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Abstract

A new class of bivariate Gompertz distributions is presented in this
paper. The model introduced here is of Marshall-Olkin type. The used
procedure is based on a latent random variable with exponential dis-
tribution. A mixture of the suggested bivariate distributions is also
derived. The obtained results in this paper generalize those of Marshall-
Olkin bivariate exponential distribution and other present in the litera-
ture.
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1 Introduction

The Gompertz distribution plays an important role in modelling human mor-

tality and fitting actuarial tables. This distribution was first introduced by

Gompertz [1]. It has been used as a growth model and also used to fit the tu-

mor growth. The Gompretz distribution is related by a simple transformation

to certain distribution in the family of distributions obtained by Pearson. Ap-

plications and more recent survey of the Gompertz distribution can be found

in [2].

1This research was supported by the College of Science Research Center at King Saud
University under project No. Stat/2008/17.

2Permanent address: Department of Mathematics, College of Science, Mansoura Univer-
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In many practical situation, multivariate lifetime data arise frequently, and

in these situations it is important to consider different multivariate models that

could be used to model such multivariate lifetime data. The model introduced

in this paper is of some interest, in reliability theory, for example, sometimes

failure rate can occur for more than one reason and a mixture distribution is

nice tool for modelling such situation.

In fact, shock models are used in reliability to describe different applications.

Shocks can refer for example to damage caused to biological organs by illness or

environmental causes of damage acting on a technical system,see for example

El-Gohary [4, 5, 6], and A-hameed and Proschan [7]. Also El-Gohary and

Al-Ruzaiza have obtained a new class of bivariate distribution with pareto of

Marshall-Olkin type [3].

The objective of this paper is to introduce a new class of bivariate Gompertz

distributions of Marsall-Olkin type. It is considered as a distribution of the life

times of two dependent components each has a Gompertz distribution. Also

the mixture of the proposed Gompertz distributions will be derived.

The paper is organized as follows. Section 2 presents the shock model yielding

the bivariate Gompertz distribution. The joint survival and probability den-

sity function of bivariate proposed Gompertz distribution is derived. Section

3 presents the joint moment generating function of this bivariate distribution

and its marginal moment generating functions. Section 4 discusses the mix-

ture of proposed bivariate Gompertz distributions and its moment generating

function.

2 The new class of bivariate Gompertz distri-

butions

In this section, we define a new class of bivariate Gompertz distribution using

shock models. We start with the joint survival function of the proposed bivari-

ate distribution and so used it to derive the corresponding joint probability

density function. The marginal probability density functions and conditional

probability density functions of this distribution are also derived. Finally this

contains mathematical expectation of this distribution.
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2.1 The joint survival function

Assume that there exists a three independent sources of shocks are presented

in the environment of a system consists of two components [7]. A shock from

source 1 destroys the component 1; it occurs at a random time T1. A shock

from source 2 destroys component 2; it occurs at a random time T2. A shock

from source 3 destroys both the components; it occurs at a random time T3.

Thus the random lifetime of the component 1, say X1, satisfies X1 = min (T1, T3).

While the random lifetime of component 2, say X2, satisfies X2 = min (T2, T3)

[9].

Let us assume that the random variables T1 and T2 having Gompertz dis-

tribution with parameters α1, β1 and α2, β2 respectively while the random

variable T3 has an exponential distribution with parameter θ, shortly we say

Gomp(αi, βi), i = 1, 2 and T3 has Exp(θ) [3].

That is, the probability density function of the random lifetime Ti, i = 1, 2,

takes the following form

gi(t) = αi e
βitḠi(t), t ≥ 0, αi > 0, βi > 0, (i = 1, 2) (2.1)

where Ḡi(t) is the survival function of Ti, i = 1, 2, which is given by

Ḡi(t) = exp
{
− ki

(
eβit − 1

)}
, αi = kiβi, (i = 1, 2) (2.2)

The probability density function of T3 takes the following form

g3(t) = θḠ3(t), t ≥ 0, θ > 0. (2.3)

where Ḡ3(t) is survival function of T3 which given by

Ḡ3(t) = e−θt. (2.4)

Obviously, the random variables X1 and X2 are dependent because of the

common source of shock 3.

Now we proceed to investigate the joint survival function of the random vari-

ables X1 and X2. The following lemma presents the joint survival function

F̄X1,X2(x1, x2) of these variables.

