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A NEW CLASS OF DOUBLE PHASE VARIABLE EXPONENT PROBLEMS:
EXISTENCE AND UNIQUENESS

ANGEL CRESPO-BLANCO, LESZEK GASINSKI, PETTERI HARJULEHTO, AND PATRICK WINKERT

ABSTRACT. In this paper we introduce a new class of quasilinear elliptic equations driven by
the so-called double phase operator with variable exponents. We prove certain properties of
the corresponding Musielak-Orlicz Sobolev spaces (an equivalent norm, uniform convexity,
Radon-Riesz property with respect to the modular) and the properties of the new double
phase operator (continuity, strict monotonicity, (S+)—property). In contrast to the known
constant exponent case we are able to weaken the assumptions on the data. Finally we show
the existence and uniqueness of corresponding elliptic equations with right-hand sides that
have gradient dependence (so-called convection terms) under very general assumptions on the
data. As a result of independent interest, we also show the density of smooth functions in
the new Musielak-Orlicz Sobolev space even when the domain is unbounded.

1. INTRODUCTION

Given a bounded domain Q@ C RN, N > 2, with Lipschitz boundary 9%, this paper is
concerned with a new double phase operator with variable exponents given by

div (|vu|P<m>*2vu + u(z)|vu|q<x>*2vu) (1.1)

with p,q € C(Q) such that 1 < p(z) < N, p(x) < ¢(x) for all x € Q and 0 < u(-) € LY(Q).
This operator is the natural extension of the classical double phase operator when p and ¢ are
constants, namely

div (|vu|p*2vu+ u(x)|vu|q*2vu). (1.2)

It is clear that when infgp > 0 or x4 = 0, then the operator in (1.1) becomes the weighted

(q(z), p(x))-Laplacian or the p(z)-Laplacian, respectively. The energy functional I: W, *(Q) —
R related to the double phase operator (1.1) is given by

B |vu|p(w) . |Vu|q(w) .
I(u)_/n< p(z) *ulo) q() )d ’ (13)

where the integrand H (z, &) = ﬁmp(w) + %HQ(I) for all (x,¢&) € QxR of I has unbalanced
growth if 0 < pu(-) € L>=(Q), that is,

bilE[P®) < H(z,€) < by (1 + |§|‘1<z>) for a.a.z € Q and for all € € RY with by, by > 0.

The main characteristic of the functional I is the change of ellipticity on the set where the
weight function is zero, that is, on the set {x € Q : u(z) = 0}. Indeed, the energy density of T
exhibits ellipticity in the gradient of order g(x) in the set {z € Q : u(x) > ¢} for any fixed e > 0
and of order p(x) on the points « where p(x) vanishes. So the integrand H switches between
two different phases of elliptic behaviours. This is the reason why it is called double phase.

Zhikov [70] was the first who studied functionals whose integrands change their ellipticity
according to a point in order to provide models for strongly anisotropic materials. Function-
als of the form (1.3) have been studied by several authors with respect to regularity of local
minimizers (also for nonstandard growth). We refer to the works of Baroni-Colombo-Mingione
[6, 7, 8], Baroni-Kuusi-Mingione [9], Byun-Oh [16], Colombo-Mingione [20, 21], De Filippis
[22], De Filippis-Palatucci [24], Harjulehto-Héasto-Toivanen [412], Marcellini [51, 52], Ok [54, 55],
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Ragusa-Tachikawa [62, 63] and the references therein. Moreover, recent results for nonuni-
formly elliptic variational problems and nonautonomous functionals can be found in the papers
of Beck-Mingione [11, 12], De Filippis-Mingione [23] and Hasto-Ok [43].

In general, double phase differential operators and corresponding energy functionals given in
(1.2), (1.1) and (1.3), respectively, appear in several physical applications. For example, in the
elasticity theory, the modulating coefficient () dictates the geometry of composites made of
two different materials with distinct power hardening exponents ¢(z) and p(x), see Zhikov [71].
We also refer to other applications which can be found in the works of Bahrouni-Radulescu-
Repovs [3] on transonic flows, Benci-D’Avenia-Fortunato-Pisani [13] on quantum physics and
Cherfils-Tl'yasov [18] on reaction diffusion systems.

In this paper we study first the corresponding function space related to the given double phase
operator with variable exponents given in (1.1). This leads to Musielak-Orlicz Sobolev spaces
which turn out to be reflexive Banach spaces. Under the condition that the weight function pu(-)

is bounded we also show that
v p(z) v q(z)
()" oy ()

inf )\>O:/
Q

is an equivalent norm in WO1 H(Q) under the additional assumption that

q(z) < p*(z) forallz € Q.

This condition (taking constant exponents) is weaker than the usual one for the constant expo-
nent double phase setting, namely p(-) is Lipschitz continuous and

q 1

LA 1.4

Teieg (14)
see Colasuonno-Squassina [19, Proposition 2.18(iv)]. In this direction we also make use of its
natural extension

q+ 1

— <14 = 1.5

with ¢ being the maximum of ¢ and p_ being the minimum of p on €, in order to prove another
compact embedding result and the density of smooth functions. Condition (1.4) was used for the
first time by Baroni-Colombo-Mingione [0, see (1.8)] in order to obtain regularity results of local
minimizers for double phase integrals, see also the related works [7] and [3] of the same authors
and Colombo-Mingione [20], [21]. The condition is needed for the density of smooth functions.
We are able to prove the same result under the condition (1.5) and Lipschitz continuity on p, ¢
and p in this variable exponent setting, see Theorem 2.23. Since the proof of Theorem 2.23 does
not need the boundedness of €2, the results holds true for unbounded domains, see Theorem
2.24. In addition, we give a different proof for the density for unbounded domains under weaker
conditions, namely, the exponents p,q are bounded, log-Hélder continuous satisfying the log-
Holder decay condition and ¢ is q%—H'c')lder continuous while p is a-Holder continuous such
that

gz) @
p@) = 1+ N
In this case we do not need to suppose Lipschitz continuity on p, ¢ and u, see Theorem 2.28.

After having the functional setting, we prove the properties of the new variable exponent
double phase operator. It turns out that the operator is continuous, bounded, strictly monotone
and satisfies the (S, )-property which is an important property when dealing with existence
results of corresponding equations.

In particular, we extend the results of Colasuonno-Squassina [19] concerning the properties
of the function space as well as the related embeddings and of Liu-Dai [18] with respect to the
properties of the operator to the variable exponent case and we are able to weaken the conditions
on the data. So the results in [19] and [18] hold now under weaker assumptions.

Finally, we consider the existence and uniqueness of the following quasilinear elliptic equations

—div (|Vu|p(z)72Vu + ,u(x)|Vu|‘I(m)72Vu) = f(z,u, Vu) in €,
u=~0 on 0,

(1.6)
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where f: Q x R x RY — R is a Carathéodory function, that is, = — f(x, s, &) is measurable for
all (s,€) € R x RN and (s,€) = f(z,s,&) is continuous for a.a.z € Q. Due to the gradient de-
pendence of f (often called convection term), problem (1.6) does not have variational structure,
so variational methods cannot be applied. Under a typical growth rate and a minor coercivity
condition of f we show the existence of at least one nontrivial weak solution to problem (1.6)
which depends on the first eigenvalue of the p_-Laplacian. Under an additional hypothesis we
are also in the position to show uniqueness of the solution in case 2 = p(z) < ¢(z) for all x € Q.

To the best of our knowledge, this is the first work dealing with the variable exponent dou-
ble phase operator given in the general form (1.1). Let us mention some relevant papers in
this direction. In 2018, Zhang-Radulescu [69] studied the following variable exponent elliptic
equation

—div A(z, Vu) 4+ V(2)[u|*® 2y = f(z,u), (1.7)

where A satisfies p(z)-structure conditions different from the double phase operator. Under
appropriate conditions it is shown that problem (1.7) has a pair of nontrivial constant sign
solutions and infinitely many solutions, respectively. A similar setting can be found in the
paper of Shi-Radulescu-Repovs-Zhang [64]. Existence of a solution for the Baouendi-Grushin
operator with convection term has been recently proved by Bahrouni-Radulescu-Winkert [4]
who studied the problem

~Agyu + Az, y)(ju| 7 4 0|9 = [ ((2,y),u, V) in Q,
u=20 on 0f),
with
Az, y) = |VoG(z,y)| + |z|"|VyG(z,y)| for all (z,y) € Q.
Here, G: Q — (1,00) is supposed to be a continuous function and Ag(z,y) stands for the
Baouendi-Grushin operator with variable coefficient, see also the work of Bahrouni-Radulescu-
Repovs [3].

Very recently, Arora-Shmarev [1] (see also Arora [2]) treated a parabolic problem of double
phase type with variable growth of the form

up — div (|Vu|p(m)_2Vu + a(x)|Vu|q(I)_2Vu) =F(z,u) inQr=Qx(0,T)

with
2N r
- < < -
Nag <P < p(2) <ql2) <ple) + 3
and
0<r<r* A - inp(x)
r<rt= , = min p(x).
oN+p (N+2) P TGP

Under certain conditions on the right-hand side the existence of a unique strong solution with
a certain kind of regularity is shown. Finally, we refer to some works dealing with existence
results for variable exponent problems defined in usual Sobolev spaces with variable exponents,
see, for example, Cencelj-Radulescu-Repovs [17], Gasiriski-Papageorgiou [36] and the references
therein.

Existence results for double phase problems with constant exponents have been shown by
several authors within the last five years. The corresponding eigenvalue problem of the double
phase operator with Dirichlet boundary condition has been studied by Colasuonno-Squassina
[19] who proved the existence and properties of related variational eigenvalues. Perera-Squassina
[59] showed the existence of a solution by applying Morse theory where they used a cohomological
local splitting to get an estimate of the critical groups at zero. Multiplicity results including
sign-changing solutions have been obtained by Gasinski-Papageorgiou [37], Liu-Dai [48] and
Gasinski-Winkert [10] via the Nehari manifold treatment due to the lack of regularity results
for such problems.

Other existence results for double phase problems based on truncation and comparison tech-
niques can be found in the papers of Fiscella [341] (Hardy potentials), Fiscella-Pinamonti [35]
(Kirchhoff type problem), Gasinski-Winkert [38, 39] (parametric and convection problems),
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Papageorgiou-Radulescu-Repovs [57] (ground state solutions), Zeng-Bai-Gasinski-Winkert [67,

] (multivalued obstacle problems) and the references therein. For related works dealing with
certain types of double phase problems we refer to the works of Barletta-Tornatore [5], Biagi-
Esposito-Vecchi [14], Farkas-Winkert [33], Liu-Winkert [19], Papageorgiou-Radulescu-Repovs
[56] and Réadulescu [60].

The paper is organized as follows. In Section 2 we introduce the new Musielak-Orlicz Sobolev
space, prove its properties already mentioned above and we will recall some basic facts about
the spectrum of the r-Laplacian (r € (1,00)) as well as definitions from the theory of monotone
operators. Section 3 is devoted to the properties of the new double phase operator and finally,
in Section 4, we present our existence and uniqueness result for problem (1.6).

2. A NEW MUSIELAK-ORLICZ SOBOLEV SPACE AND SOME PRELIMINARIES

In this section we recall some known results and introduce a new function space needed in
our approach providing some of its properties.

