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Abstract In this paper, we propose a new class of bivariate Farlie–Gumbel–Morgenstern

(FGM) copula. This class includes some known extensions of FGM copulas. Some general

formulas for well-known association measures of this class are obtained, and various prop-

erties of the proposed model are studied. The tail dependence range of the new class is 0 to

1, and its correlation range is more efficient. We apply some sub-families of the proposed

new class to model a dataset of medical science to show the superiority of our approach in

comparison with the presented generalized FGM family in the literature. We also present a

method to simulate from our generalized FGM copula, and validate our method and its accu-

racy using the simulation results to recover the same dependency structure of the original

data.
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1 Introduction

A non-decreasing and right-continuous bivariate function C : [0, 1] × [0, 1] → [0, 1] is

called a copula if it satisfies following conditions:

• C(s, 0) = C(0, s) = 0 and C(s, 1) = C(1, s) = s, ∀s ∈ [0, 1],
• ∀ (s1, s2, t1, t2) ∈ [0, 1]4, such that s1 ≤ s2 and t1 ≤ t2,

C(s2, t2) − C(s2, t1) − C(s1, t2) + C(s1, t1) ≥ 0. (1.1)
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Eventually, for twice differentiable, 2-increasing property (1.1) can be replaced by the

condition

c(s, t) = ∂2C(s, t)/∂s∂t ≥ 0, (1.2)

where c(s, t) is the so-called copula density.

Firstly, let us recall that the random variables X and Y are exchangeable, if (X, Y ) and

(Y, X) are identically distributed. Exchangeability in copulas is equivalent to the symmetry

of the copula. In other words, a copula C is symmetric if C(s, t) = C(t, s), for every

(s, t) ∈ [0, 1]2, otherwise C is asymmetric. Second, the random variables X and Y are

Positively Quadrant Dependent (P Q D) if P (X ≤ x, Y ≤ y) ≥ P (X ≤ x) P (Y ≤ y), for

every (x, y) ∈ ℜ2 or equivalently C(s, t) ≥ st , for every (s, t) ∈ [0, 1]2. Let C1 and C2 be

two copulas, the copula C2 is said to be more concordant (or more P Q D) than the copula

C1, (shortly C1 < C2), if C1(s, t) < C2(s, t), for every (s, t) ∈ [0, 1]2.

The study of copulas and their application has been developed a lot in the past decades,

as a tool to describe the dependence of random variable (see e.g. surveys by [12,17,21]).

However, copulas play a very important role in Mathematical Modeling and Simulation. So it

is very meaningful to construct different kinds of copulas. One of the most popular parametric

families of copulas, which were studied by [11,13,22], is the Farlie–Gumbel–Morgenstern

(FGM) copula defined by

C FG M (s, t) = st [1 + θ (1 − s)(1 − t)] , θ ∈ [−1, 1],∀(s, t) ∈ [0, 1]2, (1.3)

where θ is called the association parameter. The FGM copula is PQD, for θ ∈ (0, 1]. However,

this copula has been shown to be somewhat limited. This limitation for the dependence

parameter θ ∈ [−1, 1], the Spearman’s rho and Kendall’s tau, are ρS = θ/3 ∈ [−1/3, 1/3]
and τk = 2θ/9 ∈ [−2/9, 2/9], respectively.

Since the correlation domain of FGM copula is limited, more general copulas have been

introduced with the aim of improving the correlation range. An alternative approach to gen-

eralize the FGM copula was the symmetric semi-parametric extension that is defined by [26].

It was extensively studied in ([3] and [2]). [15] developed Polynomial-type single-parameter

extensions of FGM copula. They showed that ρS can be increased up to approximately

0.375 while the lower bound remains −0.33. [19] set conditions for positive quadrant depen-

dence and studied a class of bivariate uniform distribution with positive quadrant dependence

property by generalizing the uniform representation of a well-known FGM copula. By a sim-

ple transformation, they also obtained families of bivariate distributions with pre-specified

marginals. [4] further extended the family introdueced by [15] to the associated Spearman’s

ρS ∈ [−0.48, 0.5016]. [25] and [1] proposed a new class of bivariate copulas dependent on

two univariate functions which generalizes known families of copulas such as FG Mcopula

family. [5] proposed a new class of generalized FGM copula and showed that their gener-

alization can improve the correlation domain of FGM copula. Recently, ([23,24]) further

extended the family given by [5]. Their studied FGM copulas have range of Spearman’s

ρS ∈ [−0.48, 0.5308], which is wider than that of the other FGM families of copulas dis-

cussed in literature.

In this regard, this paper proposes another generalized class of FGM copula, which

includes some extended copulas introduced in recent years, and can improve the correla-

tion range i.e. the proposed family covers some of the introduced family in the literature and

its correlation range is more efficient. From another perspective, this presented family, is an

extension of the generalized FGM copula discussed in [5]. The main contribution of this
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paper includes the followings: first, an extension of FGM copula and some interesting prop-

erties are presented. Second, properties and the general formulas for association measures

of this family is its capability. The main feature of this family is capability for modeling a

wider range of dependence. This permits us to extend the range of potential applications of

the family in various branches of sciences.

The rest of the paper is as follows: the new extension and their basic characteristics are

described in Sect. 2. Section 3 is dedicated to a remark and a property of the new class. Some

general formulas for well-known association measures of this class are obtained in Sect. 4.

Section 5 is devoted to the application and simulation results.

2 A new class of bivariate FGM copula and basic properties

To consider the continuous function ψ : [0, 1] × [0, 1] → [0, 1] with additional properties:

• ψ is continuously differentiable on (0, 1),

• sψs (s, t) → 0, as 0,

• stψst (s, t) → 0, as (s, t) (0, 0),

• sψs (s, t) converges as 1,

• stψst (s, t) converges as (s, t) (1, 1),

where ψs (s, t) = ∂ψ (s, t)/∂s, ψt (s, t) = ∂ψ (s, t)/∂t and ψst (s, t) = ∂2ψ (s, t)/∂s∂t .

