Int. Journal of Math. Analysis, Vol. 2, 2008, no. 5, 235-253

A New Class of Bivariate Gompertz Distributions and its Mixture ${ }^{1}$

A. Al-Khedhairi and A. El-Gohary ${ }^{2}$
Department of Statistics and O.R. College of Science, King Saud University
P.O. Box 2455 Riyadh 11451, Saudi Arabia
elgohary0@yahoo.com

Abstract

A new class of bivariate Gompertz distributions is presented in this paper. The model introduced here is of Marshall-Olkin type. The used procedure is based on a latent random variable with exponential distribution. A mixture of the suggested bivariate distributions is also derived. The obtained results in this paper generalize those of MarshallOlkin bivariate exponential distribution and other present in the literature.

Keywords: Bivariate Gompertz distribution, Moment generating function, Mixture distributions

1 Introduction

The Gompertz distribution plays an important role in modelling human mortality and fitting actuarial tables. This distribution was first introduced by Gompertz [1]. It has been used as a growth model and also used to fit the tumor growth. The Gompretz distribution is related by a simple transformation to certain distribution in the family of distributions obtained by Pearson. Applications and more recent survey of the Gompertz distribution can be found in [2].

[^0]In many practical situation, multivariate lifetime data arise frequently, and in these situations it is important to consider different multivariate models that could be used to model such multivariate lifetime data. The model introduced in this paper is of some interest, in reliability theory, for example, sometimes failure rate can occur for more than one reason and a mixture distribution is nice tool for modelling such situation.

In fact, shock models are used in reliability to describe different applications. Shocks can refer for example to damage caused to biological organs by illness or environmental causes of damage acting on a technical system,see for example El-Gohary [4, 5, 6], and A-hameed and Proschan [7]. Also El-Gohary and Al-Ruzaiza have obtained a new class of bivariate distribution with pareto of Marshall-Olkin type [3].
The objective of this paper is to introduce a new class of bivariate Gompertz distributions of Marsall-Olkin type. It is considered as a distribution of the life times of two dependent components each has a Gompertz distribution. Also the mixture of the proposed Gompertz distributions will be derived.

The paper is organized as follows. Section 2 presents the shock model yielding the bivariate Gompertz distribution. The joint survival and probability density function of bivariate proposed Gompertz distribution is derived. Section 3 presents the joint moment generating function of this bivariate distribution and its marginal moment generating functions. Section 4 discusses the mixture of proposed bivariate Gompertz distributions and its moment generating function.

2 The new class of bivariate Gompertz distributions

In this section, we define a new class of bivariate Gompertz distribution using shock models. We start with the joint survival function of the proposed bivariate distribution and so used it to derive the corresponding joint probability density function. The marginal probability density functions and conditional probability density functions of this distribution are also derived. Finally this contains mathematical expectation of this distribution.

2.1 The joint survival function

Assume that there exists a three independent sources of shocks are presented in the environment of a system consists of two components [7]. A shock from source 1 destroys the component 1 ; it occurs at a random time T_{1}. A shock from source 2 destroys component 2 ; it occurs at a random time T_{2}. A shock from source 3 destroys both the components; it occurs at a random time T_{3}. Thus the random lifetime of the component 1 , say X_{1}, satisfies $X_{1}=\min \left(T_{1}, T_{3}\right)$. While the random lifetime of component 2, say X_{2}, satisfies $X_{2}=\min \left(T_{2}, T_{3}\right)$ [9].
Let us assume that the random variables T_{1} and T_{2} having Gompertz distribution with parameters α_{1}, β_{1} and α_{2}, β_{2} respectively while the random variable T_{3} has an exponential distribution with parameter θ, shortly we say $\operatorname{Gomp}\left(\alpha_{i}, \beta_{i}\right), i=1,2$ and T_{3} has $\operatorname{Exp}(\theta)$ [3].

That is, the probability density function of the random lifetime $T_{i}, i=1,2$, takes the following form

$$
\begin{equation*}
g_{i}(t)=\alpha_{i} e^{\beta_{i} t} \bar{G}_{i}(t), t \geq 0, \alpha_{i}>0, \beta_{i}>0,(i=1,2) \tag{2.1}
\end{equation*}
$$

where $\bar{G}_{i}(t)$ is the survival function of $T_{i}, i=1,2$, which is given by

$$
\begin{equation*}
\bar{G}_{i}(t)=\exp \left\{-k_{i}\left(e^{\beta_{i} t}-1\right)\right\}, \alpha_{i}=k_{i} \beta_{i},(i=1,2) \tag{2.2}
\end{equation*}
$$

The probability density function of T_{3} takes the following form

$$
\begin{equation*}
g_{3}(t)=\theta \bar{G}_{3}(t), t \geq 0, \theta>0 \tag{2.3}
\end{equation*}
$$

where $\bar{G}_{3}(t)$ is survival function of T_{3} which given by

$$
\begin{equation*}
\bar{G}_{3}(t)=e^{-\theta t} \tag{2.4}
\end{equation*}
$$

Obviously, the random variables X_{1} and X_{2} are dependent because of the common source of shock 3 .
Now we proceed to investigate the joint survival function of the random variables X_{1} and X_{2}. The following lemma presents the joint survival function $\bar{F}_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ of these variables.

Lemma 2.1 The joint survival function of X_{1} and X_{2} is
$\bar{F}_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\bar{G}_{3}(z) \prod_{i=1}^{2} \bar{G}_{i}\left(x_{i}\right)=\exp \left[-k_{1}\left(e^{\beta_{1} x_{1}}-1\right)-k_{2}\left(e^{\beta_{2} x_{2}}-1\right)-\theta z\right]$
where $z=\max \left(x_{1}, x_{2}\right)$.
Proof. Since the joint survival function of X_{1} and X_{2} is defined as

$$
\bar{F}_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=P\left(X_{1}>x_{1}, X_{2}>x_{2}\right)
$$

Then

$$
\begin{aligned}
\bar{F}_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =P\left(\left\{\min \left(T_{1}, T_{3}\right)>x_{1}\right\},\left\{\min \left(T_{2}, T_{3}\right)>x_{2}\right\}\right) \\
& =P\left(\left\{T_{1}>x_{1}, T_{3}>x_{2}\right\},\left\{T_{2}>x_{1}, T_{3}>x_{2}\right\}\right) \\
& =P\left(T_{1}>x_{1}, T_{2}>x_{2}, T_{3}>\max \left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

As the random variables $T_{j},(j=1,2,3)$ are mutually independent, we directly obtain

$$
\begin{aligned}
\bar{F}_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =P\left(T_{1}>x_{1}\right) P\left(T_{2}>x_{2}\right) P\left(T_{3}>\max \left(x_{1}, x_{2}\right)\right) \\
& =\bar{G}_{1}\left(x_{1}\right) \bar{G}_{2}\left(x_{2}\right) \bar{G}_{3}(z), \quad z=\max \left(x_{1}, x_{2}\right)
\end{aligned}
$$