In the study of equations with variable exponent double phase phenomena we need to recall
the definition of Lebesgue and Sobolev spaces with variable exponents. Most of the results can
be found in the book of Diening-Harjulehto-Hést6-Ruzicka [25], see also Fan-Zhao [32], Kovacik-
Rékosnik [50] and Radulescu-Repovs [61]. We will present them in a less general setting that
matches our purpose.

Suppose that € is a bounded domain in RY with Lipschitz boundary 92 and let » € Cy (Q),
where

Ci(Q)={heC() : 1< h(x) for all z € Q}.
For any r € C () we define

r— =minr(z) and ry = maxr(x).
€N e

Let M(2) be the space of all measurable functions u:  — R. We identify two such functions

when they differ only on a Lebesgue-null set. Then, for a given r € C; (), the variable exponent
Lebesgue space L™()(Q) is defined as

L'OQ) = {u e M) : /Q|u|r(w) dz < oo}

equipped with the Luxemburg norm given by

lul r(x)
lulr.)y =1inf § A >0 : / <—> de<1,.
a\ A

It is clear that (L"0)(Q), || - ll-() is a separable and reflexive Banach space. Let r’ € C4 () be
the conjugate variable exponent to r, that is,

1 n 1
r(z)  r'(x)
We know that L")(Q)* = L") (Q) and Hélder’s inequality holds, that is,

1 1
[ vl de < [— " T] el ol < 2lalliollollc
Q T_ r_

for all uw € L") (Q) and for all v € LT/(')(Q).
If 1,70 € C4(Q) and r1(z) < ro(x) for all z € Q, then we have the continuous embedding

L20(Q) — LO(Q).

The corresponding variable exponent Sobolev spaces can be defined in the same way using
the variable exponent Lebesgue spaces. For r € C4(f2) the variable exponent Sobolev space
WLr()(Q) is defined by

WirO(Q) = {u e L'O(Q) : |Vu| € LT(')(Q)}

=1 forallzeQ.

endowed with the norm

”qu,r(-) = ||u||r(~) + HVUHT(.),
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where [|Vull,.) = || [Vul [|r().
Moreover, we define

W@ =@ .

The spaces W"()(Q) and VVO1 ’T(')(Q) are both separable and reflexive Banach spaces, in fact
uniformly convex Banach spaces. In the space VVO1 ) (), the Poincaré inequality holds, namely

lealloy < collVullncy  for all u e Wy (@)
with some ¢y > 0. Therefore, we can consider on WO1 ’T(')(Q) the equivalent norm

1,r(),0 = IVullpy forallue Wy @).

[[ul

For r € C+(Q) we introduce the critical Sobolev variable exponents r* and r, defined by

Nr(x) if <N N
r*(z) = Norle) ifr(a) " forallzeQ
6(z) N <r(x),
and
N-Ur@) 46 () < N B
ro(z) =4 Nr@) ifr() " forallz e,
lo(x) if N <r(x),

where ¢1, {5 € C(Q) are arbitrarily chosen such that r(z) < ¢1(z) for all z € Q and r(x) < f2()
for all x € Q. )

Furthermore, we denote by C” T () the set of all functions h:  — R that are log-Holder
continuous, that is, there exists C' > 0 such that

C
|h(x) — h(y)| < m

Now we can state the embedding from W) (Q) into L™ ) (Q) under condition (2.1), see
Diening-Harjulehto-Hésto-Ruzicka [25, Corollary 8.3.2] or Fan [29, Proposition 2.2] and Fan-
Shen-Zhao [31].

— 1
for all z,y € Q with |z —y| < 7 (2.1)

Proposition 2.1. Letr € CO gt (Q)NCL(Q) and let s € C(Q) be such that
1 <s(z) <r*(z) forallz e
Then, we have the continuous embedding
whrO(Q) = L*O(Q).

Ifr € Co(Q), s € C(Q) and 1 < s(x) < r*(x) for all x € Q, then the embedding above is
compact.

In the same way we have the embedding into the boundary Lebesgue space, see Fan [29,
Proposition 2.1] and Ho-Kim-Winkert-Zhang [15, Proposition 2.5] for the continuous and Fan
[27, Corollary 2.4] for the compact embedding.

Proposition 2.2. Suppose that r € C(Q) N WL (Q) for some v > N. Let s € C(Q) be such
that

1< s(x) <ri(z) forallzeq.
Then, we have the continuous embedding
wWhrO(Q) — L0 (6Q).

Ifr € Co(Q), s € C(Q) and 1 < s(x) < ro(x) for all x € Q, then the embedding above is
compact.

Remark 2.3. Note that for a bounded domain Q C RN and v > N we have the following
inclusions

N

CON Q) ¢ WH(Q) ¢ ¥ F (@) ¢ O e ().
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Finally, we recall the relation between the norm and the related modular function which is
defined by

or(y(u) = / lu["@ dz  for all u € L™)(Q) with r € C; (Q).
Q

Proposition 2.4. Ifr € C,.(Q) and u € L") (), then we have the following assertions:

@) llull.(y=X <= o) (}) =1 withu #0;
(i) flullyy <1 (resp. =1, >1) <= opy(u) <1 (resp. =1, > 1);
i) ooy <1 = Jullfy < ovy(u) < lll
) luley>1 = i) < 2o < ullf;
(V) HUHHT( =0 <= Qr()(un) —0;
(Vi) [unllrcy = 400 <= 0p¢)(un) = +00.
(vii) flunllrey =1 <= op¢)(un) — 1.

(viii) up, — u in LT(')(Q) — Qr(.)(un) — Qr(-)(u)'

Now we recall some definitions and properties concerning Musielak-Orlicz spaces which are

mainly taken from the book of Musielak [53]. We also refer to the books of Diening-Harjulehto-
Histo-Ruzicka [25] and Harjulehto-H&sto [41] as well as the papers of Colasuonno-Squassina [19]
and Fan [20].

We start with the following definition.
Definition 2.5.

(i) A continuous and conver function ¢: [0,00) — [0,00) is said to be a P-function if
©(0) =0 and p(t) > 0 for all t > 0.

(ii) A function @: Q x [0,00) — [0,00) is said to be a generalized ®-function if ©(-,t) is
measurable for all t > 0 and (x,-) is a ®-function for a.a.x € Q. We denote the set
of all generalized ®-functions on ) by ®(Q).

(iii) A function p € ®(Q) is locally integrable if ¢(-,t) € L'(Q) for all t > 0.

(iv) A function ¢ € ®(Q) satisfies the Aq-condition if there exist a positive constant C' and
a nonnegative function h € L*(Q) such that

o(z,2t) < Co(z,t) + h(x)

for a.a.x € Q and for all t € [0, 00).
(v) Given o, € (), we say that ¢ is weaker than v, denoted by ¢ < 1, if there exist
two positive constants C1,Cy and a nonnegative function h € L*(Q) such that

p(x,t) < Crip(z, Cat) + h(z)
for a.a.x € Q and for all t € [0, 0).

For a given ¢ € ®(€2) we define the corresponding modular p, by

potw)i= [ o (oulul) da. (2:2)
Then, the Musielak-Orlicz space L¥(f2) is defined by

L#(Q) :={u € M(Q) : there exists a > 0 such that p,(au) < +o0}
equipped with the norm

llully = 1nf{a>0 pg,( )<1}

The following proposition can be found in Musielak [53, Theorem 7.7 and Theorem 8.5].

Proposition 2.6.
(i) Let ¢ € ®(Q). Then the Musielak-Orlicz space L? () is complete with respect to the
norm || - ||, that is, (L¥(), || - l,) s a Banach space.
(ii) Let v, € ®(Q) be locally integrable with ¢ < . Then
LY(Q) — L¥(Q).

Next, we recall the unit ball property, see the books of Musielak [53, Theorem 8.13] and
Diening-Harjulehto-Hésto-Ruzicka [25, Lemma 2.1.14].
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Proposition 2.7. Let p € ®(Q).

(i) If v satisfy the Ag-condition, then

LP(Q) ={u e M(Q) : py(u) < +oo}.
(i) Furthermore, if uw € L¥(Q), then py(u) < 1 (resp.= 1; > 1) if and only if |ull, < 1
(resp.=1; > 1).
Now we are in the position to give the definition of a N-function.

Definition 2.8. The function ¢: [0,00) — [0,00) is called N-function if it is a ®-function such
that
lim —= = and lim@:oo
t—0t+t 1t t—oo t

We call a function p: Q@ x R — [0,00) a generalized N -function if ¢(-,t) is measurable for
all t € R and p(x,-) is a N-function for a.a.x € Q. We denote the class of all generalized
N-functions by N(2). Note that ¢* € N(Q) whenever ¢ € N(£).

Definition 2.9. Let ¢,vb € N(®). The function ¢ increases essentially slower than ¢ near
infinity, if for any k >0
o(x, kt)
im
t=o0 1(z,1)

=0 uniformly for a.a.x € Q.

We write ¢ < 1.
Let ¢ € ®(2). The corresponding Sobolev space W1#(Q) is defined by
Whe(Q) :={u € L¥(Q) : |Vu| € LP(Q)}
equipped with the norm
[ullie = llulle + [ Vull,

where ||Vull, = |||Vu||,. We denote p,(Vu) = p,(|Vu|) as well. If ¢ € N(Q) is locally
integrable, we denote by W,?(2) the completion of C§°(Q) in W (Q).
The next theorem gives a criterion when the Sobolev spaces are Banach spaces and also

reflexive. This result can be found in Musielak [53, Theorem 10.2] and Fan [28, Proposition 1.7
and 1.8].

Theorem 2.10. Let ¢ € N(Q) be locally integrable such that

muelifl o(z,1) > 0. (2.3)
Then the spaces W () and W, ¥ (Q) are separable Banach spaces which are reflexive if L# ()
1s reflexive.

Let us now come to our special double phase N-function. To this end, let H: Q x [0,00) —
[0,00) be defined as

H(z,t) =@ 4+ p(2)t?®  for all (z,t) € Q x [0, 00),
where we suppose the following:
Q CRY N > 2, is a bounded domain with Lipschitz boundary 952,
p,q € C(Q) such that 1 < p(z) < N and p(x) < q(z) for all z € Q, (2.4)
and 0 < u(-) € L*(Q).

It is clear that H is a locally integrable, generalized N-function which satisfies (2.3) and it
fulfills the As-condition, that is,

H(z,2t) = (26)P®) 4 p(z)(2t)1®) < 29+ H(z,t). (2.5)
Recall that the corresponding modular to H is given by

o) = /QH@, Ju]) da.
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Then, the corresponding Musielak-Orlicz space L™ (£2) is given by
LP(Q) = {ue M) : pu(u) < 40},
see Proposition 2.7, endowed with the norm
llully = inf {7’ >0: py (;) < 1}.
Similarly, we can introduce the spaces W*(Q) and WO1 H(Q) equipped with the norm
lullize = llulla + [[Vull3.

We recall the following definition which is needed for the reflexivity of the spaces L™ (),
WLH(Q) and W, Q).

Definition 2.11. A function ¢ € N(Q) is said to be uniformly convex if for every e > 0 there
exists 6 > 0 such that

|t — s| < emax{t,s} or so(x,t;‘s) < (1_5)M

2
for allt,s > 0 and for a.a.x € Q.

