when the controller m
is small, e.g. m = −1, the system only shows the
lower-attractor; when m = 0, the system displays
both.

In order to study the forming mechanism of the
2-scroll chaotic attractor and clarify its topological
structure, the dynamical behaviors of the controlled
system (17) are further studied here. By chang-
ing the control parameter m, as listed in Table 4,
one can obtain different dynamical behaviors of the
system.

Remarks

(1) It can be seen from Table 4 that (i) when |m|
is large enough, e.g. |m| > 12.2, the trajectories
of system (17) converge to a point, as shown in
Fig. 16(a); (ii) when |m| decreases gradually,
there appear period-doubling bifurcations, as
displayed in Fig. 16(b); (iii) when |m| is rel-
atively small, the upper-attractor and lower-
attractor are confined to a chaotic attractor, as
shown in Fig. 15; (iv) when |m| is small enough,
system (17) also has two 2-scroll attractors.

(2) For m > 12.2, the trajectories of system (17)
converge to a point above the plane z = 0, while
when m < −12.2, to a point below the plane
z = 0. Similarly, for 0.01 < m < 6.4, system
(17) is confined to an upper attractor whilst
when −6.4 < m < −0.01, to a lower attractor.

(3) From Table 4, one can see that the dynamical
behaviors of the controlled system (17) is rela-
tively simple.

Table 4. A summary of the parameter domains for behav-
iors of system (17), determined by both theoretical analysis
and numerical computation.

For |m| > 12.2, the trajectories of system (17) converge
to a point [Fig. 16(a)];

For |m| = 10.31, there are two period-2 bifurcation points;
For 6.4 ≤ |m| ≤ 12.2, there are period-doubling bifurcations

[Fig. 16(b)];
For 0.01 < |m| < 6.4, system (17) is confined to a 2-scroll

attractor (Fig. 15);
For |m| ≤ 0.01, system (17) has two 2-scroll chaotic

attractors (Fig. 2).
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Fig. 17. The maximum Lyapunov exponent spectrum for
the controlled system (17). (a = −10, b = −4, initial value
(1, 1, 1).)

Figure 17 shows the maximum Lyapunov ex-
ponent spectrum of system (17) for 0 ≤ u ≤
6.4. Obviously, there is only one periodic window,
W [2.28, 2.42], in Fig. 17. However, this periodic
window is very important in the evolution of the
complex dynamics for the controlled system (17).

Consider the equilibria of system (17).

Theorem 5.

(i) If m ≥ ab
√

b/(a + b), then system (17 ) has

three equilibria:

S′′′

1

(

0, 0, −m

b

)

S′′′

2
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ab + m

√

a + b
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,

√

√

√

√
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(

ab + m

√
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b

)

, a

√

b
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√
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√
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b
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√

√

√

√

b

a + b

(

ab + m

√

a + b

b

)

, a

√

b

a + b



 ;

(ii) If m ≤ −ab
√

b/(a + b), then system (17 ) has

three equilibria:
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1

(

0, 0, −m

b

)

S′′′

4





√

ab − m

√

a + b

b
,

√

√

√

√

b
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(
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√
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b

)
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√
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√
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√
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b
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−

√

√

√

√

b

a + b

(
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√

a + b

b

)

, −a

√

b
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 ;

(iii) If |m| < ab
√

b/(a + b), then system

(17 ) has five equilibria: S ′′′
1 (0, 0, −m/b),

S′′′
2 , S′′′

3 , S′′′
4 , S′′′

5 .