Substituting from (2.2) and (2.4) into the above relation, we can reach the form (2.5) that completes the proof.
The following Corollary gives the marginal survival functions of the random variable X_{1} and X_{2}.
Corollary 2.1 The marginal survival functions of bivariate Gompertz distribution are given by

$$
\begin{equation*}
\bar{F}_{X_{i}}\left(x_{i}\right)=\bar{G}_{i}\left(x_{i}\right) \bar{G}_{3}\left(x_{i}\right)=\exp \left[-k_{i}\left(e^{\beta_{i} x_{i}}-1\right)-\theta x_{i}\right], i=1,2 \tag{2.6}
\end{equation*}
$$

Proof. The proof of this Corollary can be done in a similar manner as in the proof of Lemma 2.1.
The following Corollary presents the joint distribution of X_{1} and X_{2}.
Corollary 2.2 The joint distribution function $F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ of X_{1} and X_{2} is given by

$$
\begin{align*}
& F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=1-\bar{G}_{1}\left(x_{1}\right) \bar{G}_{3}\left(x_{1}\right)-\bar{G}_{2}\left(x_{2}\right) \bar{G}_{3}\left(x_{2}\right)+\bar{G}_{3}(z) \prod_{i=1}^{2} \bar{G}_{i}\left(x_{i}\right) \\
& \quad=1-\exp \left[-k_{1}\left(e^{\beta_{1} x_{1}}-1\right)-\theta x_{1}\right]-\exp \left[-k_{2}\left(e^{\beta_{2} x_{2}}-1\right)-\theta x_{2}\right]+ \\
& \quad \exp \left[-k_{1}\left(e^{\beta_{1} x_{1}}-1\right)-k_{2}\left(e^{\beta_{2} x_{2}}-1\right)-\theta z\right] \tag{2.7}
\end{align*}
$$

Proof. The proof of this Corollary can be reached by using (2.5) and (2.6) with the help of the following relation:

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=1-\bar{F}_{X_{1}}\left(x_{1}\right)-\bar{F}_{X_{2}}\left(x_{2}\right)+\bar{F}_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)
$$

We can easily observe that the joint survival function of Marshall-Olkin bivariate exponential distribution $[8,9,10]$ can be obtained by setting $\beta_{i},(i=$ $1,2)$ tend to zero.

2.2 The joint probability density function

The following theorem provides the joint probability density function of the new bivariate Gompertz distribution.

Theorem 2.1 If the joint survival function of X_{1} and X_{2} is given by

$$
\begin{equation*}
\bar{F}_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\exp \left[-k_{1}\left(e^{\beta_{1} x_{1}}-1\right)-k_{2}\left(e^{\beta_{2} x_{2}}-1\right)-\theta z\right] \tag{2.8}
\end{equation*}
$$

Then, then joint probability density function $f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)$ of X_{1} and X_{2} takes the form

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}f_{1}\left(x_{1}, x_{2}\right) & \text { if } x_{1}>x_{2}>0 \tag{2.9}\\ f_{2}\left(x_{1}, x_{2}\right) & \text { if } x_{2}>x_{1}>0 \\ f_{0}(x, x) & \text { if } x_{1}=x_{2}=x>0\end{cases}
$$

where

$$
\begin{align*}
& f_{1}\left(x_{1}, x_{2}\right)=k_{2} \beta_{2} e^{\beta_{2} x_{2}}\left(\theta+k_{1} \beta_{1} e^{\beta_{1} x_{1}}\right) \exp \left[-k_{1}\left(e^{\beta_{1} x_{1}}-1\right)-k_{2}\left(e^{\beta_{2} x_{2}}-1\right)-\theta x_{1}\right] \\
& f_{2}\left(x_{1}, x_{2}\right)=k_{1} \beta_{1} e^{\beta_{1} x_{1}}\left(\theta+k_{2} \beta_{2} e^{\beta_{2} x_{2}}\right) \exp \left[-k_{1}\left(e^{\beta_{1} x_{1}}-1\right)-k_{2}\left(e^{\beta_{2} x_{2}}-1\right)-\theta x_{2}\right] \\
& f_{0}(x, x)=\theta \exp \left[-k_{1}\left(e^{\beta_{1} x}-1\right)-k_{2}\left(e^{\beta_{2} x}-1\right)-\theta x\right] \tag{2.10}
\end{align*}
$$

Proof. The proof of this Theorem is based on the obtaining forms of $f_{1}\left(x_{1}, x_{2}\right)$ and $f_{2}\left(x_{1}, x_{2}\right)$ by differentiating the joint survival function $\bar{F}_{X_{1}, X_{2}}(x, y)$ with respect to x_{1} and x_{2}, that is

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}\frac{\partial^{2} \bar{F}\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}} & \text { if } x_{1}>x_{2}>0 \\ \frac{\partial^{2} \bar{F}\left(x_{1}, x_{2}\right)}{\partial x_{1} \partial x_{2}} & \text { if } x_{2}>x_{1}>0\end{cases}
$$

But $f_{0}(x, x)$ can not be derived in a similar method. Instead we use the following identity to derive $f_{0}(x, x)$.

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{x_{1}} f_{1}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}+\int_{0}^{\infty} \int_{0}^{x_{2}} f_{2}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}+\int_{0}^{\infty} f_{0}(x, x) d x=1 \tag{2.11}
\end{equation*}
$$

One can find out that

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{x_{1}} f_{1}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=1-\int_{0}^{\infty}\left(\theta+k_{1} \beta_{1} e^{\beta_{1} x_{1}}\right) \bar{F}_{X_{1}}\left(x_{1}\right) d x_{1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\infty} \int_{0}^{x_{2}} f_{2}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}=1-\int_{0}^{\infty}\left(\theta+k_{2} \beta_{2} e^{\beta_{2} x_{2}}\right) \bar{F}_{X_{2}}\left(x_{2}\right) d x_{2} \tag{2.13}
\end{equation*}
$$

Substituting from (2.10) and (2.11) into (2.9) we obtain

$$
\int_{0}^{\infty} f_{0}(x, x) d x=\theta \int_{0}^{\infty} \prod_{i=1}^{3} \bar{G}_{i}(x) d x
$$

Thus, $f_{0}(x, x)$ is

$$
f_{0}(x, x)=\theta \exp \left[-k_{1}\left(e^{\beta_{1} x}-1\right)-k_{2} \beta_{2}\left(e^{\beta_{2} x}-1\right)-\theta x\right], x>0 .
$$

which completes the proof.
This class of bivariate distributions generalizes the bivariate distribution of Marshall-Olkin [8]. This result shows that the results of this paper generalize those of Marshall-Olkin bivariate exponential distribution. Further the survival function of bivariate Weibull distributions can be derived using the nonlinear transformation $X_{i}=\ln \left(1+Y_{i}^{\left.\beta_{i}\right)} / \beta_{i},(i=1,2)\right.$ [12]. That is

$$
\bar{F}\left(y_{1}, y_{2}\right)=e^{-\left(k_{1} y_{1}^{\beta_{1}}+k_{1} y_{2}^{\beta_{2}}+\theta z\right)}, z=\max \left(y_{1}, y_{2}\right)
$$

Therefore this survival function can be used to derive the probability density function of bivariate Weibull distribution in [12].