Lemma 2.1 The joint survival function of X1 and X2 is

F̄X1, X2(x1, x2) = Ḡ3(z)
2∏

i=1

Ḡi(xi) = exp
[
−k1

(
eβ1x1 − 1

)
− k2

(
eβ2x2 − 1

)
− θz

]

(2.5)



238 A. Al-Khedhairi and A. El-Gohary

where z = max(x1, x2).

Proof. Since the joint survival function of X1 and X2 is defined as

F̄X1, X2(x1, x2) = P
(
X1 > x1, X2 > x2

)
Then

F̄X1, X2(x1, x2) = P
({

min(T1, T3) > x1

}
,
{

min(T2, T3) > x2

})

= P
({

T1 > x1, T3 > x2

}
,
{
T2 > x1, T3 > x2

})

= P
(
T1 > x1, T2 > x2, T3 > max(x1, x2)

)

As the random variables Tj , (j = 1, 2, 3) are mutually independent, we directly

obtain

F̄X1, X2(x1, x2) = P (T1 > x1) P (T2 > x2) P (T3 > max(x1, x2))

= Ḡ1(x1) Ḡ2(x2) Ḡ3(z), z = max(x1, x2)

Substituting from (2.2) and (2.4) into the above relation, we can reach the

form (2.5) that completes the proof. �

The following Corollary gives the marginal survival functions of the random

variable X1 and X2.

Corollary 2.1 The marginal survival functions of bivariate Gompertz distri-

bution are given by

F̄Xi
(xi) = Ḡi(xi)Ḡ3(xi) = exp

[−ki(e
βixi − 1) − θxi

]
, i = 1, 2 (2.6)

Proof. The proof of this Corollary can be done in a similar manner as in the

proof of Lemma 2.1.

The following Corollary presents the joint distribution of X1 and X2.

Corollary 2.2 The joint distribution function FX1,X2(x1, x2) of X1 and X2 is

given by

FX1,X2(x1, x2) = 1 − Ḡ1(x1)Ḡ3(x1) − Ḡ2(x2)Ḡ3(x2) + Ḡ3(z)

2∏
i=1

Ḡi(xi)

= 1 − exp
[−k1(e

β1x1 − 1) − θx1

] − exp
[−k2(e

β2x2 − 1) − θx2

]
+

exp
[−k1(e

β1x1 − 1) − k2(e
β2x2 − 1) − θz

]
(2.7)

Proof. The proof of this Corollary can be reached by using (2.5) and (2.6)

with the help of the following relation:

FX1,X2(x1, x2) = 1 − F̄X1(x1) − F̄X2(x2) + F̄X1,X2(x1, x2).

We can easily observe that the joint survival function of Marshall-Olkin

bivariate exponential distribution [8, 9, 10] can be obtained by setting βi, (i =

1, 2) tend to zero.
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2.2 The joint probability density function

The following theorem provides the joint probability density function of the

new bivariate Gompertz distribution.

Theorem 2.1 If the joint survival function of X1 and X2 is given by

F̄X1, X2(x1, x2) = exp
[
−k1

(
eβ1x1 − 1

)
− k2

(
eβ2x2 − 1

)
− θz

]
(2.8)

Then, then joint probability density function fX1,X2(x1, x2) of X1 and X2 takes

the form

fX1,X2(x1, x2) =

⎧⎨
⎩

f1(x1, x2) if x1 > x2 > 0,

f2(x1, x2) if x2 > x1 > 0,

f0(x, x) if x1 = x2 = x > 0

(2.9)

where

f1(x1, x2) = k2β2e
β2x2(θ + k1β1e

β1x1) exp
[
−k1

(
eβ1x1 − 1

)
− k2

(
eβ2x2 − 1

)
− θx1

]

f2(x1, x2) = k1β1e
β1x1(θ + k2β2e

β2x2) exp
[
−k1

(
eβ1x1 − 1

)
− k2

(
eβ2x2 − 1

)
− θx2

]

f0(x, x) = θ exp
[
−k1

(
eβ1x − 1

)
− k2

(
eβ2x − 1

)
− θx

]
(2.10)