Assume that a = −10, b = −4. The equilibria
of the controlled system (17) are as follows: when
m ≥ 40

√

2/7 ≈ 21.3809, system (17) has three
equilibria:
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0, 0, −m

4

)

,

S′′′

2



−

√

40 + m

√

7

2
,

√

√

√

√

2

7

(

40 + m

√

7

2

)

, −10

√

2

7



 ,

S′′′

3





√

40 + m

√

7

2
,

−

√

√

√

√

2

7

(

40 + m

√

7

2

)

, −10

√

2

7



 ;

when m ≤ −40
√

2/7, the system has three
equilibria:

S′′′

1

(

0, 0, −m

4

)

,

S′′′
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√
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,

√

√

√

√
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√
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√
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√
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√

√

√

√
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√
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7



 ;

when |m| < 40
√

2/7, the system has five equilibria:
S′′′

1 , S′′′
2 , S′′′

3 , S′′′
4 , S′′′

5 .
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According to Table 4, system (17) is chaotic
for |m| ≤ 6.4 < 21.3809. Furthermore, for
|m| < 21.3809, the system has five equilibria
with different dynamical behaviors, including chaos,
limit cycles and sinks.

8. The Generalized Lorenz-Like

System

The Lorenz system is a very important model for
studying lower-dimensional chaotic systems, espe-
cially for three-dimensional quadratic autonomous
chaotic systems [Deng, 1995]. For example, Lorenz-
like systems and classical dynamical equations with
memory forcing were recently studied in detail
[Festa et al., 2002].

Vanĕc̆ek and C̆elikovský [1996] introduced the
so-called generalized Lorenz system. More recently,
some similar but different chaotic systems were dis-
covered [Chen & Ueta, 1999; Lü & Chen, 2002;
Chen & Lü, 2003]. In order to further investigate the
dynamical behaviors of these chaotic systems and
the relationships among them, C̆elikovský and Chen
[2002, 2003] introduced a generalized Lorenz canon-

ical form of chaotic systems and a hyperbolic-type

generalized Lorenz system and its canonical form,
which cover a very large class of three-dimensional
quadratic autonomous chaotic systems. Yet, there
are still some similar systems such as the one dis-
cussed in [Rucklidge, 1992] not belonging to these
generalized Lorenz systems. For this reason, the
concept of generalized Lorenz system is being fur-
ther extended here, giving rise to what is called
generalized Lorenz-like system in this section.

First, recall the concept of generalized Lorenz
system:

Definition 1. The nonlinear system of ordinary
differential equations in R

3 of the following form
is called a generalized Lorenz system:

ẋ =

(

A 0

0 λ3

)

x + x1







0 0 0

0 0 −1

0 1 0






x , (18)

where x = [x1 x2 x3]
T , λ3 ∈ R, and A is a 2 × 2

real matrix:

A =

(

a11 a12

a21 a22

)

, (19)

with eigenvalues λ1, λ2 ∈ R such that

−λ2 > λ1 > −λ3 > 0 . (20)

Moreover, the generalized Lorenz system is said to
be nontrivial if it has at least one solution that goes
neither to zero nor to infinity or a limit cycle.

The following result can be found in [C̆elikovský
& Chen, 2002].

Lemma 1. For the nontrivial generalized Lorenz

system (18)–(20), there exists a nonsingular linear

change of coordinates, z = Tx, which takes (18)
into the following generalized canonical form:

ż =





λ1 0 0

0 λ2 0

0 0 λ3



 z

+ (1, −1, 0)z





0 0 −1

0 0 −1

1 τ 0



 z , (21)

where z = [z1 z2 z3]
T and parameter τ ∈ (−1, ∞).

Note that the first condition in the definition of
the geometric Lorenz model is that the flow should
have an equilibrium point O(0, 0, 0). If F denotes
the vector field of the flow, then the derivative
DF (O) should have one positive eigenvalue λ1 > 0
and two negative eigenvalues λ2 < λ3 < 0. Fur-
thermore, the expanding eigenvalue should domi-
nate the weakest contracting one, i.e. λ1 > −λ3. In
fact, this is easily understood in view of the famil-
iar Shilnikov’s criterion [Shilnikov, 1993; Shilnikov
et al., 1993; Shilnikov, 1995; Shilnikov et al., 2001].