As an example, the function ψ(s, t) = (1 − sα)t (1 − st)(1 − t), 0 < α ≤ 1, for all

(s, t) ∈ [0, 1]2 is satisfied in the above conditions.

Definition 2.1 Based on the functionψ and its properties, suppose that the strictly continuous

function ψ : [0, 1] × [0, 1] → [0, 1] is differentiable on (0, 1). A function C
ψ,p
θ on [0, 1] ×

[0, 1] is defined as

C
ψ,p
θ (s, t) = st[1 + θψ(s, t)]p, p ∈ [1,∞) and ∀(s, t) ∈ [0, 1]2, (2.1)

for θ ∈ � ⊆ [−1, 1].

The concrete amount of the parameter space � is dependent on the properties of the

function ψ . We assume that ψ do not change their sign on [0, 1] in order to obtain unique

determined dependence structure. Note that the copula is limited to the range of [0, 1] and

therefore, [1+θψ(s, t)]p should be bounded on [0, 1]. The following theorem gives sufficient

and necessary conditions on ψ to ensure that C
ψ,p
θ is a bivariate copula.

Theorem 2.1 Let ψ be differentiable, non-negative and monotonically decreasing or non-

positive and monotonically increasing on [0, 1]. If

A1. ψ (x, 1) = ψ (1, x) = 0, ∀x ∈ [0, 1],
A2. (i) If ψ ′

x , for every x ∈ [0, 1] and ψ ′
st have the same sign for every (s, t) ∈ [0, 1]2,

then C
ψ,p
θ is a copula for θ ∈ [0, 1]; i.e. � = [0, 1].

(ii) If ψ ′
x , for every x ∈ [0, 1] and ψ ′

st do nothave the same sign for every (s, t) ∈ [0, 1]2,

then C
ψ,p
θ is a copula for every θ ∈ [−1, 0]; i.e. � = [−1, 0].

Proof The proof involves two steps:

First, it is clear that C
ψ,p
θ (x, 1) = C

ψ,p
θ (1, x) = x , ∀x ∈ [0, 1] ⇔(A1).

Second,
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(i) Since ψ ′
x and ψ ′

st are differentiable and monotone on [0, 1] and have the same sign,

eventually for twice differentiable C
ψ,p
θ the 2-increasing property (1.2) can be replaced by

the condition

c
ψ,p
θ (s, t) = ∂2C

ψ,p
θ (s, t)/∂s∂t

= [1 + θψ(s, t)]p−2
{(

1 + θψ(s, t)
)2 + st p(p − 1)θ2ψt (s, t)ψs(s, t)

+pθ
(

1 + θψ(s, t)
)(

tψt (s, t) + sψs(s, t) + stψst (s, t)
)}

(2.2)

is nonnegative, if ψ ′
x and ψ ′

st have the same sign, and θ ∈ [0, 1]. Because, letθ ∈ [0, 1], then

ψt (s, t)ψs(s, t) ≥ 0, ∀s, t ∈ [0, 1]

and

tψt (s, t) + sψs(s, t) + st ψst (s, t) ≥ 0, ∀s, t ∈ [0, 1]

with ψ : [0, 1] × [0, 1] → [0, 1]. Therefore,

(1 + θψ(s, t))2 + stp(p − 1)θ2ψt (s, t)ψs(s, t)

+pθ (1 + θψ(s, t)) (tψt (s, t) + sψs(s, t) + stψst (s, t)) ≥ 0
, ∀s, t ∈ [0, 1].

(ii) If θ ∈ [−1, 0] and ψ ′
x and ψ ′

st do not have the same sign. Then, similar to (i), we have

ψt (s, t)ψs(s, t) ≥ 0, ∀s, t ∈ [0, 1]

and

θ (tψt (s, t) + sψs(s, t) + stψst (s, t)) ≥ 0, ∀s, t ∈ [0, 1]

with ψ : [0, 1] × [0, 1] → [0, 1].
So, the function C

ψ,p
θ satisfies 2-increasing property. ⊓⊔

Corollary 2.1 Let ψ : [0, 1] × [0, 1] → [0, 1] be differentiable and monotonic on [0, 1],
fulfilling the conditions

B1. ψ (x, 1) = ψ (1, x) = 0, ∀x ∈ [0, 1],
B2.

∣

∣sψ ′
s(s, t)

∣

∣ ≤ 1,
∣

∣tψ ′
t (s, t)

∣

∣ ≤ 1, and
∣

∣stψ ′
st (s, t)

∣

∣ ≤ 1,∀s, t ∈ [0, 1].

Then, the function C
ψ,p
θ is a bivariate copula for θ ∈ [−1, 1]; i.e. � = [−1, 1].

Proof Similar to Theorem 1, with added condition (B2).

As an example, the function ψ(s, t) = (1−sα)(1−tα), for every α ≥ 0 and the admissible

range of parameter θ ∈
[

− (max{1, p})−1 , p−1
]

, the family C
ψ,p
θ reduce to the extended

FGM copula introduced by [5].