Proof. The proof of this Theorem is based on the obtaining forms of f1(x1, x2)

and f2(x1, x2) by differentiating the joint survival function F̄X1,X2(x, y) with

respect to x1 and x2, that is

fX1,X2(x1, x2) =

⎧⎪⎨
⎪⎩

∂2F̄ (x1,x2)
∂x1∂x2

if x1 > x2 > 0,

∂2F̄ (x1,x2)
∂x1∂x2

if x2 > x1 > 0,

But f0(x, x) can not be derived in a similar method. Instead we use the

following identity to derive f0(x, x).∫ ∞

0

∫ x1

0

f1(x1, x2)dx1dx2 +

∫ ∞

0

∫ x2

0

f2(x1, x2)dx1dx2 +

∫ ∞

0

f0(x, x)dx = 1

(2.11)

One can find out that∫ ∞

0

∫ x1

0

f1(x1, x2)dx2dx1 = 1 −
∫ ∞

0

(
θ + k1β1e

β1x1

)
F̄X1(x1)dx1 (2.12)

and∫ ∞

0

∫ x2

0

f2(x1, x2)dx1dx2 = 1 −
∫ ∞

0

(
θ + k2β2e

β2x2

)
F̄X2(x2)dx2 (2.13)
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Substituting from (2.10) and (2.11) into (2.9) we obtain

∫ ∞

0

f0(x, x)dx = θ

∫ ∞

0

3∏
i=1

Ḡi(x) dx

Thus, f0(x, x) is

f0(x, x) = θ exp
[
−k1

(
eβ1x − 1

)
− k2β2

(
eβ2x − 1

)
− θx

]
, x > 0.

which completes the proof. �

This class of bivariate distributions generalizes the bivariate distribution

of Marshall-Olkin [8]. This result shows that the results of this paper gener-

alize those of Marshall-Olkin bivariate exponential distribution. Further the

survival function of bivariate Weibull distributions can be derived using the

nonlinear transformation Xi = ln(1 + Y
βi)
i /βi, (i = 1, 2) [12]. That is

F̄ (y1, y2) = e−(k1y
β1
1 +k1y

β2
2 +θz), z = max(y1, y2).

Therefore this survival function can be used to derive the probability density

function of bivariate Weibull distribution in [12].

Next, plots of the joint density function (2.9) for some selected values of

distribution parameters are shown in figures 1 − 4.

fig–1a Joint pobability density function for x[1]>x[2] fig–1b Joint pobability density function for x[2]>x[1] 

Figures 1a and 1b. A plot of the joint density function f(x1, x2), Equation

(2.9) for α2 = 2α1 = 0.4, β1 = β2 = 10 and θ = 5.
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fig–2a Joint pobability density function for x[1]>x[2] fig–2b Joint pobability density function for x[2]>x[1] 

Figures 2a and 2b. A plot of the joint density function f(x1, x2), Equation

(2.9) for α1 = α2 = 0.4, β1 = 40β2 = 200 and θ = 5.

fig–3a Joint pobability density function for x[1]>x[2] fig–3b Joint pobability density function for x[2]>x[1] 

Figures 3a and 3b. A plot of the joint density function f(x1, x2), Equation

(2.9) for α1 = α2 = 2, β2 = 100β1 = 200 and θ = 5.
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fig–4a Joint pobability density function for x[1]>x[2] fig–4b Joint pobability density function for x[2]>x[1] 

Figures 4a and 4b. A plot of the joint density function f(x1, x2), Equation

(2.9) for α1 = α2 = 2, β2 = 1500, β1 = 2 and θ = 25.

A comparison of Figures 3b and 4b shows the relative rate at which the

density tail of.

Lemma 2.2 The joint probability density function of the Marshall-Olkin bi-

variate exponential distribution is [8, 11]

fX1,X2(x1, x2) =

⎧⎪⎪⎨
⎪⎪⎩

α2(α1 + θ) exp
[
− (α1 + θ)x1 − α2x2

]
, x1 > x2 > 0

α1(α2 + θ) exp
[
− k1β1x1 − (α2 + θ)x2

]
, x2 > x1 > 0

Also, this distribution has a mass of θ/(θ+α1+α2) along the diagonal x1 = x2.

Proof. The result of this lemma can be obtained immediately from theorem

(2.1) upon setting β1 and β2 tend to zero. �

2.3 Marginal probability density functions

The following Corollary gives the marginal probability density functions of X1

and X2.