The eigenvalues condition (20) is retained here
in extending the concept of generalized Lorenz
system:

Definition 2. The nonlinear system of ordinary
differential equations in R

3 of the following form
is called a generalized Lorenz-like system:

ẋ=





a11 a12 a13

a21 a22 a23

a31 a32 a33



x+x1





b11 b12 b13

b21 b22 b23

b31 b32 b33



x

+ x2





c11 c12 c13

c21 c22 c23

c31 c32 c33



x+x3





d11 d12 d13

d21 d22 d23

d31 d32 d33



x,

(22)

where x = [x1 x2 x3]
T , A = (aij)3×3, B =

(bij)3×3, C = (cij)3×3 are all real matrixes, bi2 =
ci1, bi3 = di1, ci3 = di2 (i = 1, 2, 3), and A has
eigenvalues λ1, λ2, λ3 ∈ R such that

−λ2 > λ1 > −λ3 > 0 . (23)
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Furthermore, the generalized Lorenz-like sys-
tem is said to be nontrivial if it has at least one
solution that goes neither to a limit cycle nor to
zero or infinity.

The following theorem can be easily verified:

Theorem 6. There exists a nonsingular linear

change of coordinates, z = Tx, which takes (22)
into the following generalized Lorenz-like canonical

form:

ż =





λ1 0 0

0 λ2 0

0 0 λ3



 z + ezB̄z + fzC̄z + gzD̄z ,

(24)

where z = (z1 z2 z3)
T , and

B̄ = TBT−1, C̄ = TCT−1, D̄ = TDT−1 ,

e = (1 0 0)T−1, f = (0 1 0)T−1 ,

g = (0 0 1)T−1 .

(25)

Proof. Direct computations show

ż = T ẋ = T (Ax + x1Bx + x2Cx + x3Dx)

= TAT−1z + T (1 0 0)T−1zBT−1z

+ T (0 1 0)T−1zCT−1z

+ T (0 0 1)T−1zDT−1z .

Obviously, (1 0 0)T−1z, (0 1 0)T−1z, and
(0 0 1)T−1z are scalar functions. Therefore,
they are commutative with T . The proof is thus
completed. �

Remarks

(1) One can further simplify the generalized Lorenz-

like canonical form (24) for some special cases,
such as system (18), to get the simpler canonical
form (21). In fact, since Ā = diag{λ1, λ2, λ3}
is a diagonal matrix, Ā remains unchanged un-
der the rest transformations. One can also sim-
plify the matrixes B̄, C̄, D̄ using some suitable
transformations.

(2) The generalized Lorenz-like system (22) is not
always chaotic under condition (23) for all sys-
tem parameters. Actually, (23) is only a neces-
sary condition for some chaotic systems.

(3) The generalized Lorenz-like canonical form

provides a useful tool for studying chaos con-
trol and synchronization, chaotification, etc.

Furthermore, system (24) gives a kind of unique
and unified classification for a large class of
chaotic systems.

9. Classification and Normal Form

of Three-Dimensional Quadratic

Autonomous Systems

In this section, some known three-dimensional
quadratic autonomous chaotic systems are re-
viewed, followed by a classification and their normal
forms [Chow et al., 1994].

Recall that the celebrated Lorenz system is






ẋ = a(y − x)

ẏ = cx − xz − y

ż = xy − bz .

(26)

When a = 10, b = 8/3, c = 28, system (26) has a 2-
scroll chaotic attractor [Lorenz, 1963; Lofaro, 1997;
Leonov, 2001; Magnitskii & Sidorov, 2001].

The Rössler system is






ẋ = −y − z

ẏ = x + ay

ż = b + xz − cz ,

(27)

which can display a single-folded band chaotic at-
tractor when a = b = 0.2, c = 5.7.

The Rucklidge’s system [Rucklidge, 1992] is a
model of a double convection process, described by







ẋ = ax − ly − yz
ẏ = x
ż = −z + y2 ,

(28)

which has a 2-scroll chaotic attractor when a =
−2, l = −6.7.

The Chen system, a dual system of the Lorenz
system as discussed above, is described by:







ẋ = a(y − x)

ẏ = (c − a)x − xz + cy

ż = xy − bz .

