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A NEW CLASS OF DOUBLE PHASE VARIABLE EXPONENT PROBLEMS:

EXISTENCE AND UNIQUENESS

ÁNGEL CRESPO-BLANCO, LESZEK GASIŃSKI, PETTERI HARJULEHTO, AND PATRICK WINKERT

Abstract. In this paper we introduce a new class of quasilinear elliptic equations driven by
the so-called double phase operator with variable exponents. We prove certain properties of
the corresponding Musielak-Orlicz Sobolev spaces (an equivalent norm, uniform convexity,
Radon-Riesz property with respect to the modular) and the properties of the new double
phase operator (continuity, strict monotonicity, (S+)-property). In contrast to the known
constant exponent case we are able to weaken the assumptions on the data. Finally we show
the existence and uniqueness of corresponding elliptic equations with right-hand sides that
have gradient dependence (so-called convection terms) under very general assumptions on the
data. As a result of independent interest, we also show the density of smooth functions in
the new Musielak-Orlicz Sobolev space even when the domain is unbounded.

1. Introduction

Given a bounded domain Ω ⊆ R
N , N ≥ 2, with Lipschitz boundary ∂Ω, this paper is

concerned with a new double phase operator with variable exponents given by

div
(

|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u
)

(1.1)

with p, q ∈ C(Ω) such that 1 < p(x) < N , p(x) < q(x) for all x ∈ Ω and 0 ≤ µ(·) ∈ L1(Ω).
This operator is the natural extension of the classical double phase operator when p and q are
constants, namely

div
(

|∇u|p−2∇u+ µ(x)|∇u|q−2∇u
)

. (1.2)

It is clear that when infΩ µ > 0 or µ ≡ 0, then the operator in (1.1) becomes the weighted

(q(x), p(x))-Laplacian or the p(x)-Laplacian, respectively. The energy functional I : W 1,H
0 (Ω) →

R related to the double phase operator (1.1) is given by

I(u) =

∫

Ω

(

|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)

dx, (1.3)

where the integrand H(x, ξ) = 1
p(x) |ξ|

p(x)+ µ(x)
q(x) |ξ|

q(x) for all (x, ξ) ∈ Ω×R
N of I has unbalanced

growth if 0 ≤ µ(·) ∈ L∞(Ω), that is,

b1|ξ|
p(x) ≤ H(x, ξ) ≤ b2

(

1 + |ξ|q(x)
)

for a. a.x ∈ Ω and for all ξ ∈ R
N with b1, b2 > 0.

The main characteristic of the functional I is the change of ellipticity on the set where the
weight function is zero, that is, on the set {x ∈ Ω : µ(x) = 0}. Indeed, the energy density of I
exhibits ellipticity in the gradient of order q(x) in the set {x ∈ Ω : µ(x) > ε} for any fixed ε > 0
and of order p(x) on the points x where µ(x) vanishes. So the integrand H switches between
two different phases of elliptic behaviours. This is the reason why it is called double phase.

Zhikov [70] was the first who studied functionals whose integrands change their ellipticity
according to a point in order to provide models for strongly anisotropic materials. Function-
als of the form (1.3) have been studied by several authors with respect to regularity of local
minimizers (also for nonstandard growth). We refer to the works of Baroni-Colombo-Mingione
[6, 7, 8], Baroni-Kuusi-Mingione [9], Byun-Oh [16], Colombo-Mingione [20, 21], De Filippis
[22], De Filippis-Palatucci [24], Harjulehto-Hästö-Toivanen [42], Marcellini [51, 52], Ok [54, 55],
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Ragusa-Tachikawa [62, 63] and the references therein. Moreover, recent results for nonuni-
formly elliptic variational problems and nonautonomous functionals can be found in the papers
of Beck-Mingione [11, 12], De Filippis-Mingione [23] and Hästö-Ok [43].