Now we can state the following result which is inspired by the work of Colasuonno-Squassina
[19].
Proposition 2.12. Let hypotheses (2.4) be satisfied. Then, the norm | - ||3 defined on L*(Q)

is uniformly conver and hence the spaces L*(Q), W1H(Q) and Wol’H(Q) are reflexive Banach
spaces. Furthermore, for any sequence {u, ynen € L*(Q) such that

Up — u in L(Q)  and  py(un) = pp(u)
it follows that u, — u in L*(Q).

Proof. First note that by Propositions 2.6 and 2.10 we know that L*(Q), W1 (Q) and W, " (Q)
are complete. For the first part we only need to show that L*(Q) is uniformly convex, then
L*(Q) is reflexive by the Milman-Pettis theorem, see, for example, Papageorgiou-Winkert [55,
Theorem 3.4.28]. Applying Proposition 2.10 then shows that W1 (Q) and W, *(Q) are reflexive
as well.

In order to prove the uniform convexity of the space L*(2), it is enough to show that the
N-function H is uniformly convex, see Diening-Harjulehto-H&sto-Ruzicka [25, Definition 2.4.5,
Theorems 2.4.11 and 2.4.14]. Furthermore, the second assertion also follows by the results in
Diening-Harjulehto-Hasto-Ruzicka [25, Lemma 2.4.17 and Remark 2.4.19)

To this end, let € > 0 and let ¢,s > 0 be such that |t — s| > e max{¢, s}. Since the function
t + t* is uniformly convex whenever ¢ > 1, see Diening-Harjulehto-Hists-Rizicka [25, Remark
2.4.6], there exists ¢, = d,(¢,p—) > 0 such that

p— p— o
<t+s> g(l—dp)t + s '

2 2

p(z)
Thus, using also the convexity of t — ¢t »- for z € €, we get

p(z)

+ p(z) - p-\ P p(@) 4 gp(x)
()" < (05 sy

Analogously we have

2 2
for some 6, = d4(¢, g—) > 0. Finally, we reach

t+s p(z) tts q(z)
() ()

() ta(x) 4 gp(x) q(z)
R L
This completes the proof of the uniform convexity of L*(). O

q(x) q(z) q(x)
(t+s) <(-s, t9*) 4+ s
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Next, we want to check the relation between the modular py; and its norm || - |3, see also
Harjulehto-Hésto [11].

Proposition 2.13. Let hypotheses (2.4) be satisfied and let py be defined by
pu(u) = / (|u|p(w) + u(:ﬂ)|u|q(w)> dz  for all u € L*(Q).
Q

i) If u# 0, then ||ull = X if and only if pu (%) = 1;
(ii) ||ullg <1 (resp.> 1, =1) if and only if pu(u) <1 (resp.>1, =1);
(i) If [[ulloe < 1, then [|ully < pr(u) < [lulf3 ;
(iv) If llullse > 1, then ully, < pr(u) < [ull3 ;
(V) |lu|l% = 0 if and only if p(u) — 0;
(vi) ||ulls = +o0 if and only if py(u) = +oo.
(vil) [Jullg = 1 if and only if pp(u) — 1.
(viii) If up, — u in L*(Q), then py(un) — pw(u).
Proof. (i) First note that, for u € L* (), the function py(Au) is continuous, convex and even

in the variable A and it is strictly increasing when A € [0, +00). So, by definition, we directly
obtain

llullze = A if and only if py (%) =1,

which proves (i) and (ii) follows from (i). Let us show (iii). For u € L*(Q) we have the
inequalities
b= pu(u) < pu(bu) < 0% py(u) ifb>1,

2.
b pg(u) < pyy(bu) < VP~ py(u) f0<b< 1. (2.6)

Let |lullz = A with 0 < A < 1. Then, we have py (%) =1 from (i). Since + > 1 we can apply
the first inequality in (2.6) in order to obtain

pr(u) u pr(u)
ATSW(X>:1§ PYT

This shows (iii). The same argument can be used in order to show (iv) by using the second
inequality in (2.6). Moreover, (v) follows from (iii), (vi) follows from (iv) and (vii) follows from
(iii) and (iv). Finally, when u,, — u in L*(£2), by (v) and as both addends are positive, it follows
that op(.)(un —u) — 0, hence by Proposition 2.4 and the usual embeddings ||, — ul[,_ — 0, so
un — u a.e.through a subsequence (still denoted by w,,). On the other hand, as

a0 4+ ) a7 < 29 (= 0l 4 )+ a()un =l + p(a) )

and by (v) there holds py(u, — u) — 0, we know that {|u,|P(*) + ,u(x)|un|q(””)}neN is a uni-
formly integrable sequence, which furthermore converges a.e.to |u[P®) + p(z)|u|?®) by the
a. e. convergence of u, — u. By Vitali’s Theorem (see Bogachev [15, Theorem 4.5.4]) it follows

that py(un) — pa(u) through this subsequence. One can recover the whole sequence by the
subsequence principle and this proves (viii). O
p(z) (2)
||u||,3,{:=inf{)\>0:/l@ +u(x)@ ! 1dx§1},
all A A

where the modular p is given by

put) = [ (I96P + p@Fapr@ ) dot [ (jap + p@lul @) e @)

Q Q

for u € WH(Q).

The following proposition gives the relation between the norm || - ||;,, and the corresponding
modular function py. The proof is similar to that one of Proposition 2.13.

We now equip the space W17 (Q) with the equivalent norm

+ (@) |5

A

q(z) ’ w 1p(@)

Proposition 2.14. Let hypotheses (2.4) be satisfied, let y € WHH(Q) and let py be defined as
in (2.7).
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(i) Ify # 0, then |lyllp,, = A if and only if pn(5) =1;

(i) |yl <1 (resp.>1, =1) if and only if pu(y) <1 (resp.>1, =1);

(iii) If lyllpn <1, then [lyll5y, < prly) < llylly,,;

(V) If 1yllgn > 1, then [lyliz,, < pry) < llyllgs, s

(v) llps — 0 if and only if py(y) — O;

(vi) [[yllps — +o00 if and only if pu(y) — +oo.
(vii) |lyllp,, — 1 if and only if pu(y) — 1.

(viil) If u, — w in WEH(Q), then py(un) — pr(u).

Moreover, this norm is a uniformly convex norm on this space and satisfies the Radon—Riesz
(or Kadec-Klee) property with respect to the modular, as one can see in the following proposition.

Proposition 2.15. Let hypotheses (2.4) be satisfied.
(i) The norm | - || p,, on WH(Q) is uniformly convez.
(ii) For any sequence {un}nen € WH(Q) such that

Up —u in WHR(Q)  and  py(un) — pa(u)
it holds that u, — u in WH(Q).

Proof. Both results follow by Theorems 3.2, 3.5 of Fan-Guan [30]. First note that their condition
Aj 5(z) is a more general version of our As-condition. Moreover (UC); is exactly the same as the
uniform convexity from Definition 2.11, by taking ¢ = s with s > t, the left-hand side condition
from Definition 2.11 is equivalent to 8 < 1 — ¢ for € < 1, hence one can take o(1 —¢) = §.
In the proof of Proposition 2.12 we already verified these properties for H, so (i) follows by
Theorem 3.2 of Fan-Guan [30]. Regarding the assumptions (Q), take Y = W1*(Q) = X and
the modular py, then we already know that (Q)-(Q7) hold in Proposition 2.14. Fix now any
¢ > 0. Then the N-function given by ¢H is uniformly convex and W1<*(Q) = W1H(Q) as sets,
so again by Theorem 3.2 of Fan-Guan [30] the norm || - || 5.,, on WH#(Q) is uniformly convex.
Note also that py(u) — 0 if and only if p.g(u) — 0, so they generate the same topology. It
is straightforward that (Q;) and (Qz) hold for ¢H, and (Q3)-(Q7) follow doing an analogous
argument to Proposition 2.14. Thus (ii) follows from Theorem 3.5 of Fan-Guan [30]. O

Now we introduce the seminormed space

L1(Q) = {u e M(Q) : /Qu(x)mw(w) dz < +oo}

and endow it with the seminorm

q(=)
ullgey. = inf{T >0 /u(w) (lng) dz < 1}.
Q

We have the following embedding results, see Proposition 2.15 of Colasuonno-Squassina [19]
for the constant exponent case.

Proposition 2.16. Let hypotheses (2.4) be satisfied and let

) Np(x) (N = Dp(z)
pH(x) = ———~ and p«(z):=-——""—-
R e R e
be the critical exponents to p. Then the following embeddings hold:
(i) L*(Q) = L"O(Q), WEH(Q) = WhO(Q), Wit (Q) < Wol’r(')(Q) are continuous for
all 7 € C(Q) with 1 < r(z) < p(x) for all x € Q;
(i) if p € CL(Q) N CO’H%\ (Q), then WhH(Q) < L™O(Q) and Wy ™ (Q) < L™0(Q) are
continuous for r € C(2) with 1 < r(z) < p*(x) for all z € Q;
(iii) WEH(Q) < L"O(Q) and Wy (Q) — L"O(Q) are compact for r € C(Q) with 1 <
r(z) < p*(z) for all x € Q;
(iv) if p € CL(Q) NWLY(Q) for some v > N, then WLH(Q) — L™0)(09Q) and Wy H(Q) —
L"O)(09) are continuous for r € C(Q) with 1 < r(x) < p.(z) for all z € Q;
(v) WHH(Q) — L™0(89Q) and W(}’H(Q) — L"0)(0Q) are compact for r € C(Q) with
1 < r(x) < pu(z) for all x € Q;

for all x € Q (2.8)
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(vi) LH(Q) — LZ(')(Q) is continuous;
(vil) if p € L=(R), then L1 (Q) — L™(Q) is continuous.

Proof. We take H,.(7,t) = tP() for all t > 0 and for all x € Q. It is easy to see that Hp) < H,
see Definition 2.5 (v). Hence, from Proposition 2.6 (i) we obtain that L*(Q) < LP()(Q) and
WEH(Q) — WP (Q) continuously, and by definition it follows that Wo™(Q) — W) (Q)
continuously. Thus, assertion (i) is a direct consequence of the classical embedding results for
variable Lebesgue and Sobolev spaces due to the boundedness of 2. The same arguments show
(ii)~(v), see also Propositions 2.1 and 2.2. Let us prove (vi). To this end, let u € L*((2), then
we have

/ () |ul7®) dz < / (1uP ) + (o)l ) = pre(u),
Q Q

see (2.2). Since py ( U ) = 1 whenever u # 0, we obtain for u # 0

lTull%
u q(x)
w(x dr <1.
L ()

[llgey.n < llullz.

Thus

Finally, assertion (vii) follows from the estimate
Hw,t) < (14+110) + p@)t?™ <1+ (1+ [luf) 9
for all ¢ > 0 and for a.a.z € Q) by applying again Proposition 2.6 (ii). O

A useful property for existence results is the fact that a space is closed with respect to

truncations. We prove this property for W*(Q) and VVO1 (Q) in the following proposition.