Note that θ is the parameter that shows dependence structure of the family C
ψ,p
θ so that

θ = 0 or p = 0, leads to the independence of S and T . By Theorem 2.1, the concreted

amount of the parameter space θ depends on the properties of the function ψ that has been

investigated via (2.2) for every s and t in [0, 1]. The class C
ψ,p
θ is PQD if and only if

1 + θψ(s, t) ≥ 0, for all s and t in [0, 1], that implies the family C
ψ,p
θ is more concordant

(or more PQD) than the family C
ψ,1
θ , written C

ψ,1
θ (s, t) < C

ψ,p
θ (s, t) for every s and t in

[0, 1]. It can introduce new sub-families of family (2.1) by several generalizations of ψ .If

ψ(s, t) = ψ(t, s), for every s and t in [0, 1], then the family ‘C
ψ,p
θ is symmetric, otherwise

is asymmetric. As an example, let ψ(s, t) = 1 −
√

1 − (1 − sa)(1 − ta), a ≥ 1, then the
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generated copula is a symmetric copula. Also, let ψ(s, t) = (1 −
√

sa)(1 − t), a ≥ 1, then

the generated copula is an asymmetric copula. In particular cases, let ψ(s, t) = f (s) f (t),

where f : [0, 1] → [0, 1] is a continuous differentiable function on (0, 1), and f (1) = 0,

then by Theorem 2.1, the generated family is a symmetric bivariate copula. Moreover, let

ψ(s, t) = f1(s) f2(t), where f1, f2 : [0, 1] → [0, 1], are continuous differentiable functions

on (0, 1) and f1(1) = f2(1) = 0, then by Theorem 2.1, the generated family is an asymmetric

bivariate copula ([7]). ⊓⊔

3 Some known copulas and one property

In this section, we present a remark and a property of the family C
ψ,p
θ introduced in (2.1).

Remark 3.1 The family C
ψ,p
θ includes some known family of FGM copulas introduced by

researchers in recent years, which are as follows:

(i) If ψ(s, t) = (1 − s)(1 − t),∀s, t ∈ [0, 1], and p = 1, the family C
ψ,p
θ reduce to the

symmetric FGM copula discussed by [11,13,22].

(ii) If ψ(s, t) = (1 − sα)(1 − tα),∀s, t ∈ [0, 1], α ≥ 0, and p = 1, the family C
ψ,p
θ

reduce to the symmetric extended FGM copula introduced by [15].

(iii) If ψ(s, t) = sq(1 − s)q tq(1 − t)q ,∀s, t ∈ [0, 1], q ≥ 1, and p = 1, the family C
ψ,p
θ

reduce to the symmetric extended FGM copula introduced by [19].

(iv) If ψ(s, t) = (1 − sγ )λ(1 − tγ )λ,∀s, t ∈ [0, 1], γ ≥ 0, λ ≥ 1, and p = 1, the family

C
ψ,p
θ reduce to the symmetric extended FGM copula introduced by [4].

(v) If ψ(s, t) = ϕ(s)ϕ(t), where ϕ is the function defined on [0, 1], so that it satisfies

ϕ(0) = ϕ(1) = 0 and p = 1, the family C
ψ,p
θ reduce to the symmetric copula

introduced by [25].

(vi) If ψ(s, t) = (1−sα)(1− tα),∀s, t ∈ [0, 1], α ≥ 0, and p = n, where n = 0, 1, 2, . . .,

the family C
ψ,p
θ reduce to the asymmetric extended FGM copula introduced by [5].

(vii) If ψ(s, t) = (1 − sα)(1 − tβ),∀s, t ∈ [0, 1], α > 0, β > 0, and p = n, where n ≥ 1,

the family C
ψ,p
θ reduce to the asymmetric extended FGM copula introduced by [23].

(viii) If ψ(s, t) = f (s
1
n )g(t

1
n ),∀s, t ∈ [0, 1], with f (1) = g(1) = 0, and p = n, where

n = 1, 2, 3, . . ., the family C
ψ,p
θ reduce to the asymmetric extended FGM copula

introduced by [24].

Moreover, via the family C
ψ,p
θ , some new generalizations can be defined by introducing

the additional parameter p for the families (i)–(v), and we can generate some copulas of the

family C
ψ,p
θ through the function ψ .

Proposition 3.1 Two limiting properties of the family C
ψ,p
θ are as follows:

(i) lim p→0 C
ψ,p
θ (s, t) = lim p→0 st [1 + θψ (s, t)]p = st = 
(s, t), where 
(s, t) is the

independent copula,
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(ii) Let θ = δ
p

, where δ ≤ p, then

lim
p→∞

C
ψ,δ
θ (s, t) = lim

p→∞
st

[

1 +
δ

p
ψ(s, t)

]p

= lim
p→∞

st

[

1 +
δ

p
ψ(s, t)

]p

= st exp[δψ(s, t)]
= Cψ,δ(s, t).

(3.1)

The new family Cψ,δ can be a new symmetric generalization of the Gumbel-Barnett (GB)

copula discussed by [16], when ψ(s, t) = ln(s) ln(t),∀s, t ∈ [0, 1] and Celebioglu-Cuadras

copula introduced by Cuadras ([9,10]), when ψ(s, t) = (1 − s)(1 − t),∀s, t ∈ [0, 1]. Also,

the copula Cψ,δ can be considered as a new generalization for [18] copula. [18] under some

conditions introduced some families of copulas that are closed under the construction of

generalized linear means. One of these families has the form:

Cφ(s, t) = st exp (δφ(s)φ(t)) ,∀s, t ∈ [0, 1],

where φ is a function that defined on I = [0, 1] and φ is satisfied in φ(1) = 0.

4 Measures of dependence

Measures of dependence are common instruments to summarize a complicated dependence

structure in the bivariate case. For a historical review of measures of dependence, see [17]

and [21]. In this section, we compute the measures of dependence for the family C
ψ,p
θ . Since

we cannot give formulas for the properties of dependence in terms of elementary functions,

it is replaced by its expansion series on

� = {(θ, ψ) : |θψ(s, t)| ≤ 1} ,∀s, t ∈ [0, 1].