Next, plots of the joint density function (2.9) for some selected values of distribution parameters are shown in figures $1-4$.

Figures 1a and 1b. A plot of the joint density function $f\left(x_{1}, x_{2}\right)$, Equation (2.9) for $\alpha_{2}=2 \alpha_{1}=0.4, \beta_{1}=\beta_{2}=10$ and $\theta=5$.

Figures 2a and 2b. A plot of the joint density function $f\left(x_{1}, x_{2}\right)$, Equation (2.9) for $\alpha_{1}=\alpha_{2}=0.4, \beta_{1}=40 \beta_{2}=200$ and $\theta=5$.

Figures 3 a and 3b. A plot of the joint density function $f\left(x_{1}, x_{2}\right)$, Equation (2.9) for $\alpha_{1}=\alpha_{2}=2, \beta_{2}=100 \beta_{1}=200$ and $\theta=5$.

Figures 4 a and 4 b . A plot of the joint density function $f\left(x_{1}, x_{2}\right)$, Equation (2.9) for $\alpha_{1}=\alpha_{2}=2, \beta_{2}=1500, \beta_{1}=2$ and $\theta=25$.

A comparison of Figures $3 b$ and $4 b$ shows the relative rate at which the density tail of.

Lemma 2.2 The joint probability density function of the Marshall-Olkin bivariate exponential distribution is [8, 11]

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}\alpha_{2}\left(\alpha_{1}+\theta\right) \exp \left[-\left(\alpha_{1}+\theta\right) x_{1}-\alpha_{2} x_{2}\right], & x_{1}>x_{2}>0 \\ \alpha_{1}\left(\alpha_{2}+\theta\right) \exp \left[-k_{1} \beta_{1} x_{1}-\left(\alpha_{2}+\theta\right) x_{2}\right], & x_{2}>x_{1}>0\end{cases}
$$

Also, this distribution has a mass of $\theta /\left(\theta+\alpha_{1}+\alpha_{2}\right)$ along the diagonal $x_{1}=x_{2}$. Proof. The result of this lemma can be obtained immediately from theorem (2.1) upon setting β_{1} and β_{2} tend to zero.

2.3 Marginal probability density functions

The following Corollary gives the marginal probability density functions of X_{1} and X_{2}.

Theorem 2.2 The marginal pdf of $X_{i},(i=1,2)$ is given by

$$
\begin{equation*}
f_{X_{i}}\left(x_{i}\right)=\left(\theta+k_{i} \beta_{i} e^{\beta_{i} x_{i}}\right) \exp \left[-k_{i}\left(e^{\beta_{i} x_{i}}-1\right)-\theta x_{i}\right], x_{i}>0,(i=1,2) \tag{2.14}
\end{equation*}
$$

Proof. First we derive $f_{X_{1}}\left(x_{1}\right)$ using the fact that
$f_{X_{1}}\left(x_{1}\right)=\int_{0}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}=\int_{0}^{x_{1}} f_{1}\left(x_{1}, x_{2}\right) d x_{2}+\int_{x_{1}}^{\infty} f_{2}\left(x_{1}, x_{2}\right) d x_{2}+f_{0}\left(x_{1}, x_{1}\right)$
Using the expressions of $f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)$ and $f_{0}\left(x_{1}, x_{1}\right)$ given in Theorem (2.1), we can get $f_{X_{1}}\left(x_{1}\right)$ of the form (2.14). Proceeding similarly, we can derive $f_{X_{2}}\left(x_{2}\right)$ as given in (2.14), which completes the proof of the theorem.

Lemma 2.3 The marginal probability density function of $X_{i},(i=1,2)$ of Marshall-Olkin bivariate exponential distribution is

$$
f_{X_{i}}\left(x_{i}\right)=\left(\theta+\alpha_{i}\right) e^{-\left(\theta+\alpha_{i}\right) x_{i}}, x_{i}>0,(i=1,2)
$$

Proof. The proof of this lemma can be obtained immediately from theorem (2.2) upon setting $\beta_{i},(i=1,2)$ tend to zero.

2.4 Conditional probability density functions

Theorem 2.3 The conditional probability density function of X_{i} given $X_{j}=$ $x_{j},(i, j=1,2, i \neq j)$ is given by

$$
f_{X_{i} \mid X_{j}}\left(x_{i} \mid x_{j}\right)= \begin{cases}f_{X_{i} \mid X_{j}}^{(1)}\left(x_{i} \mid x_{j}\right) \text { if } & x_{i}>x_{j}>0 \tag{2.15}\\ f_{X_{i} \mid X_{j}}^{(2)}\left(x_{i} \mid x_{j}\right) \text { if } & x_{j}>x_{i}>0 \\ f_{X_{i} \mid X_{j}}^{(0)}\left(x_{i} \mid x_{j}\right) \text { if } & x_{i}=x_{j}>0\end{cases}
$$

where

$$
\begin{aligned}
f_{X_{i} \mid X_{j}}^{(1)}\left(x_{i} \mid x_{j}\right)= & k_{j} \beta_{j}\left(\theta+k_{i} \beta_{i} e^{\beta_{i} x_{i}}\right) \exp \left\{-k_{i}\left(e^{\beta_{i} x_{i}}-1\right)-\right. \\
& \left.\left.\left.\theta x_{i}+\left(\theta+\beta_{j}\right) x_{j}\right)\right]\right\} /\left(\theta+k_{j} \beta_{j} e^{\beta_{j} x_{j}}\right) \\
f_{X_{i} \mid X_{j}}^{(2)}\left(x_{i} \mid x_{j}\right)= & k_{i} \beta_{i} \exp \left\{-\left[k_{i}\left(e^{\beta_{i} x_{i}}-1\right)-\beta_{i} x_{i}\right]\right\}, \\
f_{X_{i} \mid X_{j}}^{(0)}\left(x_{i} \mid x_{j}\right)= & \theta \exp \left\{-k_{i}\left(e^{\beta_{i} x_{i}}-1\right)\right\} /\left(\theta+k_{j} \beta_{j} e^{\beta_{j} x_{j}}\right),
\end{aligned}
$$

Proof. The theorem follows readily upon substituting for the joint probability density function of $\left(X_{1}, X_{2}\right)$ in (2.10) and the marginal probability density function of $X_{i},(i=1,2)$ in (2.14), the following relation

$$
\begin{equation*}
f_{X_{i} \mid X_{j}}\left(x_{i} \mid x_{j}\right)=\frac{f_{X_{i}, X_{j}}\left(x_{i}, x_{j}\right)}{f_{X_{i}}\left(x_{i}\right)},(i=1,2) \tag{2.16}
\end{equation*}
$$

which completes the proof.
Lemma 2.1 For the case of Marshall-Olkin bivariate exponential distribution, we can obtain by setting β_{1} and β_{2} tend to zero in (2.15).

$$
f_{X_{i} \mid X_{j}}\left(x_{i} \mid x_{j}\right)=\left\{\begin{array}{lll}
\alpha_{j} e^{-\left(\theta+\alpha_{i}\right) x_{i}+\theta x_{j}} & \text { if } & x_{i}>x_{j}>0 \tag{2.17}\\
\alpha_{i} e^{-\alpha_{i} x_{i}} & \text { if } & x_{j}>x_{i}>0 \\
\theta e^{-\alpha_{i} x_{i}} /\left(\theta+\alpha_{j}\right) & \text { if } & x_{i}=x_{j}>0
\end{array}\right.
$$

Proof. The proof of this lemma can be reach readily by setting $\beta_{i},(i=1,2)$ tend to zero in (2.15) which completes the proof.

