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Abstract— We propose a novel class of Digital Nonlinear
Oscillators (DNOs) supporting complex dynamics, including
chaos, suitable for the definition of high-performance and
low-complexity entropy sources in Programmable Logic Devices
(PLDs). We derive our proposal from the analysis of simplified
models, investigated as non-autonomous nonlinear dynamical
systems under different excitation conditions. The study lead the
authors to the design of a fully digital entropy source consuming
only two slices of a Xilinx FPGA, including post-processing,
sufficient to define a class of TRNGs capable to pass the NIST
standard tests for randomness in any worst case experimentally
tested by the authors (6 chips, 96 generators). The solution has
been compared with others published in the literature, confirming
the validity of the proposal.

Index Terms— Digital nonlinear oscillators, nonlinear dynam-
ical systems, information entropy sources.

I. INTRODUCTION

ELECTRONIC information entropy sources find applica-

tion in cryptography, e.g., for the design of systems

devised to issue sequences of truly random bits [1], [2].

These systems, also known as True Random Number Gen-

erators (TRNGs), are circuits exploiting sources of entropy

obtained measuring stochastic physical phenomena. Among

the most investigated solutions, we recall TRNGs based on

chaos, metastability, electronic noise, signal jitter and ionizing

radiation [2]. TRNGs exploiting each of the above phenomena

have been proposed in literature, and different combinations

of them have been used.

The design of a cryptographic TRNG entropy source is a

trade-off between hardware security, fabrication cost, relia-

bility, throughput and energy efficiency, being these aspects

dependent on the physical stochastic phenomenon taken into

account for the TRNG concept design. With the advent of the

Internet of Things, new principles and paradigms oriented the

research toward the investigation of new solutions suitable for

the industrial production of standardized scalable architectures,

also convenient for the so-called lightweight cryptography.
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From this point of view, the investigation of reliable ‘fully-

digital’ sources of entropy, i.e., for which design a Verilog

or VHDL code almost suffices, represents a lively research

direction targeting all the goals mentioned before [3]–[18].

In this work we investigate a novel class of circuits,

defined as Digital Nonlinear Oscillators (DNOs), as possible

candidates for a new class of ‘fully-digital’ entropy sources,

suitable for cryptographic applications, aiming at the design

of TRNGs in Programmable Logic Devices (PLDs). Framing

our research within the published literature, in this work we

discuss the topic from a nonlinear dynamical system analysis

point of view. Indeed, we discuss theoretical models and

propose numerical investigation techniques providing evidence

that, for specific circuit topologies, the chief source of ran-

domness in these systems is mainly due to deterministic chaos.

In detail, taking as a reference a novel DNO topology, we show

with simulations and experimental results that in this kind

of systems the information generation rate can be high and

structurally stable with respect to circuit variability, therefore

resulting suitable for the design of reliable cryptographic

TRNGs consuming an extremely reduced amount of logic

resources.

This paper is organized as in the following. In Section II we

introduce DNOs and investigate the simplified analog model of

a circuit topology capable to support complex dynamics. The

introduced circuit is proposed as a ‘fully digital’ nonlinear

oscillator, and further investigated under possible external

excitations, referring to actual digital circuits simulated in

Cadence (Sec. III). On the basis of the obtained results,

in Sec. IV we propose a novel DNO topology as a novel class

of ‘fully digital’ circuits capable to support complex dynamics.

Experiments, conclusion and references close the paper.

II. DIGITAL NONLINEAR OSCILLATORS

An informal definition of Digital Nonlinear Oscillators have

been first introduced in [19].

Definition 1: A Digital Nonlinear Oscillator (DNO) is a

network of electronic digital circuits, each one originally

designed to behave as an asynchronous logic gate, implement-

ing an autonomous nonlinear dynamical system exhibiting

oscillations in the time-continuous domain.