Based on �, the family C
ψ,p
θ in (2.1), for every p ∈ [1,∞) may also be written by polynomial

expansion with respect to ψ as

C
ψ,p
θ (s, t) = st

p
∑

k=0

(

p

k

)

θkψk(s, t)

= st +
p

∑

k=1

(

p

k

)

θkstψk(s, t)

(4.1)

Note that, in (4.1), p is an integer, otherwise, p equals to +∞. Moreover, the family density

c
ψ,p
θ in (2.2) can be written as

c
ψ,p
θ (s, t) =

p−2
∑

k=0

(

p

k

)

θkψk(s, t)

×
{

(1 + θψ(s, t))2 + pθ (1 + θψ(s, t)) [sψs(s, t) + tψt (s, t) + stψst (s, t)]

+p(p − 1)θ2sψs(s, t)tψt (s, t)
}

. (4.2)
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Proposition 4.1 Let (X, Y ) be a pair of random variables with distribution belonging to the

family C
ψ,p
θ and the density family c

ψ,p
θ . Then

E [ψ(S, T )] =
p−2
∑

k=0

(

p

k

)

θk

{

d1(0, k + 1) + θ

(

2 −
p

k + 2

)

d1(0, k + 2)

+θ2

(

1 −
p

k + 3

)

d1(0, k + 3)

−(k + 1)pθd2(1, k) + pθ2 (p − k − 3) d2(1, k + 1)
}

, (4.3)

where d1(a, k) =
1
∫

0

1
∫

0

sa taψk(s, t)ds dt and d2(a, k) =
1
∫

0

1
∫

0

saψs(s, t)taψt (s, t)

ψk(s, t)ds dt.

Proof by using (4.2), E [ψ(S, T )] can be expanded as

E [ψ(S, T )] =
p−2
∑

k=0

(

p

k

)

θk

1
∫

0

1
∫

0

ψk+1(s, t)
{

(1 + θψ(s, t))2

+pθ (1 + θψ(s, t)) [sψs(s, t) + tψt (s, t) + stψst (s, t)]

+p(p − 1)θ2sψs(s, t)tψt (s, t)
}

ds dt

=
p−2
∑

k=0

(

p

k

)

θk

⎧

⎨

⎩

1
∫

0

1
∫

0

(

ψk+1(s, t) + 2θψk+2(s, t) + θ2ψk+3(s, t)
)

ds dt

+pθ

⎛

⎝

1
∫

0

1
∫

0

sψs(s, t)ψk+1(s, t)ds dt +
1

∫

0

1
∫

0

tψt (s, t)ψk+1(s, t)ds dt

⎞

⎠

+pθ2

⎛

⎝

1
∫

0

1
∫

0

sψs(s, t)ψk+2(s, t)ds dt +
1

∫

0

1
∫

0

tψt (s, t)ψk+2(s, t)ds dt

⎞

⎠

+pθ

⎛

⎝

1
∫

0

1
∫

0

stψst (s, t)ψk+1(s, t)ds dt + θ

1
∫

0

1
∫

0

stψst (s, t)ψk+2(s, t)ds dt

⎞

⎠

+p(p − 1)θ2

1
∫

0

1
∫

0

sψs(s, t)tψt (s, t)ψk+1(s, t)ds dt

⎫

⎬

⎭

.

Using part by part integration (Appendix A.), we have

1
∫

0

1
∫

0

sψs(s, t)ψk+1(s, t)dsdt =
1

∫

0

1
∫

0

tψt (s, t)ψk+1(s, t)ds dt =−
1

k + 2
d1(0, k + 2),

1
∫

0

1
∫

0

sψs(s, t)ψk+2(s, t)ds dt =
1

∫

0

1
∫

0

tψt (s, t)ψk+2(s, t)ds dt = −
1

k + 3
d1(0, k + 3),

1
∫

0

1
∫

0

stψst (s, t)ψk+1(s, t)ds dt =
1

k + 2
d1(0, k + 2) − (k + 1)d2(1, k),
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and

1
∫

0

1
∫

0

stψst (s, t)ψk+2(s, t)dsdt =
1

k + 3
d1(0, k + 3) − (k + 2)d2(1, k + 1).

So,

E [ψ(S, T )] =
p−2
∑

k=0

(

p

k

)

θk
{

d1(0, k + 1) + 2θd1(0, k + 2) + θ2d1(0, k + 3)

−
2pθ

k + 2
d1(0, k + 2) −

2pθ2

k + 3
d1(0, k + 3)

+pθ

(

1

k + 2
d1(0, k + 2) − (k + 1)d2(1, k) + θ

×
[

1

k + 3
d1(0, k + 3) − (k + 2)d2(1, k + 1)

])

+p(p − 1)θ2d2(1, k + 1)
}

=
p−2
∑

k=0

(

p

k

)

θk

{

d1(0, k + 1) + θ

(

2 −
p

k + 2

)

d1(0, k + 2)

+θ2

(

1 −
p

k + 3

)

d1(0, k + 3)

−(k + 1)pθd2(1, k) + pθ2 (p − k − 3) d2(1, k + 1)
}

.

⊓⊔

Example 4.1 For ψ(s, t) = (1−s)(1−t),∀s, t ∈ [0, 1] and p = 1in (2.1), the classical FGM

copula, we have E [(1 − S)(1 − T )] = θ/36 + 1/4, cov (S, T ) = θ/36, and the correlation

coefficient is ρ = θ/3.

4.1 Spearman’s rho

Let X and Y be continuous random variables whose copula is C . Then the population version

of Spearman’s rho for X and Y is given by

ρS = 12

1
∫

0

1
∫

0

C(s, t)ds dt − 3.

Note that, ρS coincides with the correlation coefficient ρ between the uniform marginal

distributions.