2.5 Mathematical expectation

This subsection presents the exact forms of mathematical expectation of $X_{i},(i=$ $1,2)$, and the second moments of $X_{i}^{2},(i=1,2)$ and $X_{1} X_{2}$.

Theorem 2.4 The expectation of $X_{i},(i=1,2)$ is given

$$
\begin{equation*}
E\left(X_{i}\right)=k_{i}^{\theta / \beta_{i}} e^{k_{i}} \Gamma\left(-\theta / \beta_{i}, k_{i}\right) / \beta_{i}, \quad(i=1,2) \tag{2.18}
\end{equation*}
$$

where $\Gamma(\mu, \nu)$ is the incomplete gamma function that defined by

$$
\Gamma(\mu, \nu)=\int_{\nu}^{\infty} t^{\mu-1} e^{-t} d t, t>0
$$

which for fixed ν is an entire function of μ. For non-integer μ this function is a multi-valued function of ν with a branch point at $\nu=0$.

Proof. Starting with

$$
E\left(X_{i}\right)=\int_{0}^{\infty} x_{i} f_{X_{i}}\left(x_{i}\right) d x_{i}
$$

and substituting $f_{X_{i}}\left(x_{i}\right)$ from (2.14), we get

$$
\begin{aligned}
E\left(X_{i}\right) & =\int_{0}^{\infty} x_{i}\left(\theta+k_{i} \beta_{i} e^{\beta_{i} x_{i}}\right) \exp \left[-k_{i}\left(e^{\beta_{i} x_{1}}-1\right)-\theta x_{i}\right] d x_{i} \\
& =\int_{0}^{\infty} \exp \left[-k_{i}\left(e^{\beta_{i} x_{1}}-1\right)-\theta x_{i}\right] d x_{i}=e^{k_{i}} \int_{0}^{\infty} e^{-\theta x_{i}} \exp \left[-k_{i} e^{\beta_{i} x_{i}}\right] d x_{i}
\end{aligned}
$$

and using the incomplete gamma function definition (see Gradshteyn and Ryzhik 3.331 p. 308 and 8.350 p. 940 [11]) we derive the expression in (2.18). which completes the proof.

Theorem 2.5 The expectation of X_{i}^{2} for $i=1,2$ is given

$$
\begin{equation*}
E\left(X_{i}^{2}\right)=2 k_{i}^{\theta / \beta_{i}} e^{k_{i}}\left[\partial \Gamma\left(-\theta / \beta_{i}, k_{i}\right) / \partial \theta-\ln k_{i} \Gamma\left(-\theta / \beta_{i}, k_{i}\right)\right] / \beta_{i}^{2},(i=1,2) \tag{2.19}
\end{equation*}
$$

Proof. Starting with

$$
E\left(X_{i}^{2}\right)=\int_{0}^{\infty} x_{i}^{2} f_{X_{i}}\left(x_{i}\right) d x_{i}
$$

and substituting $f_{X_{i}}\left(x_{i}\right)$ from (2.14), and putting $u=k_{i} e^{\beta_{i} x_{i}}$, we get

$$
E\left(X_{i}^{2}\right)=2 e^{k_{i}} k_{i}^{\theta / \beta_{i}}\left[\int_{k_{i}}^{\infty} \frac{\ln u e^{-u}}{u^{\left(\theta / \beta_{i}+1\right)}} d u-\ln k_{i} \int_{k_{i}}^{\infty} \frac{e^{-u}}{u^{\left(\theta / \beta_{i}+1\right)}} d u\right] / \beta_{i}^{2}
$$

and using the incomplete gamma function definition and its differentiation with respect to one of their parameters (see Gradshteyn and Ryzhik 4.358 p. 578 and 8.350 p. 940 [11]) we derive the expression in (2.19). which completes the proof.

Theorem 2.6 The expectation of $X_{1} X_{2}$ is given

$$
\begin{align*}
& \begin{array}{l}
E\left(X_{1} X_{2}\right)= \\
\quad e^{k_{1}+k_{2}}\left\{k _ { 1 } ^ { \theta / \beta _ { 1 } } \left[\Gamma\left(0, k_{2}\right) \Gamma\left(-\theta / \beta_{1}, k_{1}\right)-\left(\Psi(1)+\ln k_{2}\right) \Gamma\left(-\theta / \beta_{1}, k_{1}\right)+\right.\right. \\
2 \beta_{2} \ln k_{1} \Gamma\left(-\theta / \beta_{1}, k_{1}\right) / \beta_{1}+2 \beta_{2} \partial \Gamma\left(-\theta / \beta_{1}, k_{1}\right) / \partial \theta-\beta_{1} \beta_{2} \Gamma\left(1-\theta / \beta_{1}, k_{1}\right) / \theta \\
\\
\left.\quad-\beta_{2} \ln k_{1} \Gamma\left(1-\theta / \beta_{1}, k_{1}\right)\right]+k_{2}^{\theta / \beta_{2}} \Gamma\left(0, k_{1}\right) \Gamma\left(-\theta / \beta_{2}\right)+\sum_{n=1}^{\infty}(-1)^{n} k_{1}^{\left(\theta-n \beta_{2}\right) / \beta_{1}} k_{2}^{n} \times \\
\\
\quad\left[n \beta_{1} \partial \Gamma\left(\left(n \beta_{2}-\theta\right) / \beta_{1}+1, k_{1}\right) / \partial \theta-\left(n \beta_{2}-\theta\right) \beta_{2} \partial \Gamma\left(\left(n \beta_{2}-\theta\right) / \beta_{1}+1, k_{1}\right) / \partial \theta+\right. \\
n \ln k_{1} \Gamma\left(\left(n \beta_{2}-\theta\right) / \beta_{1}+1, k_{1}\right) \beta_{1}-\left(n \beta_{2}-\theta\right)\left(\beta_{1}-n \beta_{2} \ln k_{1}\right) \Gamma\left(\left(n \beta_{2}-\theta\right) / \beta_{1}+\right. \\
\left.\left.\left.1, k_{1}\right) / \beta_{1}\right] /\left(n!n\left(n \beta_{1}-\theta\right)\right)\right\} /\left(\beta_{1} \beta_{2}\right),
\end{array} \\
& \text { where } \Psi(x) \text { is the digamma function. }
\end{align*}
$$