For any s € R we denote s* = max{+s,0}, that means s = s* — s~ and |s| = st + 5. For any

function v: Q — R we denote v*(-) = [v(-)]*.
Proposition 2.17. Let (2.4) be satisfied, then the following hold:
(i) if u € WHH(Q), then tu* € WHH(Q) with V(+ut) = Vul (145035
(ii) if up — u in WHH(Q), then +ul — +u® in WHH(Q);
(iii) if p € L°(Q) and u € Wy (Q), then +u® € Wy Q).
Proof. (i) Tt is a well-known fact that for v € W14(Q), where 1 < ¢ < oo, the statement holds

and V(+v*) = Vuliiyso), see for example Heinonen-Kilpeldinen-Martio [44, Lemma 1.19].
Hence, by Proposition 2.16 (i), u € W'P-(Q) and V(+u®) = Vul i, it follows that

pr(Fu™) < pp(u) < oo,
pr(V[EuT)) < pp(Vu) < .

(ii) Consider a sequence such that u,, — uin WH(Q). As |+ul Fu*| < |u, —u| pointwisely
in €, it is straightforward that +u — fu® in L*(Q) by proving the convergence in py and
Proposition 2.13 (v). For the convergence of the gradients, consider

/ |+ Vul F Vot |P@ dz
Q

= / |1{:tun>0}vun - 1{:tu>0}vu|p(w) dx

Q
< 2P+/ |V, — VulP® de + 2p+/ (V[P |11 0y — Lu, >0y [P da,
Q Q

where the first term converges to zero by Proposition 2.16 (i) and Proposition 2.13 (v), and the
second term converges to zero by taking a.e. convergent subsequences and using the Dominated

Convergence Theorem (note that Vu = 0 a.e.on the set {u = 0} because, by (i), Vu =
Vulgysoy + Vulgy<oy), and then make use of the subsequence principle. Using exactly the
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same argument we can prove the analogous convergence with exponent ¢(z) and weight pu(z),
i.e., there holds
PH (:l:Vuff FVuF) -0 asn— oo,

which by Proposition 2.13 (v) implies +Vur — £Vu®* in L*(Q) and the proof is complete.

(iii) By definition of Wy " (Q), there exists a sequence {v, }nen € C5°(Q) such that v, — u
in WH(Q). By (ii), we know that +vF — +u® in WHH(Q).

Note that {+vE},en € Co(Q) = {v € C(Q) : suppv is compact} and, by (i), their weak
derivatives satisfy {+0,,v: }nen C L®°(2). By using the standard mollifier 7., for ¢ small

enough there holds {n. * (£v5)},en € C5°(9). Furthermore, we also have the convergences
ne % (£vF) = +vF  uniformly in Q as e — 0,
O, (e * (£05)) = ne + (£05,0F) = £0,,0F  in L9(Q) as e — 0.

Hence, 7. * (+vF) — v in WHH(Q) by Proposition 2.13 (v) via checking the convergence in
px (note that L9+(Q) < LIO)(Q) — L*(Q) by Proposition 2.16 (vii)). This means that for
each +vf we can find another 9+, € C5°(f) as close to +v;" as we want in the norm || - ||, and

this new sequence satisfies 94, — fu® in WHH(Q).
O

From Proposition 2.16 we can derive the compact embedding of W7 () into L () and

a equivalent norm for WO1 H(Q) For this purpose we need the following assumptions, more
restrictive as in (2.4).
(H) Q C RN, N > 2 is a bounded domain with Lipschitz boundary 09, 0 < u(-) € L*°(Q)
and p,q € C(Q) are such that
(i) 1 < p(x) <N for all z € Q;

(ii) p(z) < q(z) < p*(x) for all z € Q.
Note that in any case they are significantly less restrictive as those used for the same purpose
in Proposition 2.18 of Colasuonno-Squassina [19]. For many results, this is the only reason to
ask for so restrictive assumptions, so they could be generalized to (H).

Proposition 2.18. Let hypothesis (H) be satisfied. Then the following hold:
(i) WEH(Q) — L*(Q) is a compact embedding;
(ii) There exists a constant C > 0 independent of u such that
lulls < C|IVullz  for all u € Wy ().

Proof. The proof of (i) follows from Proposition 2.16 (iii) and (vii). For (ii), let us assume the
assertion is not true. Then there exists a sequence {u, }nen € Wy 7t () such that

[unllz, > 1 [Vl -

Let y, := —*2—, then

||un ||7-¢

1
1> ~ > IVynlly and |lynlly =1 forallneN,

i.e. the sequence {y, }nen is bounded in W, (Q). Therefore, there exists a subsequence (not
relabeled) and y € Wol’H (©) such that

yn —y in WHH(Q).

By the weak lower semicontinuity of the mapping v — |[[Vv||,, on Wy H(Q) (it is a convex,
continuous mapping) there holds
1
< limi < lim L _
IVl < liminf [V, < lim — =0,
thus y = ¢ € R is a constant function. And by Proposition 2.16 (i) we have that y € Wol’p(')(ﬂ),
where it is known that the only constant function is y = 0. However, this leads to a contradiction
since by (i)
yn =y in L*(Q),
hence ||y[l;, = lim, o0 [[Ynll =1, s0 y # 0. O
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Based on Proposition 2.18 we equip the space WolH(Q) with the norm
ull1 30,0 = | Vull  for all u € Wy ().

Similarly to Proposition 2.15, we next prove that this norm is a uniformly convex norm on
this space and satisfies the Radon—Riesz (or Kadec-Klee) property with respect to the modular.

Proposition 2.19. Let hypotheses (H) be satisfied.
(i) The norm || - ||1.2.0 on Wy (Q) is uniformly convex.
(ii) For any sequence {u,}nen C Wy ™ (Q) such that

U — u in Wo(Q)  and  pu(Vun) = pu(Vu)
it holds that u, — u in Wol’H(Q).

Proof. The argument is analogous to the one of the proof of Proposition 2.15 with some extra
considerations. First of all, consider the space (L7(Q))" equipped with the Luxemburg norm
| lpp.~ given by the modular py n(u) = pp(|ul) for all uw € (L*(2))N. By Theorem 2.4 of
Fan-Guan [30], the norm | - ||,,, v on (L*(Q))" is uniformly convex, and there is an isometric
embedding from W, () into (L*(Q))N given by u — Vu. This finishes the proof of (i).
Regarding the assumptions (Q), take Y = Wy (Q) = X and the modular py(V-), then (Q)-
(Qe) hold by Proposition 2.13 and (Q7) holds by an analogous argument to the proof of (viii) in
the same proposition. Fix now any ¢ > 0. Then the N-function given by ¢H is uniformly convex
and, by repeating the proof of (i) for this N-function, one gets that the norm | - ||1,cx,0 on
W(}’H(Q) is uniformly convex. Note also that py(Vu) — 0 if and only if p.y(Vu) — 0, so they
generate the same topology. It is straightforward that (Q;) and (Qz2) hold for ¢H, and (Q3)-(Qr)
follow doing an analogous argument to Proposition 2.13. Thus (ii) follows from Theorem 3.5 of
Fan-Guan [30]. O

It is also possible to have a more general criterion for compact embeddings of W17 () into
some Musielak-Orlicz spaces. This will also have as a consequence a Poincaré inequality for
W(}’H(Q). In order to do so we first need the definition of the Sobolev conjugate function of #.
We define for all x €

T [ C I
€T =
e H(z,t) ift> 1.

Since € is a bounded, we know that L™(Q) = L7 (Q) and WHH(Q) = WL (Q), see
Musielak [53]. Therefore, for embedding results of W17 (Q) we may use H; instead of H. For
simplification, we write H instead of H;.

Definition 2.20. We denote by H=*(z,-): [0,00) — [0,00) for all z € ) the inverse function
of H(z,-). Furthermore, we define H;': Q x [0,00) — [0, 00) by

s —1

7—[:1(:17,5):/ MdT for all (z,s) € Q x [0, 00),
0o TN

where H: (,t) € Qx[0,00) = s € [0,00) is such that H; ' (x,s) =t. The function H. is called

the Sobolev conjugate function of H.

We suppose the following stronger assumptions as that in (H).
(H') Q CRN, N > 2, is a bounded domain with Lipschitz boundary 99, 0 < u(-) € C%*(Q)
and p,q € C%1(Q) are chosen such that
(i) 1 < p(z) < N and p(z) < q(z) for all z € Q;

oy Gt 1
R P
(ii) P + 3

Proposition 2.21. Let hypotheses (H’) be satisfied. Then the following hold:
(i) WLH(Q) = L™ (Q) continuously;
(i) Let K: Q x [0,00) — [0,00) be continuous such that K € N(Q) and K < H., then
WLEH(Q) — L*(Q) compactly;
(iii) It holds H < H. and in particular, W1 (Q) — L™(Q) compactly;
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(iv) It holds
lull% < C||Vully for allu € Wol’H(Q),

where C' > 0 is a constant independent of u.

Proof. The proof of the proposition follows directly from Theorems 1.1 and 1.2 of Fan [206], see
also Proposition 2.18 of Colasuonno-Squassina [19]. We only need to prove (P4) and condition
(2) of Proposition 3.1 in Fan [26], that is,
lim H,'(z,t) = +oo for all z € (2.9)
t——+oo
and there exist positive constants §; < %, c1 and t1 such that
0 t
%‘ <o (H@, )+ (G =1,...,N) (2.10)
J

for all x € Q and t > t; for which Vu(z), Vp(z) and Vg(x) exist and so 91 does. First,

Ox
1

note that for (z,t) € p=({0}) x [1,+00) it holds H; ' (2,t) = t?® and hence

t
H*_l(a:,t):”H;l(:z:,l)+/ s =) ds
1

— +00

= H. e 1) + it =) _q] Lot

_L

=]
&

p(z) N
(w,t) € u=1((0,+00)) x [1,+00), note that

O u(m)t‘I(m)
lim ——————
t—+oo ta(z)

as 0 < [L - i} < 1lduetol < p(z) < N for all x € Q. For the rest of the points, i.e.,

= p(x) forallz € Q.

So for any € > 0 there exist some K, > 1 such that
tP@ (@)t < [e + p(2)] 19 for all z € Q and for all t > K,
and by inverting these strictly increasing functions

1

" nel

Wil (e t) > <7) " forallz e Qand forall t > K,
e+ ()

which yields the situation to repeat the argument of the integral above. Hence (2.9) is satisfied.
For the second condition, we can find n > 0 small enough such that
4+ +1n L

14+ — 2.11
o< + (2.11)

see (H)(ii), and
In(t) < ct” (2.12)

with ¢ depending only on n and In being the natural logarithm. Denoting by c,,cp,cq the
Lipschitz constants of u, p, g, respectively, we have for ¢ > 1 by using (2.12),

OH(z,t) Op ou dq
2 | <o) | 22 In(t dadl 14 ta@) | L In(t
Sl < | 2 @) () + | 5 0)| 19(0) + ) | 72 o) )

< (epe + e+ cqcf|pll o) (=)t

q++n

< (cpe+ e+ cqellloo) (#7674 p()e@)

Then, condition (2.10) is satisfied with
1
a1 =cpc+cy +egclpllos, to>1 and 6 = Q+p+77 -1< N’

see also (2.11). O
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Next, we want to answer the question when smooth functions are dense in W1%(Q). This
result is of independent interest and our idea is to apply Theorem 6.4.7 of Harjulehto-Héasto
[41]. First we recall some definitions stated in [41].

Definition 2.22.

(i) We call a function g: (0,00) — R almost increasing if there exists a constant a > 1 such
that g(s) < ag(t) for all 0 < s < t. Similarly, we define almost decreasing functions.