Theorem 2.2 The marginal pdf of Xi, (i = 1, 2) is given by

fXi
(xi) = (θ+kiβie

βixi) exp
[
−ki

(
eβixi − 1

)
− θxi

]
, xi > 0, (i = 1, 2) (2.14)
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Proof. First we derive fX1(x1) using the fact that

fX1(x1) =
∫ ∞

0
fX1,X2(x1, x2) dx2 =

∫ x1

0
f1(x1, x2) dx2+

∫ ∞

x1

f2(x1, x2) dx2+f0(x1, x1)

Using the expressions of f1(x1, x2), f2(x1, x2) and f0(x1, x1) given in Theorem

(2.1), we can get fX1(x1) of the form (2.14). Proceeding similarly, we can

derive fX2(x2) as given in (2.14), which completes the proof of the theorem. �

Lemma 2.3 The marginal probability density function of Xi, (i = 1, 2) of

Marshall-Olkin bivariate exponential distribution is

fXi
(xi) = (θ + αi)e

−(θ+αi)xi , xi > 0, (i = 1, 2)

Proof. The proof of this lemma can be obtained immediately from theorem

(2.2) upon setting βi, (i = 1, 2) tend to zero. �

2.4 Conditional probability density functions

Theorem 2.3 The conditional probability density function of Xi given Xj =

xj , (i, j = 1, 2, i �= j) is given by

fXi|Xj
(xi|xj) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f
(1)
Xi|Xj

(xi|xj) if xi > xj > 0,

f
(2)
Xi|Xj

(xi|xj) if xj > xi > 0,

f
(0)
Xi|Xj

(xi|xj) if xi = xj > 0

(2.15)

where

f
(1)
Xi|Xj

(xi|xj) = kjβj

(
θ + kiβie

βixi
)
exp

{−ki

(
eβixi − 1

)−
θxi + (θ + βj)xj)

]}
/
(
θ + kjβje

βjxj
)

f
(2)
Xi|Xj

(xi|xj) = kiβi exp
{
−

[
ki

(
eβixi − 1

) − βixi

]}
,

f
(0)
Xi|Xj

(xi|xj) = θ exp
{−ki

(
eβixi − 1

)}
/
(
θ + kjβj eβjxj

)
,

Proof. The theorem follows readily upon substituting for the joint probability

density function of (X1, X2) in (2.10) and the marginal probability density

function of Xi, (i = 1, 2) in (2.14), the following relation

fXi|Xj
(xi|xj) =

fXi,Xj
(xi, xj)

fXi
(xi)

, (i = 1, 2) (2.16)
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which completes the proof. �

Lemma 2.1 For the case of Marshall-Olkin bivariate exponential distribution,

we can obtain by setting β1 and β2 tend to zero in (2.15).

fXi|Xj
(xi|xj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αj e−(θ+αi)xi+θxj if xi > xj > 0,

αi e
−αixi if xj > xi > 0,

θ e−αixi/(θ + αj) if xi = xj > 0

(2.17)

Proof. The proof of this lemma can be reach readily by setting βi, (i = 1, 2)

tend to zero in (2.15) which completes the proof. �

2.5 Mathematical expectation

This subsection presents the exact forms of mathematical expectation of Xi, (i =

1, 2), and the second moments of X2
i , (i = 1, 2) and X1X2.

Theorem 2.4 The expectation of Xi, (i = 1, 2) is given

E
(
Xi

)
= k

θ/βi

i ekiΓ
( − θ/βi, ki

)
/βi, (i = 1, 2) (2.18)

where Γ(μ, ν) is the incomplete gamma function that defined by

Γ(μ, ν) =

∫ ∞

ν

tμ−1 e−t dt, t > 0

which for fixed ν is an entire function of μ. For non-integer μ this function is

a multi-valued function of ν with a branch point at ν = 0.