Proof. Starting with

$$
\begin{aligned}
E\left(X_{1} X_{2}\right)= & \int_{0}^{\infty} \int_{0}^{x_{1}} x_{1} x_{2} f_{1}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}+ \\
& \int_{0}^{\infty} \int_{x_{1}}^{\infty} x_{1} x_{2} f_{2}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}+\int_{0}^{\infty} x^{2} f_{0}(x, x) d x
\end{aligned}
$$

and substituting $f_{1}\left(x_{1}, x_{2}\right), f_{2}\left(x_{1}, x_{2}\right)$ and $f_{0}\left(x_{1}, x_{2}\right)$ from (2.10) and using the integral properties we get

$$
\begin{aligned}
E\left(X_{1} X_{2}\right)= & \int_{0}^{\infty} \int_{0}^{x_{1}} x_{1}\left(\theta+k_{1} \beta_{1} e^{\beta_{1} x_{1}}\right) \exp \left\{-k_{1} e^{\beta_{1} x_{1}}-k_{2} e^{\beta_{2} x_{2}}-\theta x_{1}\right\} d x_{2} d x_{1}+ \\
& k_{1} \beta_{1} \int_{0}^{\infty} \int_{x_{1}}^{\infty} x_{1} e^{\beta_{1} x_{1}} \exp \left\{-k_{1} e^{\beta_{1} x_{1}}-k_{2} e^{\beta_{2} x_{2}}-\theta x_{2}\right\} d x_{2} d x_{1}
\end{aligned}
$$

using the definition of the incomplete gamma function and its series form (see Gradshteyn and Ryzhik 8.212 p. $925,8.214$ p. 927 and 8.354 p. 941 [11]) and after a lengthly algebraic manipulation we derive the expression in (2.20). which completes the proof.

Lemma 2.2 For the Marshall-Olkin bivariate exponential, we have

$$
\begin{equation*}
E\left(X_{i}\right)=\frac{1}{\theta+\alpha_{i}}, \quad E\left(X_{i}^{2}\right)=\frac{2}{\left(\theta+\alpha_{i}\right)^{2}}, \quad(i=1,2) \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
E\left(X_{1} X_{2}\right)=\frac{1}{\alpha_{2}\left(\alpha_{1}+\theta\right)}+\frac{\alpha_{1}}{\left(\theta+\alpha_{2}\right)\left(\theta+\alpha_{1}+\alpha_{2}\right)^{2}}-\frac{\theta+\alpha_{1}}{\alpha_{2}\left(\theta+\alpha_{1}+\alpha_{2}\right)^{2}} \tag{2.22}
\end{equation*}
$$

By taking limits of the expressions (2.18), (2.19) and (2.20) as β_{1} and β_{2} tend to zero we can get the expressions (2.21) and (2.22).

3 Moment generating functions

In this section we present the joint moment generating function of $\left(X_{1}, X_{2}\right)$ and marginal moment generating function of $X_{i},(i=1,2)$.

Theorem 3.1 The joint moment generating function of $\left(X_{1}, X_{2}\right)$ is given by:

$$
\begin{align*}
& M_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)=1-e^{k_{1}+k_{2}}\left\{t_{1} k_{1}^{\left(t_{1}+\theta\right) / \beta_{1}} \Gamma\left(-t_{1} / \beta_{1}-\theta / \beta_{1}, k_{1}\right) / \beta_{1}+t_{2} k_{2}^{t_{2} / \beta_{2}}\left[\Gamma\left(-t_{2} / \beta_{2}, k_{2}\right)-\right.\right. \\
& \left.\left.\Gamma\left(-t_{2} / \beta_{2}\right)\right]\left[e^{-k_{1}}-t_{1} k_{1}^{\left(\theta+t_{1}\right) / \beta_{1}} \Gamma\left(-\left(t_{1}+\theta\right) / \beta_{1}, k_{1}\right) / \beta_{1}\right]+t_{2} k_{2}^{\left(\theta+t_{2}\right) / \beta_{2}} \Gamma\left(-\left(t_{1}+\theta\right)\right) / \beta_{1}\right) \Gamma(1- \\
& \left.t_{1} / \beta_{1}, k_{1}\right) / \beta_{2}+t_{2} \sum_{n=0}^{\infty}(-1)^{n} k_{2}^{n}\left[\theta e^{-k_{1}}\left(\left(n \beta_{2}-t_{2}\right)\left(n \beta_{2}-t_{2}-\theta\right)\right)^{-1}-k_{1}^{\left(t_{1}+t_{2}+\theta-n \beta_{2}\right) / \beta_{1}}\left(t_{1}+\right.\right. \\
& \left.t_{2}+\theta-n \beta_{2}\right) \Gamma\left(1-\left(t_{1}+t_{2}+\theta-n \beta_{2}\right) / \beta_{1}, k_{1}\right)\left(\beta_{1}\left(n \beta_{2}-\theta-t_{2}\right)^{-1}+k_{1}^{\left(t_{1}+t_{2}-n \beta_{2}\right) / \beta_{1}} \times\right. \\
& \left.\left.\left(t_{1}+t_{2}-n \beta_{2}\right) \Gamma\left(-\left(t_{1}+t_{2}+\theta-n \beta_{2}\right) / \beta_{1}, k_{1}\right)\left(\beta_{1}\left(n \beta_{2}-t_{2}\right)\right)^{-1}\right] /(n!n)\right\} \tag{3.1}
\end{align*}
$$

Proof. Starting with, the definition moment generating function of bivariate distribution of (X_{1}, X_{2}) we have

$$
M_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)=E\left(e^{-\left(t_{1} X_{1}+t_{2} X_{2}\right)}\right)
$$

That is,

$$
\begin{aligned}
M_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right)= & \int_{0}^{\infty} \int_{0}^{x_{1}} e^{-\left(t_{1} x_{1}+t_{2} x_{2}\right)} f_{1}\left(x_{1}, x_{2}\right) d x_{2} d x_{1} \\
& +\int_{0}^{\infty} \int_{0}^{x_{2}} e^{-\left(t_{1} x_{1}+t_{2} x_{2}\right)} f_{2}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& +\int_{0}^{\infty} e^{-\left(t_{1}+t_{2}\right) x} f_{0}(x, x) d x
\end{aligned}
$$

Substituting from (2.9) into the above relation and after a lengthly algebraic manipulation we can reach the form (3.1).
The following lemma presents the marginal moment generating function of $X_{i},(i=1,2)$.