In general, double phase differential operators and corresponding energy functionals given in
(1.2), (1.1) and (1.3), respectively, appear in several physical applications. For example, in the
elasticity theory, the modulating coefficient µ(·) dictates the geometry of composites made of
two different materials with distinct power hardening exponents q(x) and p(x), see Zhikov [71].
We also refer to other applications which can be found in the works of Bahrouni-Rădulescu-
Repovš [3] on transonic flows, Benci-D’Avenia-Fortunato-Pisani [13] on quantum physics and
Cherfils-Il′yasov [18] on reaction diffusion systems.

In this paper we study first the corresponding function space related to the given double phase
operator with variable exponents given in (1.1). This leads to Musielak-Orlicz Sobolev spaces
which turn out to be reflexive Banach spaces. Under the condition that the weight function µ(·)
is bounded we also show that

inf

{

λ > 0 :

∫

Ω

[

(

|∇u|

λ

)p(x)

+ µ(x)

(

|∇u|

λ

)q(x)
]

dx ≤ 1

}

is an equivalent norm in W 1,H
0 (Ω) under the additional assumption that

q(x) < p∗(x) for all x ∈ Ω.

This condition (taking constant exponents) is weaker than the usual one for the constant expo-
nent double phase setting, namely µ(·) is Lipschitz continuous and

q

p
< 1 +

1

N
, (1.4)

see Colasuonno-Squassina [19, Proposition 2.18(iv)]. In this direction we also make use of its
natural extension

q+
p−

< 1 +
1

N
(1.5)

with q+ being the maximum of q and p− being the minimum of p on Ω, in order to prove another
compact embedding result and the density of smooth functions. Condition (1.4) was used for the
first time by Baroni-Colombo-Mingione [6, see (1.8)] in order to obtain regularity results of local
minimizers for double phase integrals, see also the related works [7] and [8] of the same authors
and Colombo-Mingione [20], [21]. The condition is needed for the density of smooth functions.
We are able to prove the same result under the condition (1.5) and Lipschitz continuity on p, q
and µ in this variable exponent setting, see Theorem 2.23. Since the proof of Theorem 2.23 does
not need the boundedness of Ω, the results holds true for unbounded domains, see Theorem
2.24. In addition, we give a different proof for the density for unbounded domains under weaker
conditions, namely, the exponents p, q are bounded, log-Hölder continuous satisfying the log-
Hölder decay condition and q is α

q−
-Hölder continuous while µ is α-Hölder continuous such

that

q(x)

p(x)
≤ 1 +

α

N
.

In this case we do not need to suppose Lipschitz continuity on p, q and µ, see Theorem 2.28.
After having the functional setting, we prove the properties of the new variable exponent

double phase operator. It turns out that the operator is continuous, bounded, strictly monotone
and satisfies the (S+)-property which is an important property when dealing with existence
results of corresponding equations.

In particular, we extend the results of Colasuonno-Squassina [19] concerning the properties
of the function space as well as the related embeddings and of Liu-Dai [48] with respect to the
properties of the operator to the variable exponent case and we are able to weaken the conditions
on the data. So the results in [19] and [48] hold now under weaker assumptions.

Finally, we consider the existence and uniqueness of the following quasilinear elliptic equations

− div
(

|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u
)

= f(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(1.6)
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where f : Ω×R×R
N → R is a Carathéodory function, that is, x 7→ f(x, s, ξ) is measurable for

all (s, ξ) ∈ R × R
N and (s, ξ) 7→ f(x, s, ξ) is continuous for a.a.x ∈ Ω. Due to the gradient de-

pendence of f (often called convection term), problem (1.6) does not have variational structure,
so variational methods cannot be applied. Under a typical growth rate and a minor coercivity
condition of f we show the existence of at least one nontrivial weak solution to problem (1.6)
which depends on the first eigenvalue of the p−-Laplacian. Under an additional hypothesis we
are also in the position to show uniqueness of the solution in case 2 ≡ p(x) < q(x) for all x ∈ Ω.