(29)

When a = 35, b = 3, c = 28, this system generates
a complex 2-scroll chaotic attractor [Chen & Ueta,
1999; Ueta & Chen, 2000; Lü et al., 2002g, 2002h;
Chen & Lü, 2003].

The transition system coined by Lü and Chen
[2002] bridges the gap between the Lorenz system
and the Chen system, and its dynamical equations
are







ẋ = a(y − x)

ẏ = −xz + cy

ż = xy − bz .

(30)
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This system displays a 2-scroll chaotic attractor
when a = 36, b = 3, c = 20 [Lü & Chen, 2002;
Lü et al., 2002a, 2002b; Yu & Zhang, 2002, 2003;
Zhou, 2002; Lü & Lu, 2003].

Moreover, Liu and Chen [2003] introduced the
following simple system:







ẋ = ax + d1yz

ẏ = by + d2xz

ż = cz + d3xy ,

(31)

where ab + ac + bc 6= 0. It can create a com-
plex 2- and 4-scroll attractors for the parameters:
d1 = −1, d2 = 1, d3 = 1, a = 5, b = −10, c = −3.4,
and d1 = 1, d2 = −1, d3 = −1, a = 0.5, b =
−10, c = −4, respectively.

Also, the new chaotic system introduced above
in this article is



















ẋ = − ab

a + b
x − yz + c

ẏ = ay + xz

ż = bz + xy ,

(32)

which can display two 1-scroll chaotic attractors si-
multaneously for a = −10, b = −4, c = 18.1, and
two 2-scroll chaotic attractors simultaneously for
a = −10, b = −4, c = 0.

Sprott found 19 algebraically simple chaotic
systems by exhaustive computer searching as fol-
lows [Sprott, 1994, 1997; Sprott & Linz, 2000; Linz
& Sprott, 1999]: The first one is







ẋ = y

ẏ = −x + yz

ż = 1 − y2 .

(33)

But Hoover [1995] pointed out that system (33)
is a special case of the Nosé–Hoover thermostated
dynamic system that had earlier been shown to
exhibit time-reversible Hamiltonian chaos [Posch
et al., 1986]. And the other 18 are:







ẋ = yz

ẏ = x − y

ż = 1 − xy ,

(34)







ẋ = yz

ẏ = x − y

ż = 1 − x2 ,

(35)







ẋ = −y

ẏ = x + z

ż = xz + 3y2 ,

(36)







ẋ = yz

ẏ = x2 − y

ż = 1 − 4x ,

(37)







ẋ = y + z

ẏ = −x + 0.5y

ż = x2 − z ,

(38)







ẋ = 0.4x + z

ẏ = xz − y

ż = −x + y ,

(39)







ẋ = −y + z2

ẏ = x + 0.5y

ż = x − z ,

(40)







ẋ = −0.2y

ẏ = x + z

ż = x + y2 − z ,

(41)







ẋ = 2z

ẏ = −2y + z

ż = −x + y + y2 ,

(42)







ẋ = xy − z

ẏ = x − y

ż = x + 0.3z ,

(43)







ẋ = y + 3.9z

ẏ = 0.9x2 − y

ż = 1 − x ,

(44)







ẋ = −z

ẏ = −x2 − y

ż = 1.7 + 1.7x + y ,

(45)







ẋ = −2y

ẏ = x + z2

ż = 1 + y − 2z ,

(46)







ẋ = y

ẏ = x − z

ż = x + xz + 2.7y ,

(47)







ẋ = 2.7y + z

ẏ = −x + y2

ż = x + y ,

(48)
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ẋ = −z

ẏ = x − y

ż = 3.1x + y2 + 0.5z ,

(49)







ẋ = 0.9 − y

ẏ = 0.4 + z

ż = xy − z ,

(50)







ẋ = −x − 4y

ẏ = x + z2

ż = 1 + x ,

(51)

It is noticed that the Rössler attractor and
Sprott’s attractors of Eqs. (33)–(51) are all topo-
logically simpler than the 2-scroll Lorenz attractor.
Furthermore, Sprott’s attractors behave similarly in
that they all tend to resemble the single-fold band
structure of the Rössler attractor.