(ii) We say that ¢: Q2 x [0,00) = [0, 00] is a ®-prefunction if x — p(z,|f(x)|) is measurable
for every measurable function f: Q — R, p(z,0) =0,

tlirél+ o(x,t) =0 and tgrgo o(z,t) =00 for a.a.x € Q.
If in addition the condition

t
@ is almost increasing for a. a.x € Q)

is satisfied, then ¢ is called a weak ®-function and the class of all weak ®-functions is
denoted by ®,,(£2).
(iil) We say that ¢ € Dy (Q) satisfies (A0), if there exists a constant 8 € (0,1] such that
B< o e, 1) < % for a.a.x € Q.
(iv) We say that ¢ € Oy (Q) satisfies (A1), if there exists 5 € (0,1) such that
B~ 1) S ¢y, 1)
for every t € [1, ﬁ], for a.a.z,y € BNQ and for every ball B with |B| < 1.
(v) We say that ¢ € @ (Q) satisfies (A1), if there exists § € (0,1) such that
oz, Bt) < o(y,t)
for every o(y,t) € [1, I—é‘], for a.a.x,y € BNQ and for every ball B with |B| < 1.
(vi) We say that ¢ € Dy (Q) satisfies (A2), if for every s > 0 there exist 8 € (0,1] and
h e LY () N L>®(Q) such that
B~ @, 1) <97y, 1)
for a.a.x € Q and for all t € [h(z) + h(y), 5].
(vil) We say that ¢: 2 x (0,00) — R satisfies (aDec) if there exists £ € (0,00) such that

p(z,t)

m is almost decreasing for a. a.x € Q.

In the sequel we will use f =~ g and f < ¢ if there exist constants ci,co > 0 such that
c1f <g<caf and f < cag, respectively.

Now we are ready to prove the density of smooth functions in the Musielak-Orlicz Sobolev
space WLH(Q).
Theorem 2.23. Let hypotheses (H’) be satisfied, where (H’)(ii) is replaced by

a+ 1
— <1+ —=. 2.13
oSty (2.13)

Then C*(Q) N WHH(Q) is dense in WHH(Q).

Proof. We are going to apply Theorem 6.4.7 of Harjulehto-Hésto [41]. First note that H € @, ()
(see also Definitions 2.1.2, 2.5.1 and 2.5.2 in [11]). Furthermore we have
1 <H(z,2) < (2PF + ||p]|ec29t) -1 for all z € Q.

Hence H(z,2) =~ 1 and so we can apply Corollary 3.7.5 in [11] which shows that H satisfies
condition (A0). For ¢ € [0, s] we have

tP(I) + ,u(x)tq(m) ~ tp(ac),

where the constants depend on s. Hence, Lemma 4.2.5 in [411] implies that condition (A2) is
satisfied. Moreover, by Lemma 2.2.6 in [11], we know that (aDec) is satisfied since H € @ ()
fulfills the As-condition, see (2.5).
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It remains to show that (A1) is satisfied. First we note that since H € ®(2) satisfies (A0),
we know that it is enough to show that H € D, () fulfills (A1’), see [41, Corollary 4.1.6].
Therefore, we need to show that there exists 8 € (0,1) such that

H(z, Bt) < H(y,t)
for every H(y,t) € [1, ﬁ], for a.a.z,y € BN and for every ball B with |B| < 1.

For this purpose let us fix a ball B C R of radius r > 0, such that |B| < 1 (in particular
r < 1). We know that |B| = a(N)r", where a(N) > 1 is a constant depending only on the
dimension N. Note that the condition

H(y,t) = tP@) 4 pu(y)t?®) e [1, 7a(]\]1)TN] (2.14)

implies that

) 4 1) > 1, ift <1,
7= (1 + ulloc) =7 + [|plloct? = { M = S

1, it >1,
and
o {tp(y) < tPW) 4 p(y)teW) < W, ift>1,
- W ift <1.

Note that the last inequality for ¢ < 1 is always true since - < 1 < |T£\ as |B|] < 1. Hence,

(2.14) implies in particular that

1 1
te [+ o) 7 a(N) 7T | (2.15)
Now, it is enough to show that there exists 5 € (0,1) such that
(BPE) 4 pu(z)(B)1E) < 2 4 gy (y)td®) (2.16)

for all ¢ satisfying (2.15) and almost all z,y € Q such that |z — y| < 2.
Claim: For all ¢ satisfying (2.15) and almost all z,y €  such that |z — y| < 2r we have

tP@) < M P®)  and  19® < ). pa®) (2.17)

for some constant M = M (N, p,q, ) > 0 not depending on x, y, t.

So, let us fix ¢ satisfying (2.15) and z,y € Q such that |z — y| < 2r. Since p € C%1(Q) we
have

p(z) —p(y)| < cplw —y| < 2rep, (2.18)

where ¢, > 0 denotes the Lipschitz constant of the function p.

Case I: If t <1 and p(z) > p(y) or t > 1 and p(z) < p(y) then the first inequality in (2.17)
holds with M = 1.

Case II: If t <1 and p(z) < p(y) then by applying (2.15) it follows that

)P(y)*P(E)

(@) — yp(@)—p(¥)p(y) < ((1 + ||/L||oo)”% ) < (1+ ||u||00)§% P

Pi
Thus the first inequality in (2.17) hold with M = (1 + ||]|e0) ™~ -
Case IIT: If ¢t > 1 and p(z) > p(y) we have by using (2.15) and (2.18)

N

(@) _ 4p(x)—p(y)p(v) < (Q(N)_p%T_pT)zrcp P©) < <a(N)_ ic,p > (TT)_ 2gfp P

_ 2¢p 2Nc

Note that the function §(r) = ((N) 7~ )T(r’”) P— is strictly positive and continuous on the

interval {0, L ] where §(0) = 1. Hence it attains its maximum at some ry € |0, —— ]
a(N)N a(N)N

Then the first inequality in (2.17) holds for M = §(rg) > 0. The second inequality in (2.17) can
be done in an analogous way again via three cases. Taking M as the maximum of the six cases
shows the assertion of the Claim.

Let us now prove (2.16). Since p € C%1(Q) and |z — y| < 2r we have

lu(z) — p(y)| < cule —yl < 2¢,r, (2.19)
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where ¢, > 0 is the Lipschitz constant of the function u.
Let us start with the left hand side of (2.16). Since 5 € (0,1) and taking (2.17) as well as
(2.19) into account, we get

(BHP@) 4 pu(2)(Bt)1) < BP- (@) 4y (2) BP- ¢9®)
< BP-M (tp(y) + p(x tq(y))

2.20
< BP-M (tp(y) + u(y @) 4 2¢ mgtz(u)) ( )

< Br-M (tp(y) 192 th(y)) + u(y)taW),

where the last inequality holds providing g < M _”T. Continuing (2.20) and applying (2.15) we
have

(ﬂt)p(m) + /L(:E)(ﬂt)q(m) < BP- MPW) (1 + 2C#th(y)7p(y)) + u(y)tq(y)

1

_ N \49+—P-
) >+u(y)tq“” (2.21)

_ ot N
— BP- MtP®) <1 + 2c,a(N) P TN > + puly)t1®),

< pP- MtPW (1 + 2¢,,r (a(N)

From (2.13) we have 1+ N — N;—f > 0. Using this we may continue (2.21) since r < 1 as follows

(BEPE) 4 p(z)(Bt)1®) < gP- MPW) (1 + QCMQ(N)%Jfl) + p(y)taW),

Choosing 8 > 0 small enough, namely

__1 4+ -
B<M = (1+20Ma(N) pH) ’ ,

we see that (2.16) holds. Note that the choice of S depends only on N,p,q and p. Therefore,
H € Dy (Q) satisfies (A1’) and so (Al). The assertion of the proposition follows now from
Theorem 6.4.7 of Harjulehto-Hé&sto [11]. O

A careful reading of the proof of Theorem 2.23 shows that the boundedness of €2 is not used.
This leads to the following result.

Theorem 2.24. Let hypotheses (H’) be satisfied, where @ C RN, N > 2 is an unbounded
domain, 0 < u(-) € L=(Q) N C%(Q) and condition (H)(ii) is replaced by

q+ 1

— <14 —=.

p— N

Then C*(Q) N WLH(Q) is dense in WHH(Q).

Next, we are going to prove the density under weaker assumptions as in the Theorems 2.23
and 2.24. First we recall the following definition.

Definition 2.25. We say that a function g: £ — R satisfies the log-Holder decay condition if
there ewists goo € R and a constant ¢y > 0 such that

|9(%) = goo| < for all x € Q.

<« %
~ log(e + [x])
We suppose the following conditions which are weaker than (H’):
(H”) Q@ C RN, N > 2, is an unbounded domain, 0 < u(-) € L*°(Q) and p:  — [1,00),
q: @ — [1,00) are bounded functions that are log-Holder continuous and satisfy the
log-Holder decay condition with p(z) < g(z) for all z € €.

We start with a characterization of condition (A1).

Proposition 2.26. Let hypotheses (H”) be satisfied. Then H(x,t) = tP®) 4+ u(x)t9®) satisfies
condition (Al) if and only if there exists a constant > 0 such that

1

Buly)™ < [z —y N (77~ 75) 4 p(a) 7
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for every x,y € Q.
Proof. Let us first observe that H(x,t) ~ max{t*®) u(z)t?®} and hence

H~ ' (x,t) ~ min tﬁ,<L>m .
p(z)

After dividing by t7 condition (A1) becomes

[ min {tﬁz)_q(ﬁju( ) q(t)tq(m) q(y) } < min {trly)_rly)ﬁi(y)_q(%}

for z,y € BNQ, |B|<1andt€[ \BI}
If p(z) < p(y), then

1 1

1 1 1
tr@ < @ PW ) < |B|p<y) p @) £ p(

where we have used the log-Holder continuity of and t € [ B } see Lemma 4.16 in Diening-

Harjulehto-Hasto-Ruzicka [25]. If p(z) > p(y), then £
1 1
obtain by the log-Holder continuity that ¢t ~a» < C.
Thus for (A1) we need to verify that

B min {tﬁw*rly),,u(x)frlm)} < min {tﬁy)ley)hu(y)fq(%}

tP<y> since ¢t > 1. Similarly we

for z,y € BNQ, |B|<1andt€[ Uél}

1

We may assume that diam(B) < 2|z — y|. The case p(y)” @« > ¢700 a7 is trivial, so the
condition is equivalent to

B min {tﬁfﬁ,u(@*ﬁ} < ,LL(y)fq(%

1 1 1
for p(y)" @@ < tP@ " aw. Since the exponent of ¢ is positive, we only need to check the
inequality for the upper bound of ¢, namely ¢t = ﬁ. Moreover, |B| =~ |z — y|"V. Thus the

condition is further equivalent to
Bmin {|z — y| NG a0, (@) ~ato < pu(y) oo,

that is, equivalent to

1 1

Bu(y)rly) < max {|.’II — y|N(le)_q(%),u(x) q(z) } ~ |;U — le(ﬁy)_le)) + u(m) q(@)

O
Next we can give a sufficient condition for #(,-) to satisfy assumption (Al).
Proposition 2.27. Let hypotheses (H”) be satisfied and let in addition q: Q — [1,00) be - -
Hélder continuous and p: Q — [0,00) be a-Hélder continuous. If % <1+, then H(x,t) =
tP(®) 4 p(x)t9®) satisfies condition (Al).
Proof. From Proposition 2.26 we know that (A1) holds with 5 =1 if
1
(@)™ — ()™ yN
for all  and y with | — y| < 1 where v = max {W - Tl) m - m} We may assume that
ﬁ — @ > ﬁ — ﬁ. First we use the triangle inequality to obtain
()T = ()T | = (@) T — (@) T+ ) T — p(y) T
(2.22)

< ‘u(w)rlm) — ()7 | + ‘u(:v)le) — ()™

We estimate the first term on the right-hand side of (2.22). To this end, let f(¢) = a'. Then,
by the mean value theorem, f(v) — f(u) = f/(£§)(v — u) for some £ between v and v. We choose
a=p(x), u= ﬁ and v = le). Then a € [0, ||¢]|oo] and u,v € [i, 1].
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Next we show that |f'(£)] is bounded. If a > 1, then
|/(€)] = a*In(a) < ||l In(llptlloo)-
For a € [0,1) we obtain
£(9)] = —afIn(a) < ~a’ Ina).