According to the definition, the network nodes do not refer

to abstract logic functions. Rather, each node is associated to
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Fig. 1. A possible Digital Nonlinear Oscillator network topology, in which
each node is referred as an Elementary Logic Block (ELB) implementing an
asynchronous logic function. The ELB#11 is a leaf node not involved in any
loop, described in Sec.III.

an electronic circuit, or a sub-circuit in a wider asynchronous

architecture (e.g., a digital cell belonging to a standard library

developed for a CMOS silicon process technology). In the

next Section, since we refer to PLDs, we will deal with

Elementary Logic Blocks (ELBs) implementing the network

nodes (Fig. 1).

The well know Ring Oscillator circuit, a loop of an odd

number of inverting logic gates, is among the simplest exam-

ples of a DNO. Other systems classifiable as DNOs have been

presented in [14], [19]–[21].

Bringing together PLD design, circuit modeling and the

analysis of nonlinear dynamical systems, a first investiga-

tion of different DNO architectures have been presented

in [19], [21], [22]. The authors showed that, depending on

both the network topology and the hardware implementation,

DNOs can exhibit complex dynamical behavior.

The design of DNOs faces several challenges, probably the

most important one being theoretical. In [19] a clear confu-

tation of the algebraic approaches proposed to study some

DNOs has been shown with both simulations and experiments.

On the other hand, as discussed in [22], even for simple

topologies a DNO is a nonlinear dynamical system operating

in high dimension, being the dynamics dependent on parasitic

elements in most cases (e.g., distributed nonlinear capacitors

and resistors). For this reason, even for low-complexity DNO

topologies, an accurate theoretical modeling is often unfea-

sible and the analysis must resort, eventually, to numerical

simulations and experiments.

Regrettably, when simulating high-dimension nonlinear

dynamical systems, the numerical analysis of any investi-

gated model should be trusted with caution, due to the

uncertain or scarcely controllable effects related to finite

precision computation and time-integration algorithmic accu-

racy [23]. Furthermore, the dynamics of any DNO can be

sensitive to noise, temperature or supply voltage variations,

aging and silicon fabrication process variability. This latter

Fig. 2. A simplified model to investigate the core DNO sub-network
implementing the non-autonomous dynamical system (2).

effects are well known, and also exploited, e.g., in Physically

Unclonable Functions (PUFs) based on nonlinear dynamical

systems [24]–[26]. As a result, for any DNO proposal three

investigation levels are mandatory: modeling, simulations and

experimental verification.

A. A Novel DNO Sub-Circuit Topology Compatible

With Complex Dynamics

In this subsection we present a novel circuit topology

suitable to design DNOs. The proposal, sketched in Fig. 2,

originally derives from heuristic considerations collected by

the authors during their research activities.

The circuit in Fig. 2 includes two xor gates, one negated

xor (nxor) gate and three active delay nodes (del) resulting,

e.g., from routing elements in PLDs (connection and switch

boxes) [22]. A special symbol for the delay nodes has been

introduced to remark that they are digital rectifying delay

gates [19], [21], [22].

Resistors and capacitors have been introduced to define

a simplified low-dimension theoretical model of the circuit.

It is understood that in effective implementations their role is

played by parasitic nonlinear elements distributed on the chip.

More accurate dynamical models must be taken into account

to investigate the transient dynamics of DNO integrated

implementation (e.g., by means of analog SPICE simula-

tions based on advanced BSIM4 models, also considering

post-layout extractions of digital standard cells). For this

reason, we remark that the simplified analysis discussed in

this Section aims to assess the compatibility of the proposed

topology to support complex dynamics, without referring to

any specific silicon process technology.

Accordingly, to reduce the system complexity, we assumed

to relate each DNO node to a first-order cell, shown in Fig. 3,

such that

dvo

dt
=

g(vi) − vo

RC
, (1)

where vi = (v1, v2, . . . , vm) ∈ R
m and vo ∈ R are the inputs

and output, respectively, and g : R
m → [0, 1] describes the

node DC analog transfer function vo = g(vi). It is clear

from the function codomain that we assume to deal with a

normalized phase space.

In this simplified model, any DNO node has high-impedance

inputs, decoupled from its output. Furthermore, each of the
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Fig. 3. A first-order nonlinear dynamical model.

two loops involving the nets x1, x2, x3 and y1, y2, y3 agrees

with the oscillating topology investigated in [22].