Proof. Starting with

E(Xi) =

∫ ∞

0

xi fXi
(xi) dxi

and substituting fXi
(xi) from (2.14), we get

E(Xi) =

∫ ∞

0

xi (θ+kiβi e
βixi) exp

[−ki

(
eβix1 − 1

) − θxi

]
dxi

=

∫ ∞

0

exp
[−ki

(
eβix1 − 1

) − θxi

]
dxi = eki

∫ ∞

0

e−θxi exp
[ − ki e

βixi
]
dxi

and using the incomplete gamma function definition (see Gradshteyn and

Ryzhik 3.331 p.308 and 8.350 p.940 [11]) we derive the expression in (2.18).

which completes the proof. �
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Theorem 2.5 The expectation of X2
i for i = 1, 2 is given

E(X2
i ) = 2 k

θ/βi

i eki
[
∂Γ

( − θ/βi, ki

)
/∂θ − ln ki Γ

( − θ/βi, ki

)]
/β2

i , (i = 1, 2)

(2.19)

Proof. Starting with

E
(
X2

i

)
=

∫ ∞

0

x2
i fXi

(xi) dxi

and substituting fXi
(xi) from (2.14), and putting u = kie

βixi, we get

E
(
X2

i

)
= 2 eki k

θ/βi

i

[∫ ∞

ki

ln u e−u

u(θ/βi+1)
du − ln ki

∫ ∞

ki

e−u

u(θ/βi+1)
du

]
/β2

i

and using the incomplete gamma function definition and its differentiation with

respect to one of their parameters (see Gradshteyn and Ryzhik 4.358 p.578 and

8.350 p.940 [11]) we derive the expression in (2.19). which completes the proof.

�

Theorem 2.6 The expectation of X1X2 is given

E
(
X1X2

)
= ek1+k2

{
k

θ/β1

1

[
Γ(0, k2)Γ

( − θ/β1, k1

) − (
Ψ(1) + ln k2

)
Γ
( − θ/β1, k1

)
+

2β2 ln k1Γ
( − θ/β1, k1

)
/β1 + 2β2∂Γ

( − θ/β1, k1

)
/∂θ − β1β2Γ

(
1 − θ/β1, k1

)
/θ

−β2 ln k1Γ
(
1 − θ/β1, k1

)]
+ k

θ/β2
2 Γ(0, k1)Γ(−θ/β2) +

∞∑
n=1

(−1)nk
(θ−nβ2)/β1
1 kn

2×
[
nβ1∂Γ

(
(nβ2 − θ)/β1 + 1, k1

)
/∂θ − (

nβ2 − θ
)
β2∂Γ

(
(nβ2 − θ)/β1 + 1, k1

)
/∂θ+

n ln k1Γ
(
(nβ2 − θ)/β1 + 1, k1

)
β1 − (nβ2 − θ)(β1 − nβ2 ln k1)Γ

(
(nβ2 − θ)/β1+

1, k1

)
/β1

]
/
(
n!n(nβ1 − θ)

)}
/
(
β1β2

)
, (2.20)

where Ψ(x) is the digamma function.

Proof. Starting with

E(X1X2) =

∫ ∞

0

∫ x1

0

x1x2 f1(x1, x2)dx2dx1+

∫ ∞

0

∫ ∞

x1

x1x2 f2(x1, x2)dx2dx1 +

∫ ∞

0

x2 f0(x, x)dx

and substituting f1(x1, x2), f2(x1, x2) and f0(x1, x2) from (2.10) and using the

integral properties we get
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E(X1X2) =

∫ ∞

0

∫ x1

0

x1

(
θ+k1β1 eβ1x1

)
exp

{
−k1 eβ1x1−k2 eβ2x2−θx1

}
dx2dx1+

k1β1

∫ ∞

0

∫ ∞

x1

x1 eβ1x1 exp
{
− k1 eβ1x1 − k2 eβ2x2 − θx2

}
dx2dx1

using the definition of the incomplete gamma function and its series form (see

Gradshteyn and Ryzhik 8.212 p.925, 8.214 p.927 and 8.354 p.941 [11]) and after

a lengthly algebraic manipulation we derive the expression in (2.20). which

completes the proof. �

Lemma 2.2 For the Marshall-Olkin bivariate exponential, we have

E(Xi) =
1

θ + αi
, E(X2

i ) =
2

(θ + αi)2
, (i = 1, 2) (2.21)

and

E
(
X1X2

)
=

1

α2(α1 + θ)
+

α1

(θ + α2)(θ + α1 + α2)2
− θ + α1

α2(θ + α1 + α2)2
(2.22)

By taking limits of the expressions (2.18), (2.19) and (2.20) as β1 and β2 tend

to zero we can get the expressions (2.21) and (2.22).

3 Moment generating functions

In this section we present the joint moment generating function of (X1, X2)

and marginal moment generating function of Xi, (i = 1, 2).