Genesio and Tesi [1992] discussed the following
system:







ẋ = y

ẏ = z

ż = −cx − by − az + x2 ,

(52)

where the parameters a, b, c satisfy ab < c. When
a = 0.44, b = 1.1, c = 1, system (52) displays a
typical chaotic attractor.

The dynamical equations of the Shimizu–
Morioka model are







ẋ = y

ẏ = x − ay − xz

ż = −bz + x2 ,

(53)

where the parameters a > 0, b > 0. System (53)
shows a chaotic attractor for a = 0.85, b = 0.5.

A low-order atmospheric circulation model is
described by







ẋ = −ax − y2 − z2 + aF

ẏ = −y + xy − bxz + G

ż = −z + bxy + xz ,

(54)

where x represents the strength of the globally av-
eraged westerly current, and y, z are the strength
of the cosine and sine phases of a chain of super-
posed waves. The unit of the variable t is equal to
the damping time of the waves, estimated to be
five days. The terms in F and G represent ther-
mal forcing terms, and the parameter b stands for
the strength of the advection of the waves by the
westerly current. Here, F, G are treated as con-
trol parameters, with a = 1/4, b = 4 [Shilnikov

et al., 1995]. System (54) is also called a new Lorenz
model.

Given all the above models, the three-
dimensional quadratic autonomous chaotic systems
are now classified as follows.

Case A. System properties

• Dissipative chaotic systems, such as systems
(26)–(32) and (34)–(54).

• Conservative chaotic systems, the only known
system is (33).

Case B. Topological structure of attractor

• One 1-scroll or single-fold band structure, such as
the Rössler attractor and Sprott’s attractors.

• One 2-scroll structure, such as the Lorenz attrac-
tor, Chen attractor, transition system attractor,
and Rucklidge’s attractor.

• One 4-scroll structure, such as system (31).
• Two 1-scroll structures, such as system (32).
• Two 2-scroll structures, such as system (32).

Remark

• Obviously, system (32) has two typical new
topological structures — two 1-scroll structures
and two 2-scroll structures. Up to now, it is
not known if three-dimensional quadratic au-
tonomous chaotic systems have more complicated
topological structures in this classification.

In the following, equilibria and eigenvalues for
several typical chaotic systems are summarized in
Table 5.

Remarks

(1) Obviously, the Lorenz system, Rucklidge sys-
tem, Chen system, transition system, system
(31), and Shimizu–Morioka model belong to the
generalized Lorenz-like system of Definition 2.
Furthermore, the Lorenz, Chen and transition
systems are also generalized Lorenz system of
Definition 1. Therefore, the concept of gener-
alized Lorenz-like system is more general than
that of generalized Lorenz system.

(2) However, the Rössler system, system (1), and
the Genesio–Tesi system do not belong to
the generalized Lorenz-like system. Especially,
when a = −10, b = −4, c = 0, the expand-
ing eigenvalue does not dominate the weak-
est contracting one in system (1), that is,
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−(−10) > −(−4) > 2.8571. This is quite
a special phenomenon for three-dimensional
quadratic autonomous chaotic systems.

Consider the following general three-
dimensional quadratic autonomous system:

Ẋ = AX + xBX + yCX + zDX + E , (55)

where X = (x y z)T , A = (aij)3×3, B =
(bij)3×3, C = (cij)3×3, D = (dij)3×3, and E =
(e1 e2 e3)

T are all real matrices, and matrices
B, C, D satisfy bi2 = ci1, bi3 = di1, ci3 = di2

(i = 1, 2, 3).
In order to further investigate the dynamical

behaviors of system (55), the matrix A can be trans-
formed into the Jordan normal form. For example,
consider the following transformation of the Lorenz
system (26):

x = u + v, a(y − x) = λ1u + λ2v, z = z ,

where λ1, λ2 are roots of the equation

λ2 + (a + 1)λ − a(c − 1) = 0 . (56)

Then, system (26) takes the new form


































u̇ = λ1u +
az(u + v)

λ2 − λ1

v̇ = λ2v − az(u + v)

λ2 − λ1

ż = −bz + (u + v)2 +
1

a
(u + v)(λ1u + λ2 v) .