Under this theoretical framework, the circuit in Fig. 2

can be modeled as a non-autonomous nonlinear dynamical

system that operates in the normalized bounded phase space

[0, 1]7 ⊂ R
7, i.e.,
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ẋ1 = α1 [xor2(x3, z) − x1] ,

ẋ2 = α2 [del(x1) − x2] ,

ẋ3 = α3 [del(x2) − x3] ,

ẏ1 = β1 [nxor2(y3, z) − y1] ,

ẏ2 = β2 [del(y1) − y2] ,

ẏ3 = β3 [del(y2) − y3] ,

ż = γ [xor3(x3, φ(t), y3) − z] ,

(2)

where αi , βi , γ ∈ R
+ are positive parametric constants, φ :

R → [0, 1] is an arbitrary excitation signal, whereas xor3 :

R
3 → [0, 1], xor2 : R

2 → [0, 1], nxor2 : R
2 → [0, 1],

del : R → [0, 1] are functions properly fitting the analog

DC transfer functions of reference xor, nxor and del logic

gates, respectively. The parameters αi , βi , γ are equal to the

reciprocals of time constants RC of their respective first-order

cells, given in (1).

B. Modeling the Node DC Transfer Function

For the different g functions in (1) we considered the

analytical compositions of parametric sigmoids of the form

σ(x, a, b) =
1

1 + ea(x−b)
, (3)

where a, b ∈ R, with 0.3 < b < 0.7 and a > 20. Accordingly,

once set a, b, we define for any i, j, k ∈ N

xi(vi ) = xi =
1

1 + e−a(vi−b)
, (4)

x̄i (vi ) = x̄i =
1

1 + ea(vi−b)
, (5)

and

del(vi ) = xi , xor2(vi , v j ) = xi x̄ j + x̄i x j , (6)

nxor2(vi , v j ) = xi x j + x̄i x̄ j , (7)

xor3(vi , v j , vk) = (xi x j + x̄i x̄ j )xk + (xi x̄ j + x̄i x j )x̄k . (8)

Fig. 4. The DC transfer function of a CMOS inverter (UMC 180nm
technology, 1.8V) and the fitting model (5), with a ≈ 36.81, b ≈ 0.43.

Fig. 5. The function z = xor2(x, y) in (6) for a ≈ 36.81, b ≈ 0.43.

As shown in Figs. 4 and 5 proper values for a, b can be

estimated to approximate the DC transfer function of actual

CMOS digital circuits.

The study of the dynamical system (2) produced significant

evidence to justify the design methodology followed by the

authors to achieve the solution presented in this work.

C. System Analysis: Turned-Off Excitation

If the excitation in the circuit in Fig. 2 is turned off

(i.e., φ(t) = 0), the dynamical behavior of the system (2)

depends on the system parameters αi , βi , γ and a, b in (3).

For non-pathological parametric values (e.g., if αi , βi , γ have

similar magnitudes) the obtained autonomous system has a

stable and globally attractive limit cycle. In other words, when
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Fig. 6. Different globally attractive limit cycles for the system (2) (excitation turned off), under random Gaussian parametric perturbations (3σ = 6% relative
perturbation for a = 30, b = 0.5, 3σ = 30% relative perturbation for αi , βi , γ = 1). Subplot (a): 3D projection (nets x1, y1, z) for 20 trajectories obtained
from different random initial conditions. Subplot (b): transient evolution of selected state components, for one of the presented cases.

the excitation φ is turned off, the simplified circuit in Fig. 2

is a DNO. Exhaustive simulations, obtained integrating the

system (2) with standard numerical methods, verified that

the dynamical system is structurally stable with respect to

parametric perturbations, as shown in Figs. 6.a. It can be

noticed that the transient dynamics for the net z exhibits

regular oscillations (Fig. 6.b).

D. System Analysis: Periodic Excitation

If the excitation in the circuit in Fig. 2 is turned on, the sys-

tem (2) describes a forced nonlinear oscillator. In literature,

different systems of this kind have been investigated from

different points of view. Among the arbitrary set of forcing

signals, periodic excitations represent a demanding research

topic in terms of theoretical efforts and numerical investigation

tools, even in elementary problems based on the well known

Duffin and Van der Pol oscillators [27]–[30].