Theorem 3.1 The joint moment generating function of (X1, X2) is given by:

MX1,X2(t1, t2) = 1−ek1+k2

{
t1k

(t1+θ)/β1
1 Γ

( − t1/β1 − θ/β1, k1

)
/β1 + t2k

t2/β2
2

[
Γ
( − t2/β2, k2

)−
Γ
( − t2/β2

)][
e−k1 − t1k

(θ+t1)/β1
1 Γ

( − (t1 + θ)/β1, k1

)
/β1

]
+ t2k

(θ+t2)/β2
2 Γ

( − (t1 + θ))/β1

)
Γ
(
1−

t1/β1, k1

)
/β2 + t2

∞∑
n=0

(−1)nkn
2

[
θe−k1

(
(nβ2 − t2)(nβ2 − t2 − θ)

)−1

− k
(t1+t2+θ−nβ2)/β1
1

(
t1+

t2 + θ − nβ2

)
Γ
(
1 − (t1 + t2 + θ − nβ2)/β1, k1

)(
β1(nβ2 − θ − t2)

)−1

+ k
(t1+t2−nβ2)/β1
1 ×

(
t1 + t2 − nβ2

)
Γ
( − (t1 + t2 + θ − nβ2)/β1, k1

)(
β1(nβ2 − t2)

)−1
]
/
(
n!n

)}
(3.1)



Bivariate Gompertz distributions 247

Proof. Starting with, the definition moment generating function of bivari-

ate distribution of (X1, X2) we have

MX1,X2(t1, t2) = E
(
e−(t1X1+t2X2)

)

That is,

MX1,X2(t1, t2) =

∫ ∞

0

∫ x1

0

e−(t1x1+t2x2) f1(x1, x2) dx2 dx1

+

∫ ∞

0

∫ x2

0

e−(t1x1+t2x2)f2(x1, x2) dx1 dx2

+

∫ ∞

0

e−(t1+t2)x f0(x, x)dx

Substituting from (2.9) into the above relation and after a lengthly algebraic

manipulation we can reach the form (3.1).

The following lemma presents the marginal moment generating function of

Xi, (i = 1, 2).

Lemma 3.1 The marginal moment generating function of Xi, (i = 1, 2) is

given by:

Mi(ti) =
[
1 − ti e

ki k
(ti+θ)/βi

i Γ
( − (ti + θ)/βi, ki

)
/βi

]
, (i = 1, 2) (3.2)

Proof. The proof of this lemma can be done by using either: the relation

between the joint and marginal moment generating functions, or the definition

of the marginal moment generating function of the random variable. Note

that the moment generating function of the bivariate Gompertz can be used

to derive the mathematical expectations Xi, X
2
i , i = 1, 2 and X1X2.

Next, we will discuss a form of the bivariate mixture of Gompertz distribu-

tion of Marshall-Olkin type where the dependence among the components is

characterized by a latent variable independently distributed of the individual

components.

4 Mixture of Bivariate Gompertz Distributions

In this section, we present the mixture of independent Gompertz distributions.

Then we derive a mixture of bivariate Gompertz distributions where the de-

pendence among the components is characterized by a latent random variable

which is independently exponentially distributed of the individual component.
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Consider a system of two components where the lifetime of component i, i =

1, 2, say, Xi, is a mixture of two independent Gompertz distributions. That is,

X1 ∼ a1 Gomp(α11, β11) + (1 − a1) Gomp(α12, β12) , 0 ≤ a1 ≤ 1 ,

and

X2 ∼ a2 Gomp(α21, β21) + (1 − a2) Gomp(α22, β22) , 0 ≤ a2 ≤ 1 .

The notation Gomp(αij, βij) means a random variable, say Xij, having a Gom-

pertz distribution with the parameters αij , βij. That is the probability density

function of Xij takes the following form

fXij
(x) = αije

βijx exp
{
− kij(e

βijx − 1)
}
, x > 0, αij = kijβij > 0, βij > 0, ∀ i, j .

Consider also an exponentially distributed random variable, say Z, with pa-

rameter θ which is independent of Xij for all i, j. The random variable Z will

be used as a latent variable to introduce dependence among X ′s. The density

function of Z is

fZ(z) = θ e−θz, z > 0, θ > 0 .

Using the independence assumption in the above model, we can see that Z is

also independent of X1 and X2.