Lemma 3.1 The marginal moment generating function of $X_{i},(i=1,2)$ is given by:

$$
\begin{equation*}
M_{i}\left(t_{i}\right)=\left[1-t_{i} e^{k_{i}} k_{i}^{\left(t_{i}+\theta\right) / \beta_{i}} \Gamma\left(-\left(t_{i}+\theta\right) / \beta_{i}, k_{i}\right) / \beta_{i}\right],(i=1,2) \tag{3.2}
\end{equation*}
$$

Proof. The proof of this lemma can be done by using either: the relation between the joint and marginal moment generating functions, or the definition of the marginal moment generating function of the random variable. Note that the moment generating function of the bivariate Gompertz can be used to derive the mathematical expectations $X_{i}, X_{i}^{2}, i=1,2$ and $X_{1} X_{2}$.

Next, we will discuss a form of the bivariate mixture of Gompertz distribution of Marshall-Olkin type where the dependence among the components is characterized by a latent variable independently distributed of the individual components.

4 Mixture of Bivariate Gompertz Distributions

In this section, we present the mixture of independent Gompertz distributions. Then we derive a mixture of bivariate Gompertz distributions where the dependence among the components is characterized by a latent random variable which is independently exponentially distributed of the individual component.

Consider a system of two components where the lifetime of component $i, i=$ 1,2 , say, X_{i}, is a mixture of two independent Gompertz distributions. That is,

$$
X_{1} \sim a_{1} \operatorname{Gomp}\left(\alpha_{11}, \beta_{11}\right)+\left(1-a_{1}\right) \operatorname{Gomp}\left(\alpha_{12}, \beta_{12}\right), 0 \leq a_{1} \leq 1,
$$

and

$$
X_{2} \sim a_{2} \operatorname{Gomp}\left(\alpha_{21}, \beta_{21}\right)+\left(1-a_{2}\right) \operatorname{Gomp}\left(\alpha_{22}, \beta_{22}\right), 0 \leq a_{2} \leq 1
$$

The notation $\operatorname{Gomp}\left(\alpha_{i j}, \beta_{i j}\right)$ means a random variable, say $X_{i j}$, having a Gompertz distribution with the parameters $\alpha_{i j}, \beta_{i j}$. That is the probability density function of $X_{i j}$ takes the following form
$f_{X_{i j}}(x)=\alpha_{i j} e^{\beta_{i j} x} \exp \left\{-k_{i j}\left(e^{\beta_{i j} x}-1\right)\right\}, x>0, \alpha_{i j}=k_{i j} \beta_{i j}>0, \beta_{i j}>0, \forall i, j$.
Consider also an exponentially distributed random variable, say Z, with parameter θ which is independent of $X_{i j}$ for all i, j. The random variable Z will be used as a latent variable to introduce dependence among $X^{\prime} s$. The density function of Z is

$$
f_{Z}(z)=\theta e^{-\theta z}, z>0, \theta>0
$$

Using the independence assumption in the above model, we can see that Z is also independent of X_{1} and X_{2}.
Define $S_{i}=\operatorname{Min}\left(X_{i}, Z\right)$ for $i=1,2$. Then the vector $\underline{S}=\left(S_{1}, S_{2}\right)$ follows a bivariate distribution and obviously they are dependent as they commonly share the influence of the latent random variable Z.
In what follows we present the joint probability density function of $\left(S_{1}, S_{2}\right)$. Firstly, we derive the joint survival function of $\left(S_{1}, S_{2}\right)$. Then we use it to derive the joint probability density function of the mixture of bivariate Gompertz distribution.

Corollary 4.1 The joint survival function of S_{1}, S_{2} is

$$
\begin{align*}
\bar{F}_{S_{1}, S_{2}}\left(s_{1}, s_{2}\right) & =p_{11} \exp \left[-k_{11}\left(e^{\beta_{11} s_{1}}-1\right)-k_{21}\left(e^{\beta_{21} s_{2}}-1\right)-\theta s\right] \\
& +p_{12} \exp \left[-k_{11}\left(e^{\beta_{11} s_{1}}-1\right)-k_{22}\left(e^{\beta_{22} s_{2}}-1\right)-\theta s\right] \\
& +p_{12} \exp \left[-k_{12}\left(e^{\beta_{12} s_{1}}-1\right)-k_{21}\left(e^{\beta_{21} s_{2}}-1\right)-\theta s\right] \\
+p_{22}[- & \left.k_{12}\left(e^{\beta_{12} s_{1}}-1\right)-k_{22}\left(e^{\beta_{22} s_{2}}-1\right)-\theta s\right] \tag{4.1}
\end{align*}
$$

where $s=\max \left(s_{1}, s_{2}\right)>0$ and for $i, j \in\{1,2\}$:

$$
p_{i j}=a_{1}^{2-i} a_{2}^{2-j}\left(1-a_{1}\right)^{i-1}\left(1-a_{2}\right)^{j-1}
$$

Proof. Since

$$
\bar{F}_{S_{1}, S_{2}}\left(s_{1}, s_{2}\right)=P\left(S_{1}>s_{1}, S_{2}>s_{2}\right)
$$

Then using the definitions of S_{1} and S_{2} we have

$$
\begin{align*}
\bar{F}_{S_{1}, S_{2}}\left(s_{1}, s_{2}\right) & =P\left(X_{1}>s_{1}\right) P\left(X_{2}>s_{2}\right) P\left(Z>s_{0}\right)= \\
& =e^{-\theta z} \prod_{i=1}^{2}\left\{a_{i} \exp \left[-k_{i 1}\left(e^{\beta_{i 1} s_{i}}-1\right)\right]\right. \\
& \left.+\left(1-a_{i}\right) \exp \left[-k_{i 2}\left(e^{\beta_{2} s_{i}}-1\right)\right]\right\} \tag{4.2}
\end{align*}
$$

One can write the above relation as given by (3.1), that completes the proof.

Note that:

1. For $i, j \in\{1,2\}, p_{i j} \geq 0$ and $p_{11}+p_{12}+p_{21}+p_{22}=1$.
2. Each term function in the right hand side of (4.1) is a survival function of the new bivariate Gompertz distribution.

This means that, survival function given in (4.1) is a joint survival function of a mixture of four bivariate Gompertz distributions.
The following Theorem gives the joint probability density function of $\left(S_{1}, S_{2}\right)$.
Theorem 4.1 The joint pdf of S_{1}, S_{2}, say $f\left(s_{1}, s_{2}\right)$, is

$$
f\left(s_{1}, s_{2}\right)= \begin{cases}f_{1}\left(s_{1}, s_{2}\right) & \text { if } s_{1}>s_{2}>0 \tag{4.3}\\ f_{2}\left(s_{1}, s_{2}\right) & \text { if } s_{2}>s_{1}>0 \\ f_{0}(s, s) & \text { if } s_{1}=s_{2}=s>0\end{cases}
$$