The equations in (2) do not allow for any feasible analytical

approach, also considering the problem dimension, if the

parametric space is included in the analysis. On the other

hand, different numerical investigation methods are nowadays

widely accepted to assess the dynamical behavior of complex

systems.

A basic numerical anaysis was performed reducing the

parametric set, assuming αi = βi = γ = ξ > 0 in (2) and

a = 30, b = 0.5 in (3). For the excitation, an adapted

full-scale sinusoidal signal with frequency f0 = 1/T0 was

considered, i.e.,

φ(t) =
1

2
(1 + sin(2π f0t)), φ(t) ∈ [0, 1]. (9)

Accordingly, since the parametric set was reduced to two

elements, f0 and ξ , the adimensional ratio

Q =
ξ

f0
(10)

has been considered as the bifurcation parameter to investigate

the system dynamics. The obtained results for 3.3 < Q <

30 are reported in the bifurcation diagram shown in Fig. 7,

in which the long-term dynamical behavior for the set of values

{z(tk) : tk = kT0 + θ, 100 < k < 200} has been recorded,

referring to random initial conditions in [0, 1]7.

The diagram exhibits a complex structural organiza-

tion including period-doubling cascades and alternations of

periodic-chaotic windows. Presence of chaos at the culmina-

tion of period-doubling cascades has been detected by numeri-

cal investigations of trajectory stability, sensitivity to the initial

condition and frequency spectrum analysis. Also, the study

revealed the coexistence of multiple attracting ω-limit sets,

partitioning the extended phase state [0, 1]7∪[0, T0) in disjoint

basins of attraction. For the sake of a better presentation,

in Fig. 8 we reported the route to chaos that follows the

period-doubling cascade for 18 < Q < 20. In the subplot

(e), a broadband spectrum with some sharp peaks located at

multiples of the excitation frequency f0, indicates the clear

onset of a chaotic motion [31], [32].

III. TOWARD THE DEFINITION OF NOVEL ‘FULLY

DIGITAL’ CHAOTIC ENTROPY SOURCES

Until nowadays, the chief sources of randomness claimed

to be exploited in ‘fully digital’ solutions were timing-skew,

metastability and electronic noise, causing jitter and phase

noise in oscillators [2]–[12], [14]–[18], [33]–[37]. The results

previously presented pose a fundamental question: is it possi-

ble to achieve chaos by the proper interconnection of digital

gates?

Regarding the issue, to the best of our knowledge,

no-evidence has been presented in literature adopting a dynam-

ical system analysis point of view. For this reason, we spent

an effort designing specific numerical simulations investi-

gating digital circuits represented at their analog transistor

level. Since we were focusing on PLDs, we have considered
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Fig. 7. Bifurcation diagram for the system (2) forced with the periodic
excitation (9), reporting the set {z(tk) ∈ [0, 1], tk = kT0 +θ, 100 < k < 200},
for θ = 150 deg and 3.3 < Q < 30, assuming αi = βi = γ and a = 30,
b = 0.5 in (3). Diagram obtained from 10.000 random initial conditions in

[0, 1]7 in t = 0.

low-complexity realistic models of the digital circuits avail-

able, e.g., in a FPGA [19], as described in the following.

The digital design resources in a FPGA include Regis-

ters, Connection/Switch Boxes and Look-Up Tables (LUTs).

Fig. 8. The route to chaos that follows the period-doubling cascade revealed
for Q = 18.43, 19.42, 19.58, 19.61, 19.90 in sub-plots (a) to (e), respectively,
related to the bifurcation diagram shown in Fig. 7, for the system (2).

At a rough representation level, the combinatorial and the

memorization functionality in a FPGA is organized in a

2D array of configurable logic circuits, each one offering

multiple programming lines, as in the simplified architecture

shown in Fig. 9. In the following, we name these reference

structures as Elementary Logic Blocks (ELBs). Due to their

topology, the nominal time-delay of an ELB does not depend

on the combinatorial function set by its LUT (i.e., by the

programming signals C0-C3 in Fig. 9).