Proposition 4.2 Let (X, Y ) be a pair of random variables with distribution belonging to the

family C
ψ,p
θ . The Spearman’s rho for the family C

ψ,p
θ is given by

ρS = 12

p
∑

k=1

(

p

k

)

θkd1(1, k). (4.4)
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Proof by using (4.1), the Spearman’s rho can be expanded as

ρS = 12

1
∫

0

1
∫

0

C
ψ,p
θ (s, t)ds dt − 3

= 12

⎧

⎨

⎩

1
∫

0

1
∫

0

st ds dt +
1

∫

0

1
∫

0

p
∑

k=1

(

p

k

)

θkstψk(s, t)ds dt

⎫

⎬

⎭

− 3

= 12

1
∫

0

1
∫

0

st ds dt + 12

1
∫

0

1
∫

0

p
∑

k=1

(

p

k

)

θkstψk(s, t)ds dt − 3

= 12

p
∑

k=1

(

p

k

)

θk

1
∫

0

1
∫

0

stψk(s, t)ds dt

= 12

p
∑

k=1

(

p

k

)

θkd1(1, k).

⊓⊔

4.2 Kendall’s tau

In terms of copula, Kendall’s tau τk is defined as (see [21])

τk = 4

1
∫

0

1
∫

0

c(s, t)C(s, t)ds dt − 1.

Proposition 4.3 Let (X, Y ) be a pair of random variables with the family C
ψ,p
θ and the

density family c
ψ,p
θ ; then the Kendall’s tau (τk) can be expanded as

τk = 4

2p−2
∑

k=0

(

2p − 2

k

)

θk

{

d1(1, k) + 2θ

(

1 −
p

k + 1

)

d1(1, k + 1)

+θ2

(

1 −
2p

k + 2

)

d1(1, k + 2) − k pθd2(2, k − 1)

+pθ2(p − k − 2)d2(2, k)
}

− 1. (4.5)

Proof The proof of this proposition was deferred to the Appendix B. ⊓⊔

4.3 Gini’s gamma and the Spearman’s footrule coefficient

Let X and Y be continuous random variables whose copula is C , then the population version

of Gini’s gamma (γC ) and Spearman’s footrule coefficient (δC ) for X and Y are given by

γC = 4

1
∫

0

[C(s, s) + C(s, 1 − s)] ds − 1
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and

δC = 6

1
∫

0

C(s, s)ds − 2,

respectively.

Proposition 4.4 Let (X, Y ) be a pair of random variables with distribution belonging to

the family C
ψ,p
θ and the density family c

ψ,p
θ ; then the direction of equality between Gini’s

gamma (γC ) and the Spearman’s footrule (δC ) is given by

3γC − 2δC = 3 + 12

p
∑

k=1

(

p

k

)

θk

1
∫

0

[

s(1 − s)ψk(s, 1 − s)
]

ds. (4.6)

Proof The proof is straightforward ⊓⊔

Remark 4.1 For ψ(s, t) = (1 − s)(1 − t) and p = 1 in (2.1), the classical FGM copula, we

have ρS = θ/3, τk = 2θ/9, and 3γC −2δC = 3+2θ/5. Hence, we have −0.33 ≤ ρS ≤ 0.33

and −0.22 ≤ τk ≤ 0.22(as−1 ≤ θ ≤ 1).

As the remark (4.1) shows, the domain of correlation of FGM copula is limited and

therefore it is not allowed for modeling of strong dependence. One of the advantages of the

family C
ψ,p
θ is capability to improve the domain of correlation by introducing additional

parameter p in FGM copula and some generalized FGM families presented in recent years.

Example 4.2 In the family C
ψ,p
θ , let ψ(s, t) = (1 − s)(1 − t). Then the family C

ψ,p
θ leads

to a new symmetric generalized FGM copula with − (max{1, p})−1 ≤ θ ≤ p−1. Since

d1(1, k) =
1

∫

0

1
∫

0

stψk(s, t)dsdt =
(

1

(k + 1)(k + 2)

)2

,

we have by using (4.4) that

ρS = 12

p
∑

k=1

(

p

ssk

)

θk

[

1

(k + 1)(k + 2)

]2

,

where the upper bound of above ρS can be increased up to approximately 0.3805 as p → ∞,

while the lower bound −0.3333 remains unchanged. Therefore, the admissible range of ρS

in the new symmetric generalized FGM family is [−0.3333, 0.3805].

Example 4.3 In the family C
ψ,p
θ , let ψ(s, t) = (1 − sα)(1 − tα), α ≥ 0. Then the family

C
ψ,p
θ leads to a new symmetric generalized Hung-Kotz family with −

(

max{1, pα2}
)−1 ≤

θ ≤ (pα)−1. Since

d1(1, k) =
1

∫

0

1
∫

0

stψk(s, t)dsdt =
(

Ŵ (k + 1) Ŵ (2/α)

αŴ (k + 1 + 2/α)

)2

,

we have

ρS = 12

p
∑

k=1

(

p

k

)

θk

(

Ŵ (k + 1) Ŵ (2/α)

αŴ (k + 1 + 2/α)

)2

. (4.7)

123



A new class of bivariate copulas 41

Taking α ∼= 1.85 and p > 500 in (4.7), we have ρS,max = 0.43. Similarly, taking α ∼= 0.1 and

p > 500, we obtain ρS,min
∼= −0.50. Therefore, the admissible range of ρS in the generalized

Hung-Kotz family is [−0.50, 0.43]. So, the generalized Hung-Kotz copula improves the

amplitude ρS of Hung-Kotz family.

4.4 Tail dependence

The concept of tail dependence relates to the amount of dependence in the upper-right quad-

rant tail and the lower-left-quadrant tail of a bivariate distribution. It is a concept that is

relevant for the study of dependence between extreme values. It turns out that tail depen-

dence between two continuous random variables X and Y is a copula property and hence the

amount of tail dependence is invariant under strictly increasing transformations of X and Y

([8,14,17]). For a bivariate copula C if

λU = lim
s→1−

1 − 2s + C(s, s)

1 − s
, (4.8)

exists, then C has upper tail dependence if λU ∈ (0, 1], and upper tail independence if

λU = 0. The measure is extensively used in Extreme value theory. The concept of lower tail

dependence can be defined in a similar way. If the limit,

λL = lim
s→0+

C(s, s)

s
, (4.9)

exist, then C has lower tail dependence if λL ∈ (0, 1], and lower tail independence if λL = 0.