where

$$
\begin{align*}
f_{1}\left(s_{1}, s_{2}\right)= & p_{11} k_{21} \beta_{21} e^{\beta_{21} s_{2}}\left(\theta+k_{11} \beta_{11} e^{\beta_{11} s_{1}}\right) \exp \left\{-k_{11}\left(e^{\beta_{11} s_{1}}-1\right)-k_{21}\left(e^{\beta_{21} s_{2}}-1\right)-\theta s_{1}\right\} \\
& +p_{12} k_{22} \beta_{22} e^{\beta_{22} s_{2}}\left(\theta+k_{11} \beta_{11} e^{\beta_{11} s_{1}}\right) \exp \left\{-k_{11}\left(e^{\beta_{11} s_{1}}-1\right)-k_{22}\left(e^{\beta_{22} s_{2}}-1\right)-\theta s_{1}\right\} \\
& +p_{21} k_{21} \beta_{21} e^{\beta_{21} s_{2}}\left(\theta+k_{21} \beta_{12} e^{\beta_{12} s_{1}}\right) \exp \left\{-k_{12}\left(e^{\beta_{12} s_{1}}-1\right)-k_{21}\left(e^{\beta_{21} s_{2}}-1\right)-\theta s_{1}\right\} \\
& +p_{22} k_{22} \beta_{22} e^{\beta_{22} s_{2}}\left(\theta+k_{12} \beta_{12} e^{\beta_{12} s_{1}}\right) \exp \left\{-k_{12}\left(e^{\beta_{12} s_{1}}-1\right)-k_{22}\left(e^{\beta_{22} s_{2}}-1\right)-\theta s_{1}\right\} \tag{4.4}\\
f_{2}\left(s_{1}, s_{2}\right)= & p_{11} k_{11} \beta_{11} e^{\beta_{11} s_{1}}\left(\theta+k_{21} \beta_{21} e^{\beta_{21} s_{2}}\right) \exp \left\{-k_{11}\left(e^{\beta_{11} s_{1}}-1\right)-k_{21}\left(e^{\beta_{21} s_{2}}-1\right)-\theta s_{2}\right\} \\
& +p_{12} k_{11} \beta_{11} e^{\beta_{11} s_{1}}\left(\theta+k_{22} \beta_{22} e^{\beta_{22} s_{2}}\right) \exp \left\{-k_{11}\left(e^{\beta_{11} s_{1}}-1\right)-k_{22}\left(e^{\beta_{22} s_{2}}-1\right)-\theta s_{2}\right\} \\
& +p_{21} k_{12} \beta_{12} e^{\beta_{12} s_{1}}\left(\theta+k_{21} \beta_{21} e^{\beta_{21} s_{2}}\right) \exp \left\{-k_{12}\left(e^{\beta_{12} s_{1}}-1\right)-k_{21}\left(e^{\beta_{21} s_{2}}-1\right)-\theta s_{2}\right\} \\
& +p_{22} k_{12} \beta_{12} e^{\beta_{12} s_{1}}\left(\theta+k_{22} \beta_{22} e^{\beta_{22} s_{2}}\right) \exp \left\{-k_{12}\left(e^{\beta_{12} s_{1}}-1\right)-k_{22}\left(e^{\beta_{22} s_{2}}-1\right)-\theta s_{2}\right\} \tag{4.5}
\end{align*}
$$

$$
\begin{align*}
f_{0}(s, s)=\theta & \left\{p_{11} \exp \left[-k_{11}\left(e^{\beta_{11} s}-1\right)-k_{21}\left(e^{\beta_{21} s}-1\right)-\theta s\right]+\right. \\
& p_{12} \exp \left[-k_{11}\left(e^{\beta_{11} s}-1\right)-k_{22}\left(e^{\beta_{22} s}-1\right)-\theta s\right]+ \tag{4.6}\\
& p_{21} \exp \left[-k_{12}\left(e^{\beta_{12} s}-1\right)-k_{21}\left(e^{\beta_{21} s}-1\right)-\theta s\right]+ \\
& \left.p_{22} \exp \left[-k_{12}\left(e^{\beta_{12} s}-1\right)-k_{22}\left(e^{\beta_{22} s}-1\right)-\theta s\right]\right\}
\end{align*}
$$

Proof. The proof of this Theorem follows along the same lines as of theorem (2.1).
The following Corollary gives the marginal pdf's of S_{1} and S_{2}.
Lemma 4.1 The marginal density functions of S_{1} and S_{2} are respectively,

$$
\begin{align*}
f_{S_{1}}\left(s_{1}\right)= & a_{1}\left(\theta+k_{11} \beta_{11} e^{\beta_{11} s_{1}}\right) \exp \left\{-k_{11}\left(e^{\beta_{11} s_{1}}-1\right)-\theta s_{1}\right\} \\
& +\left(1-a_{1}\right)\left(\theta+k_{12} \beta_{12} e^{\beta_{12} s_{1}}\right) \exp \left\{-k_{12}\left(e^{\beta_{12} s_{1}}-1\right)-\theta s_{2}\right\}, s_{1}>0, \tag{4.7}
\end{align*}
$$

and

$$
\begin{align*}
f_{S_{2}}\left(s_{2}\right)= & a_{2}\left(\theta+k_{21} \beta_{21} e^{\beta_{21} s_{2}}\right) \exp \left\{-k_{21}\left(e^{\beta_{21} s_{2}}-1\right)-\theta s_{2}\right\} \\
& +\left(1-a_{2}\right)\left(\theta+k_{22} \beta_{22} e^{\beta_{22} s_{2}}\right) \exp \left\{-k_{12}\left(e^{\beta_{22} s_{2}}-1\right)-\theta s_{2}\right\}, s_{2}>0 \tag{4.8}
\end{align*}
$$

From the marginal densities, we can derive the marginal moment generating functions of $S_{i},(i=1,2)$ as follows.

Lemma 4.2 The moment generating functions of X_{1} and X_{2} are respectively,

$$
\begin{align*}
M_{S_{1}}\left(t_{1}\right)= & 1-t_{1}\left\{a_{1} e^{k_{11}} k_{11}^{\left(\theta+t_{1}\right) / \beta_{11}} \Gamma\left(-\left(\theta+t_{1}\right) / \beta_{11}, k_{11}\right) / \beta_{11}+\right. \\
& \left.\left(1-a_{1}\right) e^{k_{12}} k_{12}^{\left(\theta+t_{1}\right) / \beta_{12}} \Gamma\left(-\left(\theta+t_{1}\right) / \beta_{12}, k_{12}\right) / \beta_{12}\right\} \tag{4.9}
\end{align*}
$$

and

$$
\begin{gather*}
M_{S_{2}}\left(t_{2}\right)=1-t_{2}\left\{a_{2} e^{k_{21}} k_{21}^{\left(\theta+t_{2}\right) / \beta_{21}} \Gamma\left(-\left(\theta+t_{2}\right) / \beta_{21}, k_{21}\right) / \beta_{21}+\right. \\
\left.\left(1-a_{2}\right) e^{k_{22}} k_{22}^{\left(\theta+t_{2}\right) / \beta_{22}} \Gamma\left(-\left(\theta+t_{2}\right) / \beta_{22}, k_{22}\right) / \beta_{22}\right\} \tag{4.10}
\end{gather*}
$$