The third type of ELB configuration shown in Fig. 9 has

a clocked register along the signal path (D flip-flop). This

configuration can not be included in any asynchronous loop

of the DNO circuit topology. Nevertheless, it can be used

as a leaf node of the DNO network, to obtain the sampling
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Fig. 9. Simplified structure of a FPGA configurable Elementary Logic Block
(ELB). In a Digital Nonlinear Oscillator (DNO), different ELB configurations
can be used to design different network nodes.

Fig. 10. The logic circuits implementing the ELB core shown in Fig. 9.

Depending on the programming lines C0-C7, any logic function f : {0, 1}3 →

{0, 1} can be obtained.

and the analog-to-digital conversion (1-bit resolution) of those

voltages that are observable, performing a measurement tasks.

Indeed, most of the dynamical system state components refer

to parasitic distributed elements in ELBs or Connection/Switch

Boxes, i.e., they are actually unobservable states of the dynam-

ical system.

FPGA vendors (e.g., Xilinx, Altera) provide special direc-

tives for the digital synthesizer, to be included in the RTL

design (either in VHDL or Verilog), to neglect combina-

torial loop errors and the deletion of design entities dur-

ing the synthesis and optimization processes, also allow-

ing precise resource placement and routing in the FPGA

device.

We have designed in Cadence Virtuoso different CMOS

circuits implementing the ELB reference structure shown

in Fig. 9, using standard digital CMOS topologies (UMC

180nm technology, core voltage 1.8V) [38]. In detail, we con-

sidered ELBs containing 3-inputs LUTs (3 2 × 1 MUX-layers

and 8 programming lines C0-C7), shown in Fig. 10.

In Cadence Virtuoso we designed the topology shown

in Fig. 2, using three ELBs for the xor and nxor

gates, whereas the delay nodes (del) were obtained adding

multiplexing active routing elements along the loops (Fig. 11).

Fig. 11. The circuit simulated in Cadence Virtuoso, referring to UMC 180nm
CMOS technology, core voltage 1.8V.

To take control of the high-dimension state initial condition

in the simulation, negligible grounded capacitors (5 attofarad)

have been added in all circuit nets.

A. Simulation Results

Transient simulations confirmed that by turning off the

excitation φ(t) = 0V the designed circuit resulted in a

structurally stable nonlinear oscillator. On the other hand,

an excitation was simulated adding a periodic square wave

generator (levels 0V - 1.8V, variable frequency f0) followed

by two CMOS inverting gates, as shown in Fig. 11.

Following the same approach discussed in Sec. II-D, an adi-

mensional ratio Q0 =
ξ 0

f0
has been defined as the bifurcation

parameter to investigate the system dynamics, being ξ 0 a

constant proportional to the natural period of the autonomous

nonlinear oscillator (φ(t) = 0V ), estimated with previous sim-

ulations. The obtained bifurcation diagram, shown in Fig. 12,

recorded the long-term dynamical behavior for the set of

values {z(tk) : tk = kT0 + θ, 100 < k < 200}, for a random

initial condition. The reported range for Q0 corresponds to a

range for f0 between 400MHz and 425MHz.

Similarly to the theoretical case, the obtained bifur-

cation diagram exhibits a complex structural organiza-

tion including period-doubling cascades and alternations of

periodic-chaotic windows. Again, presence of chaos at the

end of period-doubling cascades has been detected by numer-

ical investigations of trajectory stability, sensitivity to the

initial condition and frequency spectrum analysis. Again,

the study revealed the coexistence of multiple attracting

ω-limit sets, partitioning the extended phase state in disjoint

basins of attraction, triggering different dynamics. For the

sake of a more complete presentation, in Fig.13 we reported

three cases showing period-doubling and chaos for Q0 =

13.17, 13.1813.27 in the 3D-projections of the voltages x, y, z

in Fig. 11. Due to the high-gains involved in the digital transfer

functions, the dynamics is most of the time saturated at the

boundaries of the cube [0V , 1.8V ]3.