Define Si = Min(Xi, Z) for i = 1, 2. Then the vector S = (S1, S2) follows

a bivariate distribution and obviously they are dependent as they commonly

share the influence of the latent random variable Z.

In what follows we present the joint probability density function of (S1, S2).

Firstly, we derive the joint survival function of (S1, S2). Then we use it to derive

the joint probability density function of the mixture of bivariate Gompertz

distribution.

Corollary 4.1 The joint survival function of S1, S2 is

F̄S1,S2(s1, s2) = p11 exp
[
− k11(e

β11s1 − 1) − k21(e
β21s2 − 1) − θs

]

+p12 exp
[
− k11(e

β11s1 − 1) − k22(e
β22s2 − 1) − θs

]

+p12 exp
[
− k12(e

β12s1 − 1) − k21(e
β21s2 − 1) − θs

]

+p22

[
− k12(e

β12s1 − 1) − k22(e
β22s2 − 1) − θs

]
(4.1)

where s = max(s1, s2) > 0 and for i, j ∈ {1, 2}:
pij = a2−i

1 a2−j
2 (1 − a1)

i−1 (1 − a2)
j−1 .
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Proof. Since

F̄S1,S2(s1, s2) = P (S1 > s1, S2 > s2)

Then using the definitions of S1 and S2 we have

F̄S1,S2(s1, s2) = P (X1 > s1) P (X2 > s2) P (Z > s0) =

= e−θz
2∏

i=1

{
ai exp

[−ki1(e
βi1si − 1)

]

+(1 − ai) exp
[−ki2(e

βi2si − 1)
]}

(4.2)

One can write the above relation as given by (3.1), that completes the proof.

�

Note that:

1. For i, j ∈ {1, 2}, pij ≥ 0 and p11 + p12 + p21 + p22 = 1.

2. Each term function in the right hand side of (4.1) is a survival function

of the new bivariate Gompertz distribution.

This means that, survival function given in (4.1) is a joint survival function of

a mixture of four bivariate Gompertz distributions.

The following Theorem gives the joint probability density function of (S1, S2).

Theorem 4.1 The joint pdf of S1, S2, say f(s1, s2), is

f(s1, s2) =

⎧⎨
⎩

f1(s1, s2) if s1 > s2 > 0 ,

f2(s1, s2) if s2 > s1 > 0 ,

f0(s, s) if s1 = s2 = s > 0 ,

(4.3)

where

f1(s1, s2) = p11k21β21e
β21s2

(
θ + k11β11e

β11s1
)
exp

{−k11(eβ11s1 − 1) − k21(eβ21s2 − 1) − θs1

}

+p12k22β22e
β22s2(θ + k11β11e

β11s1) exp
{−k11(eβ11s1 − 1) − k22(eβ22s2 − 1) − θs1

}

+p21k21β21e
β21s2(θ + k21β12e

β12s1) exp
{−k12(eβ12s1 − 1) − k21(eβ21s2 − 1) − θs1

}

+p22k22β22e
β22s2(θ + k12β12e

β12s1) exp
{−k12(eβ12s1 − 1) − k22(eβ22s2 − 1) − θs1

}
(4.4)

f2(s1, s2) = p11k11β11e
β11s1(θ + k21β21e

β21s2) exp
{−k11(eβ11s1 − 1) − k21(eβ21s2 − 1) − θs2

}

+p12k11β11e
β11s1(θ + k22β22e

β22s2) exp
{−k11(eβ11s1 − 1) − k22(eβ22s2 − 1) − θs2

}

+p21k12β12e
β12s1(θ + k21β21e

β21s2) exp
{−k12(eβ12s1 − 1) − k21(eβ21s2 − 1) − θs2

}

+p22k12β12e
β12s1(θ + k22β22e

β22s2) exp
{−k12(eβ12s1 − 1) − k22(eβ22s2 − 1) − θs2

}
(4.5)
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f0(s, s) = θ
{
p11 exp

[−k11(e
β11s − 1) − k21(e

β21s − 1) − θs
]
+

p12 exp
[−k11(e

β11s − 1) − k22(e
β22s − 1) − θs

]
+

p21 exp
[−k12(e

β12s − 1) − k21(e
β21s − 1) − θs

]
+

p22 exp
[−k12(e

β12s − 1) − k22(e
β22s − 1) − θs

]}

(4.6)

Proof. The proof of this Theorem follows along the same lines as of theo-

rem (2.1). �

The following Corollary gives the marginal pdf’s of S1 and S2.