(57)

The notion of Lorenz equations in the variables
(u, v, z) is more convenient than the corresponding
notion in the variables (x, y, z), since for any c, the
stable manifold W s of the origin is tangent to the
u-axis and the unstable manifold W u is tangent to
the v-axis. This demonstrates clearly many new im-
portant characteristics of the attractor, which are
invariant with respect to the parameter c [Jones
et al., 1985; Magnitskii & Sidorov, 2001]. Further-
more, there are other canonical forms that can be
used for studying the dynamical behaviors of the
Lorenz system, such as the canonical form suggested
by C̆elikovský and Chen [2002, 2003].

Lemma 2. For any real matrix A = (aij)3×3, let

λ1, λ2, λ3 be its eigenvalues. Then,

Table 5. Equilibria and eigenvalues for several typical chaotic systems.

System Parameters Equilibria Eigenvalues

Lorenz system a = 10, b = 8

3
, c = 28 (0, 0, 0) −22.8277, −2.6667, 11, 8277

(±6
√

2, ±6
√

2, 27) −13.8546, 0.0940 ± 0.1945 i

Rössler system a = b = 0.2, c = 5.7 (0.0070, −0.0351, 0.0351) −5.6870, 0.0970 ± 0.9952 i

(5.6930, −28.4649, 28.4649) −4.6 × 10−6, 0.1930 ± 5.4280 i

Rucklidge system a = −2, l = −6.7 (0, 0, 0) −3.7749, −1, 1.7749

(0, ±2.5884, 6.7) −3.5154, 0.2577 ± 1.9353 i

Chen system a = 35, b = 3, c = 28 (0, 0, 0) −30.8359, −3, 23.8359

(±3
√

7, ±3
√

7, 21) −18.4288, 4.2140 ± 14.8846 i

Transition system a = 36, b = 3, c = 20 (0, 0, 0) −36, −3, 20

(±2
√

15, ±2
√

15, 20) −22.6516, 1.8258 ± 13.6887 i

System (31) a = 5, b = −10, c = −3.4 (0, 0, 0) −10, −3.4, 5

d1 = −1, d2 = d3 = 1 (
√

34, ±
√

17, ±5
√

2) −12.6496, 2.1248 ± 7.0172 i

(−
√

34, ±
√

17, ∓5
√

2)

System (1) a = −10, b = −4, c = 18.1 (−6.335, 0, 0) −14.0094, 0.0094, 2.8571

(2
√

10, ±4.7829, ±7.5624) −13.3021, 1.0796 ± 8.2233 i

a = −10, b = −4, c = 0 (0, 0, 0) −10, −4, 2.8571

(2
√

10, ± 4

7

√
35, ± 10

7

√
14) −13.6106, 1.2339 ± 5.6626 i

(−2
√

10, ± 4

7

√
35, ∓ 10

7

√
14)

Genesio–Tesi system a = 0.44, b = 1.1, c = 1 (0, 0, 0) −0.7503, 0.1551 ± 1.1440 i

(1, 0, 0) 0.5872, −0.5136 ± 1.1997 i

Shimizu–Morioka model a = 0.85, b = 0.5 (0, 0, 0) −1.5116, −0.5, 0.6616

(± 1

2

√
2, 0, 1) −1.5079, 0.0790 ± 0.8105 i
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(1) If λ1, λ2, λ3 ∈ R and λ1 6= λ2, λ1 6= λ3, λ2 6=
λ3, then there exists a nonsingular real matrix

T such that

Ā = TAT−1 =





λ1 0 0

0 λ2 0

0 0 λ3



 ; (58)