IV. A NEW CLASS OF DIGITAL CIRCUITS FOR THE DESIGN

OF ENTROPY SOURCES IN PROGRAMMABLE LOGIC

The authors exploited the previous results to design a novel

DNO topology. The idea was to substitute the excitation source

in Fig.11 with a ring oscillator, as shown in Fig. 14. As a result,
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Fig. 12. Bifurcation diagram obtained by simulating the circuit in Fig. 11,
reporting the set {z(tk) ∈ [0V, 1.8V ], tk = kT0 + θ, 100 < k < 200}, for
θ = 30 deg, setting the same initial condition in all cases.

the obtained DNO topology agrees with the network shown

in Fig. 1, in which the ELBs #9, #10, #6 and #7 (i.e., the delay

nodes derived from the first proposal in Fig. 2), were imple-

mented exploiting active routing elements (details about the

hardware implementation are discussed in Sec. IV-B).

The DNO in Fig. 14 is a ‘fully digital’ autonomous non-

linear dynamical system, that can be designed in a digital

flow as a network of HDL entities. In principle, the resulting

system can not be directly related to the forced oscillator case

shown in Fig. 11, since between the ‘driving’ Ring Oscillator

and the ‘driven’ oscillator a different sort of coupling may

occur by means of parasitic capacitances in actual circuit

implementations. However, as also confirmed by exhaustive

Cadence simulations and experiments, the circuit is suitable for

Fig. 13. Three cases showing period-doubling for Q0 = 13.17, 13.18 and
chaos for Q0 = 13.27 in the 3D-projections of the voltages x, y, z in Fig. 11.
For the last chaotic case, the transient simulation of the signal z is reported.

Fig. 14. The complete topology, proposed as representative of a novel class
of DNOs, in which a nonlinear oscillating structure (the nonlinear oscillator
in Fig.11), is excited by a ring oscillator to produce complex dynamics.

supporting complex periodic dynamics and chaos, depending

on the dynamical characteristics of the involved digital circuits.

A. Simulation Results

The circuit proposed in Fig. 14 offers interesting design

challenges. The ratio between the ‘driving’ ring oscillator

frequency and the natural frequency of the ‘driven’ oscillator

can be varied playing with the number of nodes in the three

loops. However, the simulation results (including Montecarlo

analysis) showed that other important aspects can play a

significant role in determining the system dynamics. In detail:

• given the nominal circuit design, transistor mismatches

and process variability, as well as other implementation

results not under the direct control of the PLD designer

(i.e., the delays of the Connection/Switch Boxes involved

by the routing), can lead to different complex dynamics,

including chaos. In Fig. 15 we reported two example

simulations (same nominal circuit, different mismatches);

• given any simulated hardware realization, multiple

attracting ω-limit sets can coexist, partitioning the system

phase state in disjoint basins of attraction related to

different dynamical behaviour;

• given the simulated hardware realization, if noise is added

in the simulation, switching between different attracting

ω-limit sets may occur.
The provided evidence establishes that the resulting dynam-

ics is highly sensitive to relevant aspects that are out of the

designer’s control.
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Fig. 15. In the upper plots, the 3D-projections of the voltages x, y, z in Fig. 14 under different realizations (mismatches and process variability). Upper-left:
complex periodic dynamics. Upper-right: chaotic dynamics exhibiting sensitivity to initial conditions, highlighted in the trajectories below.

In facts, this issue does not represent a real drawback when

targeting information entropy sources, if in any worst case the

circuit performs better than any other known solution involving

the same hardware complexity.

B. Experiments: Raw Entropy Source Low-Level

Characterization

The DNO in Fig. 14 has been first compared with two other

DNOs, namely a 7-nodes Ring Oscillator (DNO A) and a

7-nodes Golíc Galois Ring Oscillator (DNO B) [19], [21],

by means of the measurement campaign hereafter discussed.

We have chosen these solutions for the comparison because

of the following reasons: 1) they involve a similar hardware

complexity; 2) they exhibit stable simple and complex periodic

dynamics, respectively; 3) in both of them the chief infor-

mation generation mechanism has been shown to be due to

phase noise and jitter caused by electronic noise. Furthermore,

these DNOs have been characterized taking as a reference

figures of merit assessing specific low-level entropy harvesting

mechanisms, also suitable for investigating their statistical

structural stability with respect to the technological process

variability.