Proposition 4.5 Let (X, Y ) be a pair of random variables with distribution belonging to the

family C
ψ,p
θ ; then for the copula C

ψ,p
θ , we have

λu = −pθ
[

ψs,1(1, 1) + ψs,2(1, 1)
]

, (4.10)

and

λL = 0. (4.11)

Proof Clearly, the upper tail dependence coefficient (λU ) can be simplified as

λU = lim
u→1−

1 − 2s + s2[1 + θψ(s, s)]p

1 − s
,

so,

λU = lim
s→1−

(

1 − s{1−[1+θψ(s,s)]p}
1−s

)

= 1 − lim
s→1−

s
[

[1+θψ(1,1)]p−s[1+θψ(s,s)]p

1−s

]

= 1 − lim
s→1−

[

∂
∂s

s[1 + θψ(s, s)]p
]

= 1 − lim
s→1−

([1 + θψ(s, s)]p) − pθ lim
u→1−

s[ψ1,s(s, s) + ψ2,s(s, s)][1 + θψ(s, s)]p−1

= −pθ lim
s→1−

[

ψs,1(s, s) + ψs,2(s, s)
]

= −pθ
[

ψs,1(1, 1) + ψs,2(1, 1)
]

.

Also, the lower tail dependence coefficient (λL ) can be simplified by replacing (2.1) in (4.9)

as

λL = lim
s→0+

s2[1+θψ(s,s)]p

s

= lim
s→0+

s[1 + θψ(s, s)]p,
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where λL is indeterminate as [1 + θψ(s, s)]p tends to +∞, otherwise λL = 0. ⊓⊔

In (4.8) the copula C
ψ,p
θ is a one-parameter family of copulas whose upper tail dependence

coefficient (λu) ranges from 0 to 1 through function ψ .

Example 4.4 Choosing ψ(s, t) as the cumulative distribution function of the uniform distri-

bution on [0, θ ], θ ≤ 1, introduced in [15], gives the new family of copulas

C
ψ,p
θ (s, t)=st (1+θ min(1 − s, 1 − t))p, p ∈ [1,∞), 0≤θ ≤ p−1, and ∀(s, t) ∈ [0, 1]2.

By using (4.8), in this new family, we have

λU = pθ ∈ [0, 1].

Example 4.5 Consider the function ψ(s, t) = min(s, t) f (max{s, t}),∀(s, t) ∈ [0, 1]2,

where f (1) = 0 in (2.1); this leads to a new copula as follows:

C
ψ,p
θ (s, t) = st (1 + θ min(s, t) f (max{s, t}))p, p ∈ [1,∞).

By using (4.8), in this new family, we have

λU = −pθ f ′(1).

Example 4.6 Consider the function ψ(s, t) = f1(s) f2(t),∀(s, t) ∈ [0, 1]2, so that f1(1) =
f2(1) = 0in (2.1), that leads to a new copula as follows:

C
ψ,p
θ (s, t) = st (1 + θ1 f1(s) f2(t))

p, p ∈ [1,∞).

By using (4.8), in this new family, we have

λU = 0.

Based on these examples, we can state the following result:

Corollary 4.1 Let (X, Y ) be a pair of random variables with the family C
ψ,p
θ and ψ (s, 1) =

ψ (1, s) = 0, for every s ∈ [0, 1]. Thus, 0 ≤ λu ≤ 1 and this bound is reached within the

sub-families, while for FGM copula λU = 0.

5 Application and simulation

In this section, we apply our presented generalized FGM copula to some real dataset in

medical science. According to the manual of R’s package MASS, the US National Institute

of Diabetes and Digestive and Kidney Diseases collected data set from a population of

women (at least 21 years old, of Pima Indian heritage and living near Phoenix, Arizona) who

were tested for diabetes based on World Health Organization criteria. This dataset was later

reanalyzed by [20]. This dataset consists of 200 complete records after dropping the data on

serum insulin. Information is needed in analysis and management of body health test, the most

important part of which is the study of features frequency of Body Mass Index (BMI) and

Diabetes Pedigree Function (PED). Now, let us model the dependence between BMI and PED.

Considering the correlation of these two features, some tools must be used to reveal the amount

of relationship and impact which exists in the analysis; therefore it is necessary to determine

the joint distribution of the two features, BMI and PED. Because of the association amount

suggested by the correlation coefficient of 0.172, we reject independent assumption between
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Table 1 Different models of the generalized FGM copula

Model ψ Admissible range of θ MLE of θ MLE of p AIC

I (1 − s)(1 − t)∗ −1 ≤ θ ≤ 1 0.3251 – −16.2632

II (1 − s)(1 − t) − (max{1, p})−1 ≤ θ ≤ p−1 0.1745 2.6854 −17.2516

III s(1 − s)(1 − t) −p−1 ≤ θ ≤ p−1 0.1553 3.5237 −20.0284

* FGM copula

Fig. 1 Plots of the empirical joint distribution from the generalized FGM copula model

two variables (sig. = 0.015). According to the low correlation coefficient between BMI and

PED, we decide to determine dependency structure and bivariate distribution between BMI

and PED through fitting FGM copula and presented generalized FGM copula in this paper.