1
A simple calculation shows that a — —a %+ In(a) got it largest value in [0, 1] at e~%. Hence
|f'(€)] < L. Thus we have

1 1

p() T — () T| = | (0) = ()] < o

q(z)  a(y)
< clq(y) — q(@)] < ceqlz -yl

where c is a constant depending on a and ¢, the constant ¢, is from the q%—H'dlder continuity of

1 1
’ (2.23)

g and |z —y| < 1.
From 22 <1 + & Wwe obtain

p(z) =
¥ G~ ) =40 G ) =i

Combining (2.23) and (2.24) gives

«
< —. 2.24
<z (224)

=l=

< c(lalloos g1) cqlz — y /N (o~ 70 ).

[1(2) T — p(ar) T

Let us now estimate the second term of the right-hand side of (2.22). We use the inequality
|z —y"| < |z —y|", where z,y > 0 and r € (0, 1], in order to obtain

1

< |ul@) — p()| 7 < e |o —y|77, (2.25)

’u(ﬂc)ﬁ — ply) "
where the constant ¢, is from the a-Holder continuity of p.

From % <1+ % we obtain

L LYo N (aly) o N e o
N (p(y) Q(y)> 0 (p(y) 1) SN adw) (2.26)
Combining (2.25) and (2.26) gives

1

|1(@) T — ()T
O

Now we are ready to prove the density of the smooth functions in the Musielak-Orlicz Sobolev
space W1#(Q) when € is unbounded under the assumptions (H”).

Theorem 2.28. Let hypotheses (H”) be satisfied and let in addition q: €2 — [1,00) be >-Holder
continuous and p: Q — [0,00) be a-Hélder continuous. If % < 144&, then C=(Q)NW1H(Q)
is dense in WHH(Q).

Proof. As in Theorem 2.23 we will show the result by applying Theorem 6.4.7 of Harjulehto-

H&sto [41]. In the same way as in Theorem 2.23 we know that H € ®(Q2) fulfills (AO) , (A2)
and (aDec). Finally, from Proposition 2.27 we know that (A1) is satisfied and the assertion of
the theorem follows. 0

Remark 2.29. Note that for bounded domains the log-Hélder condition (local condition) in
(H”) is enough, we do not need the log-Hélder decay condition (condition near infinity).

Comparison the assumptions of Theorems 2.23 and 2.28 for bounded domains with Lipschitz
boundary, we see that the assumptions in Theorem 2.28 are weaker than those in Theorem 2.23.
Indeed the Lipschitz continuity can be replaced by certain Holder or log-Holder conditions and
the inequality (2.13) implies

q(x)

— <1+

< i for all z € Q and for o = 1.
p(z) N
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In the unbounded case the situation is a bit different. The assumptions of Theorem 2.24 imply
the ones of Theorem 2.28 except the log-Holder decay condition. Indeed, Lipschitz continuity
does not imply the log-Holder decay condition.

Let us now comment on the well-known eigenvalue problem for the r-Laplacian with homo-
geneous Dirichlet boundary condition and 1 < r < oo defined by

—Avu = Mu|""%u in €,

2.27
u=0 on 0f). ( )

It is known that the first eigenvalue A; , of (2.27) is positive, simple, and isolated. Moreover,
it can be variationally characterized through

A= inf {/ |[Vu|"dz : [ |ul"dz = 1} , (2.28)
ueWhr(Q) Q Q
see Lé [16]. We will make use of the first eigenvalue in the statements of Theorems 4.4 and 4.6.

We now recall some definitions that we will use in the sequel.

Definition 2.30. Let X be a reflexive Banach space, X* its dual space and denote by (- ,-) its
duality pairing. Let A: X — X*, then A is called
(i) to satisfy the (S, )-property if up — w in X and limsup,,_, . (Aun, u, —u) < 0 imply
Up — U N X;
(ii) pseudomonotone if up, — u in X and limsup,,_, (A, un —u) < 0 imply

lim inf{Au,, u, —v) > (Au,u —v) for allv € X;

n-so0
(iil) coercive if there exists some function g: [0,00) — R such that lim;_, o g(t) = +00 and
(Au, u)

[Jullx

Remark 2.31. Note that if the operator A: X — X* is bounded, then the definition of pseu-
domonotonicity in Definition 2.30 (ii) is equivalent to u, — w in X and limsup,,_, . (Atn, upn —

u) < 0 imply Au,, = Au and (Auy,un) — (Au,u). We will use this equivalent condition for
bounded operators in Section 4.

> g(JJullx) for all u € X.

Our existence result is based on the following surjectivity result for pseudomonotone opera-
tors, see, for example, Papageorgiou-Winkert [58, Theorem 6.1.57].

Theorem 2.32. Let X be a real, reflexive Banach space, let A: X — X* be a pseudomonotone,

bounded, and coercive operator, and b € X*. Then, a solution of the equation Au = b exists.

3. PROPERTIES OF THE VARIABLE EXPONENT DOUBLE PHASE OPERATOR

In this section we introduce the new double phase operator A related to our problem (1.6) and
its corresponding energy functional I given in (1.3). To this end, let A: W, " (Q) — W, (Q)*
be given by

(A(u),v)4, = / (|Vu|p(m)_2Vu Vo + (@) | Vul| 12Ty, - V’U) dz,
Q

for all u,v € Wol’H (Q), where (-, )y denotes the duality pairing between WolH(Q) and its dual
space W(}’H(Q)*. As mentioned in the Introduction, the energy functional I: W(}’H(Q) — R

related to A is given by
Vufp@ |vu|q<w>)
I(u :/(74—#967 dz
W= )\ T

Proposition 3.1. Let hypothesis (2.4) be satisfied. Then the functional I is well-defined and
of class C* with I'(u) = A(u).

for all u € Wy ().
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Proof. The energy functional I is well defined for any u € WJt(2) since

OSMSI(U)SM<OO

q+ p—

The Gateaux derivative is given by A since for any u,h € WJt(f2), some ¢t € R and some
0.+ € (0,1) given by the Mean Value Theorem, we have

/ [Vu+ tVA"" — |vu™™
Q

| x,t | ( N )
tp(I) Q

=0, / VP72 Ty - Vhda.
Q

The limit follows from the Dominated Convergence Theorem, Proposition 2.16 (i), Holder’s
inequality and Proposition 2.4 (iii) and (iv), as for 0 < || < tg, it holds

IVt + 0, 4t VR[P@ 72 (Y + 0, 1tV R) - Vh < 20+ (|Vu|f”<9”>*1 +to |Vh|P<z>*1) |Vh|
and

p() HVhHP(-)

p(x)—1
< 2 (0p(y (IVuD) VAl y < 2[Vullyy V],

/ (Va7 (| de < 2 [ 7up O
Q

where a,b > 0 are the exponents depending on the cases of Proposition 2.4 (iii) and (iv).
The same arguments work on the terms with exponent ¢(-) by using Proposition 2.16 (vi) and
(z)—1
splitting p(x) = u(z)rlt),u(x) Y@ for using Holder’s inequality.
The C'-property follows since for any sequence u, — u in WJ*(Q) and h € WJt(Q) with
|h|l; 4, = 1, we have by Hélder’s inequality and Proposition 2.16 (i)

/ (|Vun|”<””>‘2 Vu, — |Vu[P 2 Vu) . Vhdz
Q

n—oo

<2 H\Wunw(')* Vity — [V 2 vuw IV 20,

p(
p()—1

()
The convergence in L?O-1(Q) follows by Proposition 2.4 (v) and Vitali’s Theorem (see Bo-
gachev [15, Theorem 4.5.4]) since we have the convergence in measure because of Vu,, — Vu
in LP()(Q) and we have the uniform integrability by the uniform integrability of the sequence

{|Vun [P} en due to the same convergence in LP() as before and
_p(@) Py
IV [P 2 Yy, — (VP @ 2| <2v 17! (|Vun|p(w) + |Vu|p(””)) .

The same arguments work on the terms with exponents ¢(x) by using Proposition 2.4(iii), (iv),

o (@)1
Proposition 2.16(vi) and splitting u(z) = u(z) ey () K again for using Holder’s inequality.
O

Before we give the main properties of the operator, we first state a general version of the
reverse Holder inequality. Since we did not find any reference, we will also give the proof for it.

Lemma 3.2. Let (S, X, \) be a measure space with A(S) > 0 and letr: S — [1,00) be measurable
withl < r_ :=ess infgr <ry :=ess supgr < oco. Then for any measurable functions f,g: S —
K such that g(s) # 0 p-a.e. it holds

i

T+

)

1 1
max{|f9||1 ) ||ng1+ }
-1
1 1 1 -
]l o
r_ o r_ 1

1—ry L 1—r_
s N }
1 1

Y

1—ry
- }
1

1917

Y

1 1 —
4 i { =
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Proof. Applying Hoélder’s inequality one gets

1 1 1
< [— + ] H|fg|”')
r— T

_1_ _1_ =1
17175, =191 19170

—1
917 |
r(-) H T(Tgll

1
From the comparison between the norm and the modular, see Proposition 2.4 (iii) and (iv), we

obtain
o 11 + =s o e
17176 < |+ | max {1 £gll i L I£glli* { maxd [|lgl 0= R

i
, ngl TO-T
1

r_
O
Now we are in the position to present the main properties of the operator A motivated by
the work of Liu-Dai [48] for the constant exponent case.
Theorem 3.3.

(i) Let hypothesis (2.4) be satisfied. Then the operator A: Wy (Q) — Wy ™ (Q)* is con-
tinuous, bounded and strictly monotone.

(ii) Let hypothesis (H) be satisfied. Then the operator A: Wy () — Wy ™ (Q)* satisfies
the (S )-property, that is,

Up — u in Wo(Q)  and  limsup(A(uy), u, — u) <0,

n—00

imply u, — u in Wy (Q);
(iii) Let hypothesis (H) be satisfied. Then the operator A: Wy ™ () — Wy (Q)* is coercive
and a homeomorphism.