The comparison of the DNOs has been performed, assuming

to add a leaf-node to the network (the third ELB configuration

in Fig. 9) to perform uniform sampling and one-bit A/D

conversion, designing a binary information source.

The ‘non-IID track’ included in the NIST SP800-90B pub-

lication [39] proposes a battery of tests to estimate the entropy

of raw-bit sources. The procedure, taking the minimum among

multiple entropy estimates, provides an articulated estimation

of the source entropy, necessary to validate any design in

absolute terms. However, the approach turns out not to be

the best option when comparing different classes of DNOs, if

the comparison focuses on those fundamental aspects regard-

ing the information generation mechanisms in phase-noise

oscillators: the correlation between the generated bits and the

diversification of the generated symbols, considering groups

of contiguous bits. For this reason, in this work we adopted

the two figures of merit discussed in [21]: the Decorrelation

Time and the Average Shannon Entropy. Obviously, the two

figures of merit are related to the estimators in [39].

The measurements have been performed designing the

DNOs in Xilinx Artix 7 xc7a35 FPGAs running at 100MHz

clock frequency. For each system 16 DNO instances were
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TABLE I

DEVICE UTILIZATION AND MEASUREMENTS RESULTS

designed in different chip areas of the FPGA, to assess

the impact of intra-device variability on circuit performance.

Furthermore, to investigate the device-dependency, the mea-

surements were repeated for six different chips (using the

same slice locations for the three DNO types), reaching a total

of 96 DNO instances, for each class. The authors implemented

different layouts, carefully investigating the place and route

phase of the hardware design.

We collected random bits from the oscillators at different

sampling frequencies (i.e., decimation rates), ranging from

100 kHz to 100 MHz, acquiring sequences of 1 million

bits each. Buffering the binary stream on the FPGA RAM,

and implementing a RS232 serial interface, we transferred

the collected sequences to a PC running software developed

with National Instruments LabVIEW, whose purpose was to

read the serial interface and save the received data in differ-

ent binary files, structured to be processed with Mathworks

Matlab.

The Figs. 16 and 17 report the results for the estimated

Average Shannon Entropy estimated on the basis of binary

words of 10 bits (ASE-10), and the Decorrelation Time τ ,

differentiating the results for each DNO and for each chip

number (16 instances per chip), for the maximum tested sam-

pling rate of 100MHz. The Decorrelation Time was estimated

as the time at which the vanishing autocorrelation function of

the binary source expresses the 99.9% of its energy, referring

to an observation time-window of 10µs, following the set-up

discussed in [21].

The device utilization and the overall measurements sta-

tistics for the two figures of merit are reported in Table I.

It can be noticed from the Table that the three DNOs consume

the same amount of resources in the FPGA: one Xilinx

Configurable Logic Block (CLB), two Slices, including the

leaf-node to perform the uniform sampling.

As far as the figures of merit are considered, the proposed

DNO dramatically outperforms the other two circuits, both in

term of Decorrelation Time and Average Shannon Entropy.

In detail, the proposed DNO is characterized by Decorre-

lation Times two orders of magnitudes lower than the best

tested DNOs of other kinds, also considering different results

published in literature [21]. In all cases, the bits collected

at a sampling rate of 100MHz from the DNO-C resulted

affected by negligible or undetectable correlation, as shown

Fig. 16. Results for the Average Shannon Entropy, estimated on the basis
of binary words of 10 bits (ASE-10).

Fig. 17. Results for the Decorrelation Time τ , estimated as the time at which
the autocorrelation function of the binary source expresses the 99.9% of its
variation-energy, referring to an observation time-window of 10µs, following
the set-up discussed in [21].

in Figs. 17 and 18. As a result, the chief limitation of the

DNO-C resulted to be a residual offset of the sequences.

This aspect is related to the combined effect of the analog

signal mean value, dependent on the trajectory shape, and

the quantization threshold level of the sampling D flip-flop.