To this end and to be free of determining marginals distribution; we use Kernel method to

determine marginals distribution for BMI and PED before further analyzing. Hereafter, we

use S and T instead of cumulative distribution function BMI and PED, respectively, which

determine using Kernel method. For estimating parameter of generalized FGM copula in

(2.1), θ and p, the log-likelihood function was computed. The results for different function

ψ and parameter estimation with AIC criteria are presented in Table 1. This table shows

the familyC
ψ,p
θ is the flexible generalized FGM copula, by choosing different types of ψ

functions and estimating parameter θ and p; accordingly, the family C
ψ,p
θ can better fit

the interested medical data. As an example, for ψ = s(1 − s)(1 − t), θ = 0.1553 and

p = 3.5237(p > 1) the family C
ψ,p
θ shows ψ has less AIC. These results can be investigated

using simulation and scatter plot study. Also, in order to evaluate and compare the detailed

functions Table 1, the main measure of proximity to the empirical joint distribution of data is

used, that results of this evaluation and comparison are summarized in Fig. 1. Figure 1 shows

that the joint model III is closer to the main points, therefore, the empirical joint distribution

function III, is more suitable for fitting to the data Fig. 2.
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Fig. 2 Graph of the generalized

family for

ψ(s, t) = s(1 − s)(1 − t) for

p = 3.5237 and θ = 0.1553

Fig. 3 Contour plots of the generalized FGM copula model

The Graph of the generalized family for ψ(s, t) = s(1 − s)(1 − t) for p = 3.5237 and

θ = 0.1553 is as follows:

Also, in Fig. 3, the contour plots for the functions of Table 1 are drawn.

We now discuss the simulation of data from the generalized FGM family and perform

comparisons between correlations in the simulated data and in the observed data based on

1000 simulations. We follow the simulation method proposed by Johnson (1987, Ch.3) and

later Nelson (2006, page 41). Thus, a sampling algorithm to simulate from C
ψ,p
θ (s1, t1) is as

follows:

(1) Draw two independent uniform random values (s1, t2).

(2) Set t1 = C−1
2|1 (s1, t2), where C−1

2|1 denotes the pseudo-inverse of C2|1 .

The vector (s1, t1) is generated from the family C
ψ,p
θ .

Figure 4, Sub-Figure (I) to (III), illustrates the scatter plots of the transformed observed

data (o) versus simulated samples of the CDFs of BMI and PED variables (*) taken from

the fitted generalized FGM copula in Table 1. It can almost be seen that the simulated data

and the original data have similar dependence patterns but the consistency amount between

observed data and simulated data is not so clear in Sub-Figures of Fig. 1. To settle this con-

cern, Table 2 shows the rank correlations between the BMI and PED variables calculated

from the original observed data, and based on the simulated data of size 1000 taken from the

fitted FGM copula; and the generalized FGM copula family. By comparing these correla-
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MODEL I MODEL II

MODEL III 
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Fig. 4 Scatter plots of the transformed observed values versus simulated samples of BMI and PED variables

from the generalized FGM copula model

Table 2 Calculated correlations

for different models of the

generalized FGM copula

Model Correlation

Original data 0.1732

I 0.1562

II 0.1698

III 0.1721

tions, we can conclude that the results show strong consistency of the estimated correlations

based on the generalized FGM copula are closer to the ones which come from the observed

data.
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Appendix A

Using integration by parts, we have

1
∫

0

sψs(s, t)ψk+1(s, t)ds =
s

k + 2
ψk+2(s, t)

∣

∣

∣

∣

1

0

−
1

k + 2

1
∫

0

ψk+2(s, t) ds

= −
1

k + 2

1
∫

0

ψk+2(s, t) ds.

Thus

1
∫

0

1
∫

0

sψs(s, t)ψk+1(s, t)ds dt = −
1

k + 2

1
∫

0

1
∫

0

ψk+2(s, t)ds dt = −
1

k + 2
d1(0, k + 2).

Similarly

1
∫

0

1
∫

0

tψt (s, t)ψk+1(s, t)ds dt = −
1

k + 2
d1(0, k + 2)

and

1
∫

0

1
∫

0

sψs(s, t)ψk+2(s, t)ds dt =
1

∫

0

1
∫

0

tψt (s, t)ψk+2(s, t)ds dt = −
1

k + 3
d1(0, k + 3).

Also,

1
∫

0

sψst (s, t)ψk+2(s, t) ds = sψt (s, t)ψk+1(s, t)

∣

∣

∣

1

0

−
1

∫

0

ψt (s, t)
(

ψk+1(s, t) + (k + 1)sψs(s, t)ψk(s, t)
)

ds

= −

⎛

⎝

1
∫

0

ψt (s, t)ψk+1(s, t) ds + (k + 1)

1
∫

0

sψs(s, t)ψt (s, t)ψk(s, t) ds

⎞

⎠ .

Thus, it can conclude that,

1
∫

0

1
∫

0

stψst (s, t)ψk+2(s, t)ds dt
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= −

⎛

⎝

1
∫

0

1
∫

0

tψt (s, t)ψk+1(s, t) ds dt + (k + 1)

1
∫

0

1
∫

0

sψs(s, t)tψt (s, t)ψk(s, t) ds dt

⎞

⎠

=
1

k + 2
d1(0, k + 2) − (k + 1)

1
∫

0

1
∫

0

sψs(s, t)tψt (s, t)ψk(s, t)ds dt

=
1

k + 2
d1(0, k + 2) − (k + 1)d2(1, k).

In a similar way,

1
∫

0

1
∫

0

stψst (s, t)ψk+2(s, t)ds dt =
1

k + 3
d1(0, k + 3) − (k + 2)d2(1, k + 1).

Appendix B

Proof by using (2.1) and (2.2), we will have

c
ψ,p
θ (s, t)C

ψ,p
θ (s, t) = st[1 + θψ(s, t)]2p−2

×
{

(1 + θψ(s, t))2 + pθ (1 + θψ(s, t)) [sψs(s, t) + tψt (s, t) + stψst (s, t)] (1)

+p(p − 1)θ2sψs(s, t)tψt (s, t)
}

.