(2) If λ1, λ2, λ3 ∈R and λ1 = λ2 6= λ3, then there

exists a nonsingular real matrix T such that

Ā = TAT−1 =





λ1 0 0
0 λ1 0
0 0 λ3





or





λ1 1 0
0 λ1 0
0 0 λ3



 ; (59)

(3) If λ1 = λ2 = λ3 ∈ R, then there exists a non-

singular real matrix T such that

Ā = T AT−1 =





λ1 0 0
0 λ1 0
0 0 λ1





or





λ1 1 0
0 λ1 0
0 0 λ1





or





λ1 1 0
0 λ1 1
0 0 λ1



 ; (60)

(4) If λ1 = α + βi, α, β, λ3 ∈ R, then there exists

a nonsingular real matrix T such that

Ā = T AT−1 =





α −β 0
β α 0
0 0 λ3



 . (61)

Proof. It follows from straightforward com-
putations. �

Therefore, the following theorem is immediate:

Theorem 7. For any three-dimensional quadratic

autonomous system in the form of (55), there ex-

ists a nonsingular linear transformation, U = TX,
which takes (55) into the following canonical form:

U̇ = Ā + f U B̄ U + g U C̄ U + hU D̄ U + Ē , (62)

where U = (u v w)T , and

B̄ = T B T−1, C̄ = T C T−1,

D̄ = T D T−1, Ē = T E ,

f = (1 0 0)T−1, g = (0 1 0)T−1 ,

h = (0 0 1)T−1 .

(63)

Similar to Theorem 6, a proof follows from
straightforward computations.

Remarks

(1) If system (55) is chaotic, then Ā is not in
the form of (60). Otherwise, one has ∇V =
(∂ẋ/∂x)+(∂ẏ/∂y)+(∂ż/∂z) = 3λ1 < 0, so the
equilibrium point is stable but it is impossible.

(2) If system (55) is chaotic and Ā is in the form
of (58), then λ1 + λ2 + λ3 < 0, λ1 > 0, λ3 < 0
(λ1 ≥ λ2 ≥ λ3).

(3) One can further simplify the canonical form
(62) for some special cases, such as system (18),
for which it takes the simpler canonical form
(21).

(4) The canonical form (62) is very convenient for
discussing the dynamical behavior of chaotic
systems.

10. Conclusions and Discussion

It came as a big surprise to most scientists when
Lorenz discovered chaos in a simple system of three-
dimensional quadratic autonomous ordinary dif-
ferential equations in 1963. For nearly 40 years,
many simple chaotic flows have been found and
further studied within the framework of three-
dimensional quadratic autonomous systems. These
simple chaotic systems have stimulated a great deal
of interest in the studies of chaotic dynamics from a
unified point of view, as well as related chaos control
and synchronization problems.

This article has presented and further studied a
new chaotic system of three-dimensional quadratic
autonomous equations, which can generate two
1-scroll chaotic attractors simultaneously with three
equilibria, and two 2-scroll chaotic attractors si-
multaneously with five equilibria. Dynamical be-
haviors of this new chaotic system, including some
basic dynamical properties, bifurcations, periodic
windows, routes to chaos, compound structures of
the new attractors and their connections, etc. have
been investigated both theoretically and numeri-
cally. Moreover, the concept of generalized Lorenz
system has been further extended, so is the notion
of generalized Lorenz-like systems. Some discussion
of a simple classification and normal form has been
carried out for these three-dimensional quadratic
autonomous chaotic systems.

It has become clearer today that even the
relatively simple three-dimensional quadratic au-
tonomous chaotic systems are still demanding
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more efforts of deeper investigation. Besides their
abundant and complex dynamical behaviors, the
intrinsic relations among them in a better and
more complete classification remain an interest-
ing topic for further research. It has also become
clearer today that following some basic ideas and
techniques of chaotification, more and more new
chaotic systems, especially unknown members of
the elementary class of three-dimensional quadratic
autonomous chaotic systems, can be found and will
be found intentionally. This will greatly enhance our
understanding of chaotic systems in general, and
benefit chaotic dynamics analysis as well as chaos
control and synchronization with sensible engineer-
ing applications in particular.
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