The issue is more evident in the DNO-B and less important

for the Ring Oscillator generating an almost square wave with

50% duty cycle. If the DNO-B has a reduced correlation time,

with respect to the DNO-A, it is affected by a strong bias

limiting its ASE. In the DNO-C, an adequate bias appears

to be guaranteed by the topological symmetry and by the

mutual interaction through the xor-3 gate of the balanced

feedback loops in Fig. 14. The outstanding results obtained for

our proposal indicate that, most probably, all the implemented

instances of the DNO-C operated in a structurally stable

chaotic region.

The comparison between the sources can be appreciated by

inspecting the byte-patterns shown in figure 19, in which we

reported the results for the DNOs with the highest ASE-10

entropy, including the worst DNO with the lowest ASE-10
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Fig. 18. Autocorrelation functions for the three DNOs (typical results for a
sampling frequency of 1/Ts = 100MHz). For an ideal random binary source
the autocorrelation is Rxx (kTs) = 0.5 if k = 0, 0.25 otherwise (blue/dashed
levels) [21].

entropy for the DNO-C type (proposal), for 100MHz and

10MHz sampling rates.

C. Experiments: TRNG Statistical Testing

In any cryptographic TRNG the output binary stream results

from a digital post-processing of the raw random bits collected

from the entropy source. The post-processing can be used

both to reduce information redundancy (e.g., by means of

information compression) and to mask residual statistical

defects (e.g., by means of stream ciphers) [1], [40]. Given

any set of randomness tests, the higher is the entropy of the

core information source, the minor is the role played by the

post-processing to allow the TRNG passing the tests [1], [39].

In this work, we took into account the NIST 800.22 standard

tests for cryptographic randomness [1], aiming to design the

minimum hardware, based on the DNO in Fig. 14, capable

to pass the tests in any worst case, considering the vari-

ability among the 6 tested FPGA chips and 16 tested loca-

tions. The minimum post-processing satisfying the constraint

resulted to be a low-complexity stream cipher, performing

the bit-by-bit XORing of the collected raw bits with a 8-bit

pseudo-random generator (a Fibonacci LFSR based on the

Fig. 19. Comparison between the byte-pattern generations, reporting the
result for the DNOs with the highest ASE-10 entropy, including the worst
DNO with the lowest ASE-10 entropy for the DNO C type (proposal), for
100MHz and 10MHz sampling rates.

TABLE II

NIST 800.22 REV.1A STATISTICAL TESTS RESULTS

primitive polynomial x8+x6+x5+x4+1). In most cases (90%

of the tested generators) a 4-bit XOR mixing suffices [37] and

in general any more complex (or cryptographically secure)
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TABLE III

COMPARISON OF THE PROPOSED SOLUTION WITH SIMILAR RECENTLY PROPOSED TRNGS (NIST-TESTS PASSING)

post-processing proposed in literature can be taken into

account, with a further increase of the hardware complexity (as

it holds for any TRNG [2]). In Table II typical results for the

NIST tests are reported, on the basis of 100 binary sequences

of 106 bits collected for each run.

For the sake of completeness, we compared the proposed

solution with the most relevant and recent works published in

literature, as reported in Table III. As it can be appreciated,

the proposed solution requires only 15 LUTs, providing an

outstanding throughput of 6.66 Mbit/s per LUT. The result

is justified by the simplicity of the topology, enhancing the

dynamical speed of the resulting nonlinear dynamical system,

that the design set to operate in a structurally stable chaotic

region in any tested case.

V. CONCLUSION

We have propossed a novel class of Digital Nonlinear

Oscillators (DNOs) supporting complex dynamics, includ-

ing chaos, suitable for the definition of high-performance

and low-complexity entropy sources in Programmable Logic

Devices (PLDs). We have derived our proposal from the

analysis of simplified models, investigated as non-autonomous

nonlinear dynamical systems under different excitation con-

ditions. The study lead the authors to the design of a fully

digital entropy source consuming only two slices of a Xilinx

FPGA, including post-processing, sufficient to define a class of

TRNGs capable to pass the NIST standard tests for random-

ness in any worst case experimentally tested by the authors

(6 chips, 96 generators). The solution has been compared with

others published in the literature, confirming the validity of the

proposal.
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