The relation (1) may be written with polynomial sections expansions as:

c
ψ,p
θ (s, t)C

ψ,p
θ (s, t) =

2p−2
∑

k=0

(

2p − 2

k

)

θkstψk(s, t)

×
{

(1 + θψ(s, t))2 + pθ (1 + θψ(s, t)) [sψs(s, t) + tψt (s, t) + stψst (s, t)]

+p(p − 1)θ2sψs(s, t)tψt (s, t)
}

=
2p−2
∑

k=0

(

2p − 2

k

)

θk
{

stψk(s, t) + 2θstψk+1(s, t) + θ2stψk+2(s, t)

+pθ

(

s2tψs(s, t)ψk(s, t) + st2ψt (s, t)ψk(s, t)
)

+pθ2
(

s2tψs(s, t)ψk+1(s, t) + st2ψt (s, t)ψk+1(s, t)
)

+pθ

(

s2t2ψst (s, t)ψk(s, t) + θs2t2ψst (s, t)ψk+1(s, t)
)

+p(p − 1)θ2s2ψs(s, t)t2ψt (s, t)ψk(s, t)
}

.

So,

τk = 4

1
∫

0

1
∫

0

c
ψ,p
θ (s, t)C

ψ,p
θ (s, t)ds dt − 1

= 4

2p−2
∑

k=0

(

2p − 2

k

)

θk

⎧

⎨

⎩

⎛

⎝

1
∫

0

1
∫

0

stψk(s, t)ds dt + 2θ

1
∫

0

1
∫

0

stψk+1(s, t)ds dt
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+ θ2

1
∫

0

1
∫

0

stψk+2(s, t)ds dt

⎞

⎠

+pθ

⎛

⎝

1
∫

0

1
∫

0

s2tψs(s, t)ψk(s, t)ds dt+
1

∫

0

1
∫

0

st2ψt (s, t)ψk(s, t)ds dt

⎞

⎠

+ pθ2

⎛

⎝

1
∫

0

1
∫

0

s2tψs(s, t)ψk+1(s, t)ds dt+
1

∫

0

1
∫

0

st2ψt (s, t)ψk+1(s, t)ds dt

⎞

⎠

+ pθ

⎛

⎝

1
∫

0

1
∫

0

s2t2ψst (s, t)ψk(s, t)ds dt + θ

1
∫

0

1
∫

0

s2t2ψst (s, t)ψk+1(s, t)ds dt

⎞

⎠

+ p(p − 1)θ2

⎛

⎝

1
∫

0

1
∫

0

s2ψs(s, t)t2ψt (s, t)ψk(s, t)ds dt

⎞

⎠

⎫

⎬

⎭

− 1.

Using part by part integration, we have

1
∫

0

s2ψs(s, t)ψk(s, t)ds =
s2

k + 1
ψk+1(s, t)

∣

∣

∣

∣

1

0

−
2

k + 1

1
∫

0

sψk+1(s, t)ds

= −
2

k + 1

1
∫

0

sψk+1(s, t)ds.

Thus

1
∫

0

1
∫

0

s2tψs(s, t)ψk+1(s, t)dsdt =−
2

k + 1

1
∫

0

1
∫

0

stψk+1(s, t)dsdt = −
2

k + 1
d1(1, k + 1).

Similarly

1
∫

0

1
∫

0

st2ψt (s, t)ψk(s, t)dsdt = −
2

k + 1
d1(1, k + 1),

1
∫

0

1
∫

0

s2tψs(s, t)ψk+1(s, t)dsdt =
1

∫

0

1
∫

0

st2ψt (s, t)ψk+1(s, t)dsdt =−
2

k + 2
d1(1, k + 2).

Hence,

1
∫

0

s2ψst (s, t)ψk(s, t)ds = s2ψt (s, t)ψk(s, t)

∣

∣

∣

1

0

−
1

∫

0

ψt (s, t)
(

2sψk(s, t) + ks2ψs(s, t)ψk−1(s, t)
)

ds
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= −

⎛

⎝2

1
∫

0

sψt (s, t)ψk(s, t)ds + k

1
∫

0

s2ψs(s, t)ψt (s, t)ψk−1(s, t)ds

⎞

⎠ .

So,

1
∫

0

1
∫

0

s2t2ψst (s, t)ψk(s, t)dsdt

= −

⎛

⎝

1
∫

0

1
∫

0

st2ψt (s, t)ψk(s, t)dsdt + k

1
∫

0

1
∫

0

s2ψs(s, t)t2ψt (s, t)ψk−1(s, t)dsdt

⎞

⎠

=
2

k + 1
d1(1, k + 1) − k

1
∫

0

1
∫

0

s2ψs(s, t)t2ψt (s, t)ψk−1(s, t)dsdt

=
2

k + 1
d1(1, k + 1) − kd2(2, k − 1).

In a similar way,

1
∫

0

1
∫

0

s2t2ψst (s, t)ψk+1(s, t)dsdt =
2

k + 2
d1(1, k + 2) − (k + 1)d2(2, k).

So, the Kendall’s tau (τk) is

τk = 4

2p−2
∑

k=0

(

2p − 2

k

)

θk
{

d1(1, k) + 2θd1(1, k + 1) + θ2d1(1, k + 2)

−
4pθ

k + 1
d1(1, k + 1) −

4pθ2

k + 2
d1(1, k + 2)

+ pθ

(

2

k + 1
d1(1, k + 1) − kd2(2, k − 1) +

2θ

k + 2
d1(1, k + 2) − (k + 1)θd2(2, k)

)

+ p(p − 1)θ2d2(2, k)

}

− 1

= 4

2p−2
∑

k=0

(

2p − 2

k

)

θk

{

d1(1, k) + 2θ

(

1 −
p

k + 1

)

d1(1, k + 1)

+ θ2

(

1 −
2p

k + 2

)

d1(1, k + 2) − kpθd2(2, k − 1)

+ pθ2(p − k − 2)d2(2, k)

}

− 1.

The result follows from (4.5). ⊓⊔
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