Proof. (i) By Proposition 3.1, A = I’ with I of class C!, so A is continuous.
From the well-known inequality

(16726 = n"2n) - (€ —=n) >0 ifr>1, forall §,n € RY with £ # ),

we see that

(A(u) — A(v),u—v) = /

(|Vu|p(z)72Vu - |Vv|p(””)*2Vv) (Vu — Vv)dx
Q

—I—/ w(z) (|Vu|q(x)72Vu - |Vv|q(z)72Vv) - (Vu = Vo)dz >0
Q

whenever u # v which proves the strict monotonicity of A. Let us now prove that A is bounded.
Taking u,v € VVO1 () \ {0}, by applying Young’s inequality, we obtain

1 1 v
N | )
HUHLH [|ul 1,4 1,H

1 1 \V4 \V4
Smin{Hqu*_l’ p_l}/ﬂ [|Vu|p(z)1 [V +M(x)|vu|q(x)fl |Vl ]dx

T Tollie Ee
plz)—1 o) q(z)-1
S/ Vu [Vl () 1| Vu u(:c)ﬂlz) [Vl
a | Hullx l[vll12 lJull1,7 [[oll1,2
-1 p(z) 1 p(x)
< D+ / Vu Qo + _/ Vv du
p— Jalllullix p-Jalllvlix
-1 Vu a(x) 1 \VZ3) a(x)
+ & /u(:c) dx—i——/u(m) dz
q— Q [lwll1,% q— Jq l[v]l1,2¢

-1 Vu 1 Vo
< s PH ( ) + —pu (—)
P lulli20)  p- l[v]l1,2¢

g+ —1 Vu 1 Vv g+ —1 1 q
<= PH( )—i——pH( S ST
p- llull1,7.0 p- llvll1,2.0 p- b- p-
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This fact gives

(A(u),v) _q = 1
JA@ = sp S < B Lol
vewd ey Wlm = p-
v#0
Hence, A is bounded.
(ii) Let {un}nen C WolH(Q) be a sequence such that
Up — w in W(}’H(Q) and limsup (A(uy,), un —u) < 0. (3.1)

n—r oo
The weak convergence of u, to u in Wy *(Q) yields
lim (A(u),u, —u) = 0.

n—oo
This fact along with (3.1) gives
lim sup (A(u,) — A(u), u, —u) <0.
n—oo
Then, the strict monotonicity of A implies that
0 < liminf (A(uy,) — A(u), up, — u) < limsup (A(u,) — A(u), up, —u) < 0.
n—oo n—00

Hence, we get
lim (A(u,) — A(u), up, —u) =0= lim (A(u),un —u). (3.2)

n—oo n—oo
Claim: Vu, — Vu in LP()(Q)
Splitting the integral in {p > 2} :={x € Q : p(x) > 2} and {p < 2} :={x € Q : p(z) < 2}
and noting that all four terms in (3.2) are non-negative yields

lim (|vu,,|”<””>‘2 Vu, — |Vu[P 2 Vu) (Va, — Vu)dz = 0, (3.3)
"0 J{p>2)

lim (|vu,,|”<””>‘2 Vu, — |Vu[P) 2 Vu) - (Van, — V) dz = 0. (3.4)

From Simon [65, formula (2.2)] we have the well-known inequalities
epl€ =P < (IEP2€ = nlP*n) (€ —n) ifp>2, (3.5)

2p
Cple —nl* < (IEP72€ = P ~*n) - (€ —m) (I + ") > if1<p<2 (3.6)

for all £, where

¢y =572 and C,=(p— 12", (3.7)

see also Lindqvist [17, chapter 12]. Note that the constants in (3.7) are not optimal, but sufficient
for our treatment.
From (3.3) and by the inequality (3.5) it follows

lim |V, — VulP™ dz = 0,

o0 J{p>2}

and in the following lines it will be proved that the same holds in {p < 2}, hence

n—00 n—00

lim o, (Vu, — Vu) = lim / |V, — VulP™ dz = 0,
Q

so the Claim follows by Proposition 2.4.
Let E,, = {Vu, # 0}U{Vu # 0}. By the absolute continuity of the Lebesgue integral, as the
integrand is zero outside E,,, and by (3.6) with p4 , =2 — 1/k (note also p — 2 < 0) it follows

/{ 2 (|Vun|p(m)72 Vu, — |Vu|p(3”)72 Vu) - (Vu, — Vu)dx
p<

= lim (|Vun|p(x)72 Vu, — |Vu|p(gc)72 Vu) - (Vuy, — Vu)dz
k—oo Enn{p<pyr}

p(z)—2

Py xk—DP_-2)

> limsup (p— —1)2 = / Vi, — Vul? (|Vun|p(m) + |Vu|p(w)) " de
En{p<p+x}

k—o0
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p(z)—2

(p_—2)
> (p- —1)2 »- limsup/ IV, — Vu|2 (|Vun|p(z) + |Vu|p(z)) O
E,N{p<2-1/k}

k—o0

By (3.4), for n > ng for some ny € N, the limit superior is strictly smaller than one, thus the
same holds for the integrals k large enough. Hence, when we apply Lemma 3.2 to our integral
1

with r(-) = % the maximum of the left-hand side of the lemma is attained at || f g||1r_+ . Note
that (consider p_ ; = p_)

2 1- -2
Tok=—" and L PPk )

Px.k T,k 2p+ K

Applying this result, again because the integrands are zero outside E,,, as {u, }nen is bounded
in the modular by some constant M > 1 (due to its weak convergence and Proposition 2.4 (iii)
and (iv)) and as (pxx — 2) < 0, for n > ng, we have

/ (|Vun|p(m)72 Vu, — [V 2 Vu) - (Vu, — Vu)dz
{r<2}

(p——2) 1 p_
> (p-—1)2 > limsup — - / IV — Vul'™ da
k—oo 2P— {p<2—-1/k}

Py k(P——2)

X min / (|Vun|p(x) + |Vu|p(x)) dx ,
{p<2-1/k}

Py k=2
Ptk

/ (|Vun|10(x) + |Vu|p(z)) dz
{p<2—1/k}

2

(p_—4) P_
> (p— —1)2 »- limsup / |V, — Vu|p(x) da
k—o0 {p<2—1/k}

Py k(P——2) Py k—2)

P2 5
X min (M +/ (V[P d:v) T, (M +/ |Vl d:v) o
Q Q

2

> K limsup / Vi, — VulP™) da
k—oo {p<2-1/k}

2

P
=K / [Vu, — Vu|p(z) dz ,
{r<2}

where

2(p——2) (p——2)

(p_—4) p27 p_
K=(p_-—-1)2 > min <M +/ |Vu|p(z) da:> , <M —i—/ |Vu|p(z) da:>
Q Q

By (3.4) it follows that

lim |Vu, — Vu|p(z) dz = 0.

This proves the Claim.
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From the Claim we know that {Vu, },en converges in measure to Vu in Q. Applying Young’s
inequality gives

/ (|Vun|p(w)_2 Vg + () [V, |72 Vun> - (Vu, — Vu)dz
Q
= / |V, P dz — / |V, |P @2V, - Vuda
Q Q
- / (1(x) |V, |9 dz — / w(z) |V |92V, - Vu d
Q Q
> / |V, [P@) dao — / |V, |P@) =1 V| da
Q Q
4 [ 0@ Funl 1 de = [ @) V11T da
Q Q

-1 1
2/ |Vun|p(””) da:—/ (]?(L|Vun|l7(w)+_|vu|p(m)) da
Q Q

p(x) p(x)
—I—/ﬂu(z)|Vun|q(z) d:z:—/ﬂlu(x) <‘”2T;1|vun|q<f>+wz)|vu|m>> dz
:/Q$|vun|w> d:v—/ﬂﬁwwp(m)dx
+/Q%|vun|q<z> dx—/ﬂ%wuw(z) dz.

Hence by (3.2)

. |vun|p(fﬂ) |Vun|q(m) / |Vu|p(m) |Vu|q(m)
lim su / — t () —————— | dz < + p(x)———— | d=. 3.8
nﬁ5’9< pa@ T G o\ pw T ) 39

From Fatou’s Lemma, we obtain

o |V, [P() |Vun|‘1(90)> / <|vu|p(z) |Vu|a(®)
lim inf (7 + pu(z)——— | dx > + u(z dzx. 3.9
n—=oo Jq p(x) (@) q(z) Q p(z) (@) q(z) (3.9

Combining (3.9) and (3.8) we conclude that
] |V, [P(*) |vun|q(z)) / (|vu|p(x) |vu|q(z)>
lim ——— t+ plr)—————— | dx = + u(x dz. 3.10
i, [, (e T o\ T (310
By the Claim we have that {Vuy,}nen converges in measure to Vu, so by straightforward
computations the functions on the left-hand side of (3.10) converge in measure to those on

the right-hand side. The converse of Vitali’s theorem (see Bauer [10, Lemma 21.6]) yields the
uniform integrability of the sequence of functions

{ |V, [P(*) |V, |92) }
T () e .
p(:E) q(I) neN

On the other side, we know that

|V, — VulP® + p(z)| Vi, — Vul?@®

B Vi, [P*) |V, 1) | VP |Vu|9(®)
< 29+ lq (' n T n + plz)—— ),
A\ w T T . T

which implies that the sequence of functions

{|Vun — VulP® 4 ()| Vi, — Vu|q(z)}

neN
is uniformly integrable. By straightforward computations and using the convergence in measure
of {Vun}, oy to Vu, this sequence converges in measure to 0. Applying Vitali’s theorem (see
Bogachev [15, Theorem 4.5.4]) it follows that
lim py(Vu, — Vu) = lim (|Vun — Vu|P® + p(z)|Vu, — Vu|q<w)) dz =0,
Q

n—00 n—oo

which is equivalent to [[un, — ull; 4, o — 0, see Proposition 2.13 (v). Hence, u, — u in wytQ).
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(iii) The operator A is coercive, since by Proposition 2.13 (i), one has

p(z) q(z)
(A(u), u) o1 [ |Vl - V|
T A P50t [ ]+ ullfG " () [ de

||U||1,H,o ||U||1,H,o ||“H1,H,0

. 1 —1 Vu
> min {Hu| D0 Hu||(11+HO} P (7||Vu|| ) — +o00 as [|ull; 4 o = +o0.
H

This fact along with assertion (i) of this theorem implies by the Minty-Browder theorem, see,
for example, Zeidler [66, Theorem 26.A], that A is invertible and that A~! is strictly monotone,
demicontinuous and bounded. We only need to show that A~! is continuous.

To this end, let {y,}nen € Wy 7 (Q)* be a sequence such that y,, — y in Wy " (Q)* and let
un, = A~ (yn) as wellasu = A~1(y). By the strong convergence of {y,, }nen and the boundedness
of A=! we know that u, is bounded in WOIH(Q) Hence, there exists a subsequence {un, }ren
of {up nen such that

U, — ug  in Wy TH(Q).

Using these facts we have
lim (A(un, ) — A(uo), tn, — uo)

k—o0

= lim (Yn, — ¥, Un, — uo) + lim (y — A(ug), un, — ug) = 0.
k— o0 k—o0
From assertion (ii) of the theorem we know that A fulfills the (S, )-property which implies that

Up, — Up in WolH(Q) By the continuity of the operator A we easily see that
A(ug) = lim A(up, ) = lim y,, =y = A(u).
k—o0 k—o00
Since A is injective, it follows that u = ug. By the subsequence principle it is easy to show that
the whole sequence converges. O

We have similar results when the operator A acts on W1 ((Q).