To the best of our knowledge, this is the first work dealing with the variable exponent dou-
ble phase operator given in the general form (1.1). Let us mention some relevant papers in
this direction. In 2018, Zhang-Rădulescu [69] studied the following variable exponent elliptic
equation

− div A(x,∇u) + V (x)|u|α(x)−2u = f(x, u), (1.7)

where A satisfies p(x)-structure conditions different from the double phase operator. Under
appropriate conditions it is shown that problem (1.7) has a pair of nontrivial constant sign
solutions and infinitely many solutions, respectively. A similar setting can be found in the
paper of Shi-Rădulescu-Repovš-Zhang [64]. Existence of a solution for the Baouendi–Grushin
operator with convection term has been recently proved by Bahrouni-Rădulescu-Winkert [4]
who studied the problem

−∆G(x,y)u+A(x, y)(|u|G(x,y)−1 + |u|G(x,y)−3)u = f ((x, y), u,∇u) in Ω,

u = 0 on ∂Ω,

with

A(x, y) = |∇xG(x, y)|+ |x|γ |∇yG(x, y)| for all (x, y) ∈ Ω.

Here, G : Ω → (1,∞) is supposed to be a continuous function and ∆G(x,y) stands for the
Baouendi-Grushin operator with variable coefficient, see also the work of Bahrouni-Rădulescu-
Repovš [3].

Very recently, Arora-Shmarev [1] (see also Arora [2]) treated a parabolic problem of double
phase type with variable growth of the form

ut − div
(

|∇u|p(x)−2∇u+ a(x)|∇u|q(x)−2∇u
)

= F (x, u) in QT = Ω× (0, T )

with

2N

N + 2
< p− ≤ p(x) ≤ q(x) < p(x) +

r

2

and

0 < r < r∗ =
4p−

2N + p−(N + 2)
, p− = min

QT

p(x).

Under certain conditions on the right-hand side the existence of a unique strong solution with
a certain kind of regularity is shown. Finally, we refer to some works dealing with existence
results for variable exponent problems defined in usual Sobolev spaces with variable exponents,
see, for example, Cencelj-Rădulescu-Repovš [17], Gasiński-Papageorgiou [36] and the references
therein.

Existence results for double phase problems with constant exponents have been shown by
several authors within the last five years. The corresponding eigenvalue problem of the double
phase operator with Dirichlet boundary condition has been studied by Colasuonno-Squassina
[19] who proved the existence and properties of related variational eigenvalues. Perera-Squassina
[59] showed the existence of a solution by applying Morse theory where they used a cohomological
local splitting to get an estimate of the critical groups at zero. Multiplicity results including
sign-changing solutions have been obtained by Gasiński-Papageorgiou [37], Liu-Dai [48] and
Gasiński-Winkert [40] via the Nehari manifold treatment due to the lack of regularity results
for such problems.

Other existence results for double phase problems based on truncation and comparison tech-
niques can be found in the papers of Fiscella [34] (Hardy potentials), Fiscella-Pinamonti [35]
(Kirchhoff type problem), Gasiński-Winkert [38, 39] (parametric and convection problems),
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Papageorgiou-Rădulescu-Repovš [57] (ground state solutions), Zeng-Bai-Gasiński-Winkert [67,
68] (multivalued obstacle problems) and the references therein. For related works dealing with
certain types of double phase problems we refer to the works of Barletta-Tornatore [5], Biagi-
Esposito-Vecchi [14], Farkas-Winkert [33], Liu-Winkert [49], Papageorgiou-Rădulescu-Repovš
[56] and Rădulescu [60].

The paper is organized as follows. In Section 2 we introduce the new Musielak-Orlicz Sobolev
space, prove its properties already mentioned above and we will recall some basic facts about
the spectrum of the r-Laplacian (r ∈ (1,∞)) as well as definitions from the theory of monotone
operators. Section 3 is devoted to the properties of the new double phase operator and finally,
in Section 4, we present our existence and uniqueness result for problem (1.6).

2. A new Musielak-Orlicz Sobolev space and some preliminaries

In this section we recall some known results and introduce a new function space needed in
our approach providing some of its properties.