Lemma 4.3 From (4.9) and (4.10), we readily have
$E\left(S_{1}\right)=a_{1} e^{k_{11}} k_{11}^{\theta / \beta_{11}} \Gamma\left(-\theta / \beta_{11}, k_{11}\right) / \beta_{11}+\left(1-a_{1}\right) e^{k_{12}} k_{12}^{\theta / \beta_{12}} \Gamma\left(-\theta / \beta_{12}, k_{12}\right) / \beta_{12}$
and
$E\left(S_{2}\right)=a_{2} e^{k_{21}} k_{21}^{\theta / \beta_{21}} \Gamma\left(-\theta / \beta_{21}, k_{21}\right) / \beta_{21}+\left(1-a_{2}\right) e^{k_{22}} k_{22}^{\theta / \beta_{22}} \Gamma\left(-\theta / \beta_{22}, k_{22}\right) / \beta_{22}$

Lemma 4.4 From (4.9) and (4.10), we readily have

$$
\begin{align*}
& E\left(S_{1}^{2}\right)=-2 a_{1} e^{k_{11}}\left[\beta_{11} \partial \Gamma\left(-\theta / \beta_{11}, k_{11}\right) / \partial \theta+\ln k_{11} \Gamma\left(-\theta / \beta_{11}, k_{11}\right)\right] / \beta_{11}^{2} \\
& \quad-2\left(1-a_{1}\right) e^{k_{12}}\left[\beta_{12} \partial \Gamma\left(-\theta / \beta_{12}, k_{12}\right) / \partial \theta+\ln k_{12} \Gamma\left(-\theta / \beta_{12}, k_{12}\right)\right] / \beta_{12}^{2} \tag{4.13}
\end{align*}
$$

and

$$
\begin{align*}
& E\left(S_{2}^{2}\right)=-2 a_{2} e^{k_{21}}\left[\beta_{21} \partial \Gamma\left(-\theta / \beta_{21}, k_{21}\right) / \partial \theta+\ln k_{21} \Gamma\left(-\theta / \beta_{21}, k_{21}\right)\right] / \beta_{21}^{2} \\
& \quad-2\left(1-a_{2}\right) e^{k_{22}}\left[\beta_{22} \partial \Gamma\left(-\theta / \beta_{22}, k_{22}\right) / \partial \theta+\ln k_{22} \Gamma\left(-\theta / \beta_{22}, k_{22}\right)\right] / \beta_{22}^{2} \tag{4.14}
\end{align*}
$$

Lemma 4.5 The joint moment generating function of $\left(S_{1}, S_{2}\right)$ is given by

$$
\begin{equation*}
M_{S_{1}, S_{2}}\left(t_{1}, t_{2}\right)=\sum_{i}^{4} b_{i} M_{i}\left(t_{1}, t_{2}\right) \tag{4.15}
\end{equation*}
$$

where

$$
\left.\begin{array}{l}
b_{1}=p_{11}, b_{2}=p_{12}, b_{3}=p_{21}, b_{4}=p_{22} \tag{4.16}\\
M_{1}=M_{X_{11}, X_{21}}\left(t_{1}, t_{2}\right), M_{2}=M_{X_{11}, X_{22}}\left(t_{1}, t_{2}\right), \\
M_{3}=M_{X_{12}, X_{21}}\left(t_{1}, t_{2}\right), M_{4}=M_{X_{12}, X_{22}}\left(t_{1}, t_{2}\right)
\end{array}\right\}
$$

and the functions $M_{X_{11}, X_{21}}\left(t_{1}, t_{2}\right), M_{X_{11}, X_{22}}\left(t_{1}, t_{2}\right), M_{X_{12}, X_{21}}\left(t_{1}, t_{2}\right)$ and $M_{X_{12}, X_{22}}\left(t_{1}, t_{2}\right)$ can be derived from (2.14) respectively, by replacing $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ with $\alpha_{11}, \alpha_{21}, \beta_{11}, \beta_{21} ; \alpha_{11}, \alpha_{22}, \beta_{11}, \beta_{22} ; \alpha_{12}, \alpha_{21}, \beta_{12}, \beta_{21}$ and $\alpha_{12}, \alpha_{22}, \beta_{12}, \beta_{22}$.

Proof. One can establish this lemma from (3.1) and (4.15).

5 Conclusion

Finally we conclude that a new class of bivariate Gompertz distribution of Marshall-Olkin type is derived. The used procedure is based on a latent random variable with exponential distribution. The moment generating functions of bivariate new class is derived. A mixture of the suggested bivariate distributions is derived. The present results generalize those of Marshall-Olkin bivariate exponential distribution and other present in the literature $[5,8,10]$.

References

[1] B. Gompertz, (1824) On the nature of the function expressive of the law of human mortality and on the new mode of determining the value of life contingencies, Philosophical Transactions of Royal Society A115, pp. 513-580.
[2] Ahuja, J. C. and Nash, S. W. The generalized Gompertz verhulst family distriutions, Sankhya Part A. 29 (1979), pp. 141-156.
[3] Al-Ruzaiza, A. S. and El-Gohary, A. (2007) A New Class of Positively Quadrant Dependent Bivariate Distributions with Pareto, International Mathematical Fourm (In Press).
[4] El-Gohary, A. (2005) A multivariate mixture of linear failure rate distribution in reliability models, International Journal of Reliability and Applications, In Press.
[5] El-Gohary, A. and Sarhan, A. (2005) The Distributions of sums, rroducts, ratios and differences for Marshall-Olkin Bivariate exponential distribution, International Journal of Applied Mathematics (In Press).
[6] El-Gohary, A. (2006), A Mixture of Multivariate Distributions with Pareto in Reliability Models, International Journal of Reliability and Applications, In Press.
[7] A-Hameed, M. S. and Proshan, F. (1973). Nonstationary shock models, Stoch. Proc. Appl., 1:333-404.
[8] Marshall, A. W. and Olkin, I. A. (1967b). A generalized bivariate exponential distribution, J. Appl. Prob., 4:291-302.
[9] Barlow, R. E. and Proschan, F. (1981). Statistical Theory of Reliability and Life Testing, Probability Models, To Begin With Silver Spring, MD.
[10] Marshall, A. W. and Olkin, I. A. (1967a). A multivariate exponential distribution, J. Amer. Statist. Assoc., 30-44.
[11] Gradshteyn, I. S. and Ryzhih, I. M. Table of integrals, Series and Products, Academic press New York (2000).
[12] Patra, K. and Dey, D. (1999), A multivariate mixture of Weibull distrbutions in reliability modeling, Statistics \& Probability Letters, 45, pp. 225-235.

Received: December 8, 2007

[^0]: ${ }^{1}$ This research was supported by the College of Science Research Center at King Saud University under project No. Stat/2008/17.
 ${ }^{2}$ Permanent address: Department of Mathematics, College of Science, Mansoura University, Mansoura 35516, Egypt.