Lemma 4.1 The marginal density functions of S1 and S2 are respectively,

fS1(s1) = a1(θ + k11β11e
β11s1) exp

{−k11(e
β11s1 − 1) − θs1

}

+(1 − a1)(θ + k12β12e
β12s1) exp

{−k12(e
β12s1 − 1) − θs2

}
, s1 > 0,

(4.7)

and

fS2(s2) = a2(θ + k21β21e
β21s2) exp

{−k21(e
β21s2 − 1) − θs2

}

+(1 − a2)(θ + k22β22e
β22s2) exp

{−k12(e
β22s2 − 1) − θs2

}
, s2 > 0.

(4.8)

From the marginal densities, we can derive the marginal moment generating

functions of Si, (i = 1, 2) as follows.

Lemma 4.2 The moment generating functions of X1 and X2 are respectively,

MS1(t1) = 1 − t1

{
a1 ek11k

(θ+t1)/β11

11 Γ
(
− (θ + t1)/β11, k11

)
/β11+

(1 − a1) ek12 k
(θ+t1)/β12

12 Γ
(
− (θ + t1)/β12, k12

)
/β12

}
(4.9)

and

MS2(t2) = 1 − t2

{
a2 ek21k

(θ+t2)/β21

21 Γ
(
− (θ + t2)/β21, k21

)
/β21+

(1 − a2) ek22 k
(θ+t2)/β22

22 Γ
(
− (θ + t2)/β22, k22

)
/β22

}
(4.10)

Lemma 4.3 From (4.9) and (4.10), we readily have

E(S1) = a1 ek11 k
θ/β11

11 Γ
(
−θ/β11, k11

)
/β11+(1−a1) ek12 k

θ/β12

12 Γ
(
−θ/β12, k12

)
/β12

(4.11)
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and

E(S2) = a2 ek21 k
θ/β21

21 Γ
(
−θ/β21, k21

)
/β21+(1−a2) ek22 k

θ/β22

22 Γ
(
−θ/β22, k22

)
/β22

(4.12)

Lemma 4.4 From (4.9) and (4.10), we readily have

E(S2
1) = −2 a1 ek11

[
β11∂Γ

(
− θ/β11, k11

)
/∂θ + ln k11Γ

(
− θ/β11, k11

)]
/β2

11

−2(1 − a1) ek12

[
β12∂Γ

(
− θ/β12, k12

)
/∂θ + ln k12Γ

(
− θ/β12, k12

)]
/β2

12

(4.13)

and

E(S2
2) = −2 a2 ek21

[
β21∂Γ

(
− θ/β21, k21

)
/∂θ + ln k21Γ

(
− θ/β21, k21

)]
/β2

21

−2(1 − a2) ek22

[
β22∂Γ

(
− θ/β22, k22

)
/∂θ + ln k22Γ

(
− θ/β22, k22

)]
/β2

22

(4.14)

Lemma 4.5 The joint moment generating function of (S1, S2) is given by

MS1,S2(t1, t2) =
∑4

i biMi(t1, t2) (4.15)

where
b1 = p11, b2 = p12, b3 = p21, b4 = p22

M1 = MX11,X21(t1, t2), M2 = MX11,X22(t1, t2),

M3 = MX12,X21(t1, t2), M4 = MX12,X22(t1, t2)

⎫⎬
⎭ (4.16)

and the functions MX11,X21(t1, t2), MX11,X22(t1, t2), MX12,X21(t1, t2) and

MX12,X22(t1, t2) can be derived from (2.14) respectively, by replacing α1, α2, β1, β2

with α11, α21, β11, β21; α11, α22, β11, β22; α12, α21, β12, β21 and α12, α22, β12, β22.

Proof. One can establish this lemma from (3.1) and (4.15).

5 Conclusion

Finally we conclude that a new class of bivariate Gompertz distribution of

Marshall-Olkin type is derived. The used procedure is based on a latent ran-

dom variable with exponential distribution. The moment generating functions

of bivariate new class is derived. A mixture of the suggested bivariate dis-

tributions is derived. The present results generalize those of Marshall-Olkin

bivariate exponential distribution and other present in the literature [5, 8, 10].
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