Proposition 3.4.

(i) Let hypothesis (2.4) be satisfied. Then the functional I: WM (Q) — R is well-defined
and of class C* with I'(u) = A(u).
(ii) Let hypothesis (2.4) be satisfied. Then the operator A: WHH(Q) — WLH(Q)* is con-
tinuous, bounded and strictly monotone.
(iii) Let hypothesis (H) be satisfied. Then the operator A: WHH(Q) — WLH(Q)* satisfies
the (S )-property, that is,

Up —uw in WHH(Q)  and  limsup(A(uy), un — u) <0,

n—00
imply u, — u in WHH(Q).

Proof. The assertions (i) and (ii) follow in the same way as in the proof of Theorem 3.3. For
(iii) we make use of the compact embedding W17 (Q2) < L*(€), see Proposition 2.18 (i). [

In the following let X = Wy 7 (Q) or X = W'H(Q) and let B: X — X* be given by

(B(u),v)x = / (|Vu|p(x)72Vu Vo + p(x)|[Vul| 1@ 2Ty - Vv) dz
Q

+ / (|u|p(z)72uv + ,u(x)|u|q(z)72uv) dz,
Q

for all u,v € X, where (-,-)x denotes the duality pairing between X and its dual space X*.
Moreover, let J: X — R be given by

0= (S Yo (5 5
for all w € X.

Under the weaker assumptions in (2.4) we have the following.

Proposition 3.5. Let hypothesis (2.4) be satisfied.
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(i) The functional J: X — R is well-defined and of class C* with J'(u) = B(u).
(ii) The operator B: X — X* is continuous, bounded and strictly monotone.
(iii) The operator B: X — X* satisfies the (S )-property, that is,

up = u i X and limsup(B(up),u, —u) <0,
n—oo

imply u, — u in X.
(iv) The operator B: X — X* is coercive and a homeomorphism.

4. EXISTENCE AND UNIQUENESS RESULTS

In this section we prove our main existence and uniqueness results. Recall that the problem
under consideration is the following one

—div (|Vu|p(””)*2Vu + u(:c)|Vu|q(m)*2Vu> = f(z,u, Vu) in Q,
u=20 on 0f.

We suppose the following assumptions on the nonlinearity f.

H(f) Let f: 2 x R x RV — R be a Carathéodory function such that f(-,0,0) # 0 and the
following hold:

()
(i) There exists o € L™-1(Q) and a1, az > 0 such that

(4.1)

r(x)—
(@, 5,6)] < ar|ePDTET 4+ agls|" @ + o)

for a.a.z € Q, for all s € R and for all ¢ € RY, where r € C4(Q) is such that
r(z) < p*(z) for all x € Q with the critical exponent p* given in (2.8).
(ii) There exists w € L*(Q) and by, bz > 0 such that

f(@,5,6)s < bilEPP) + bols|P~ + w() (4.2)
for a.a.x € Q, for all s € R and for all £ € RY. Moreover,
1—b1 —byAy, >0 (4.3)

where Aj,_ is the first eigenvalue of the Dirichlet eigenvalue problem for the p_-
Laplacian, see (2.27).

Example 4.1. The following function satisfies hypotheses H(f):
r(x)—

F(@,5,6) = —di|s]"@ 725 + dl| P TT) 4 dy(a),
with 1,7 € CL(Q), r(x) < p*(x) and l(z) < min{p_,r(z)} for all x € Q, 0 # v € L%(Q)’
dy >0 and
p_ — |ds| A7 L
0<|ds| <p-Aip_ aswellas 0<]|dg| < #
p——1+A,

Definition 4.2. We say that u € Wol’H(Q) is a weak solution of problem (4.1) if for all test
functions o € Wy (Q) it satisfies

/Q (|Vu|p(””)_2Vu + u(x)|Vu|q(w)_2Vu> -Veodr = /Qf(:v, u, Vu)pdz. (4.4)
Because of Proposition 2.16 and hypothesis H(f)(i) a weak solution in (4.4) is well-defined.
The following proposition is an immediate consequence of Theorem 3.3.
Proposition 4.3. Let hypothesis (H) be satisfied and let
f(z,5,6) = a(z) for all (z,s,€) € A x RxRY,
where v and o are as in H(f)(1). Then (4.1) has a unique weak solution.

Proof. By assumption and Proposition 2.16, W, () < L"0)(Q), hence a € L")(Q) =
LO(Q)* < W, ™ (Q)* and by Proposition 3.3 A is bijective. O

Our main existence result reads as follows.
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Theorem 4.4. Let hypotheses (H) and H(f) be satisfied. Then problem (4.1) admits at least
one nontrivial weak solution u € Wol’H(Q).

Proof. First, we introduce the Nemytskij operator related to f, that is, Ny := i* o N t, where
Ny: W ™H(Q) — L7 0(Q) is given by

Ny(uw) = f(x,u, Vu),
and i*: L" )(Q) — WolH(Q)* is the adjoint operator of the embedding i: W(}’H(Q) — L"O(Q).

It is clear that N is well-defined, bounded and continuous by H(f)(i) and Proposition 2.16 (for
the continuity use Vitali’s Theorem as in Proposition 3.1).

For u € W, () we define A : W, (Q) — W " (Q)* by
A(u) = A(u) — Ng(u),

which consequently is continuous and bounded by Theorem 3.3.
In order to apply Theorem 2.32 we first show that A is pseudomonotone in the sense of
Remark 2.31. To this end, let {u,}n>1 € Wy () be a sequence such that

w, —u in WyH(Q) and limsup(A(uy,), un — u)y < 0. (4.5)
n—oo
The compact embedding from Proposition 2.1 implies that
U, —u in L7O(Q) (4.6)

since 7(z) < p*(z) for all # € Q. From Holder’s inequality, the weak convergence of {u,},en in
W, " (Q) (hence it is bounded in its norm) and the boundedness of N it follows that

f (@, un, Vuy) (u, —u) da
Q

< 2| Nip(un)

r()—1 H’LL - u’n«”r()
()

< 2sup HM(%)
neN

r()—1 HU - un”r() .
Zo)
From this along with the strong convergence in (4.6) we see that

lim | f(x,un, Vup)(u, —u)der =0.

n—oo Q

Hence, if we pass to the limit in the weak formulation in (4.4) replacing u by u,, and ¢ by u,, —u,
we obtain

lim sup{A(un), un, — u)yy = limsup(A(uy ), un — uyy < 0. (4.7)

n—oo n—00
Since A fulfills the (S, )-property, see Theorem 3.3, by using (4.5) and (4.7) it follows that u, — u
in Wy (Q). Therefore, by the continuity of the operator .A, we conclude that A(u,) — A(u)
in W, " (Q)*. Hence A is pseudomonotone.

Let us now prove that A is coercive, see Definition 2.30. Recall the representation of the first
eigenvalue of the p_-Laplacian, see (2.28), replacing r by p_, we have the inequality

JullE= < ATL [[Vul=  for all u € WP~ (Q). (4.8)

Note that W(}’H(Q) C Wol’p’ (©). Then, by applying (4.8) and (4.2) along with Proposition 2.13
one has

(A(u),u) = / (|Vu|p(””)_2Vu +u(x)|Vu|q(I)_2Vu> -Vudx —/ f(z,u, Vu)ude
Q Q
ZpH(Vu)—bl/ V) dx—bg/ lufP- dz — [lwlls
Q Q

> pu(Vu) — bl/ [VulP™) da — boAy / |Vu|P~ dz — ||wl|;
Q Q

> (1 — by — bﬁ\ié,) pr(Vu) — by, Q] — [|lw]
> (1= by = beArh ) min (| Vallff IVally } = 227 19] = [l
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Hence, since 1 < p_ < g4 and 1 — b1 —baAy
operator A: Wy (Q) — W, (Q)* is coercive.

Therefore, we have proved that the operator A: W, *(Q) — W, ™(Q)* is bounded, pseu-
domonotone and coercive. Applying Theorem 2.32 we get a function u € WO1 H(Q) such that

A(u) = 0. By the definition of the operator A and the first condition in H(f), w is a nontrivial
weak solution of our original problem (4.1). This completes the proof. O

> 0 by assumption (4.3), we conclude that the

In the second part of this section we want to discuss the question under what conditions
the solution obtained in Theorem 4.4 is unique. In order to give a positive answer we need to
strengthen our conditions on the nonlinearity f: Q x R x RY — R in the following sense.

(U1) There exists ¢; > 0 such that
(f(iC, 875) - f(:v,t,f))(s - t) < 01|S - t|2

for a.a.z € Q, for all s,t € R and for all £ € RV.
(U2) There exists p € L™ )(Q), where € C; (9) is such that r(z) < p*(x) for all z € €, and
¢a > 0 such that the map £ — f(x,s,&) — p(x) is linear for a.a.z € , for all s € R and

[f(z,5,8) — p(z)| < calé]
for a.a.z € Q, for all s € R and for all £ € RY. Moreover,
1
ady+ e <1, (4.9)

where Aj o is the first eigenvalue of the Dirichlet eigenvalue problem for the Laplace
differential operator, see (2.27).

Example 4.5. The following function satisfies hypotheses H(f), (Ul) and (U2), where for
simplicity we drop the s-dependence:

N
f(z,8) = Zﬁi& +p(z)  for a.a.x € Q and for all € € RY,
i=1
withp_ =2 ,0%# pe L*Q) and
. . 1.
B=(B1,...,8n) € RN with |3> < mln{l — 5)\15 , )\172}.

Any r € C4(Q) such that p— =2 < r(z) < p*(x) for all x € Q is admissible.
Our uniqueness result reads as follows.

Theorem 4.6. Let (H), H(f), (U1), and (U2) be satisfied and let p(z) = 2 for all x € Q. Then,
problem (4.1) admits a unique weak solution.

Proof. Let u,v € W, ™(Q) be two weak solutions of (4.1). Testing the corresponding weak
formulations with ¢ = v — v and subtracting these equations gives

/ |V (u —v)|* dz + / p(x) (|Vu|q<w)_2Vu - |Vv|q(:”)_2Vu> -V(u—v)de
Q Q

(4.10)
= / (f(z,u, Vu) = f(z,v,Vu))(u —v)dz + / (f(z,v,Vu) — f(z,v, Vv))(u —v) dz.
Q Q
The second term on the left-hand side of (4.10) is nonnegative, so we have the estimate
/ IV (u—v)*dz + / w(z) (|Vu|q<m)*2Vu - |VU|‘1(I)72Vu) -V(u—v)dz
Q Q (411)

> [ |V(u—v)*da.
Q
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For the right-hand side of (4.10) we can use the assumptions (U1), (U2) and Holder’s inequality
which leads to

/Q(f(a:,u,Vu) —f(a:,v,Vu))(u—v)dx—l—/(f(a:,v,Vu) — flz,v,Vv))(u —v)dz

Q

<alu-v+ [ (7 (009 (Gu-02)) - ) ao (12)

Sc1||u—v||§+c2/ fu — ]|V (u — v)] dz
Q

_1
< (eAia+ i) IV —v)3.
From (4.10), (4.11) and (4.12) we see that

2 _ 2 -1 -3 2
IV (=)} = / V(=) dz < (eATh + 3 ) [V = )3 (4.13)
Then, by (4.9), from (4.13) it follows u = v. O
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