In the study of equations with variable exponent double phase phenomena we need to recall
the definition of Lebesgue and Sobolev spaces with variable exponents. Most of the results can
be found in the book of Diening-Harjulehto-Hästö-Růžička [25], see also Fan-Zhao [32], Kováčik-
Rákosńık [50] and Rădulescu-Repovš [61]. We will present them in a less general setting that
matches our purpose.

Suppose that Ω is a bounded domain in R
N with Lipschitz boundary ∂Ω and let r ∈ C+(Ω),

where

C+(Ω) =
{

h ∈ C(Ω) : 1 < h(x) for all x ∈ Ω
}

.

For any r ∈ C+(Ω) we define

r− = min
x∈Ω

r(x) and r+ = max
x∈Ω

r(x).

Let M(Ω) be the space of all measurable functions u : Ω → R. We identify two such functions
when they differ only on a Lebesgue-null set. Then, for a given r ∈ C+(Ω), the variable exponent
Lebesgue space Lr(·)(Ω) is defined as

Lr(·)(Ω) =

{

u ∈M(Ω) :

∫

Ω

|u|r(x) dx <∞

}

equipped with the Luxemburg norm given by

‖u‖r(·) = inf

{

λ > 0 :

∫

Ω

(

|u|

λ

)r(x)

dx ≤ 1

}

.

It is clear that (Lr(·)(Ω), ‖ · ‖r(·)) is a separable and reflexive Banach space. Let r′ ∈ C+(Ω) be
the conjugate variable exponent to r, that is,

1

r(x)
+

1

r′(x)
= 1 for all x ∈ Ω.

We know that Lr(·)(Ω)∗ = Lr
′(·)(Ω) and Hölder’s inequality holds, that is,

∫

Ω

|uv| dx ≤

[

1

r−
+

1

r′−

]

‖u‖r(·)‖v‖r′(·) ≤ 2‖u‖r(·)‖v‖r′(·)

for all u ∈ Lr(·)(Ω) and for all v ∈ Lr
′(·)(Ω).

If r1, r2 ∈ C+(Ω) and r1(x) ≤ r2(x) for all x ∈ Ω, then we have the continuous embedding

Lr2(·)(Ω) →֒ Lr1(·)(Ω).

The corresponding variable exponent Sobolev spaces can be defined in the same way using
the variable exponent Lebesgue spaces. For r ∈ C+(Ω) the variable exponent Sobolev space
W 1,r(·)(Ω) is defined by

W 1,r(·)(Ω) =
{

u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)
}

endowed with the norm

‖u‖1,r(·) = ‖u‖r(·) + ‖∇u‖r(·),
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where ‖∇u‖r(·) = ‖ |∇u| ‖r(·).
Moreover, we define

W
1,r(·)
0 (Ω) = C∞

0 (Ω)
‖·‖1,r(·)

.

The spaces W 1,r(·)(Ω) and W
1,r(·)
0 (Ω) are both separable and reflexive Banach spaces, in fact

uniformly convex Banach spaces. In the spaceW
1,r(·)
0 (Ω), the Poincaré inequality holds, namely

‖u‖r(·) ≤ c0‖∇u‖r(·) for all u ∈ W
1,r(·)
0 (Ω)

with some c0 > 0. Therefore, we can consider on W
1,r(·)
0 (Ω) the equivalent norm

‖u‖1,r(·),0 = ‖∇u‖r(·) for all u ∈ W
1,r(·)
0 (Ω).

For r ∈ C+(Ω) we introduce the critical Sobolev variable exponents r∗ and r∗ defined by

r∗(x) =

{

Nr(x)
N−r(x) if r(x) < N,

ℓ1(x) if N ≤ r(x),
for all x ∈ Ω

and

r∗(x) =

{

(N−1)r(x)
N−r(x) if r(x) < N,

ℓ2(x) if N ≤ r(x),
for all x ∈ Ω,

where ℓ1, ℓ2 ∈ C(Ω) are arbitrarily chosen such that r(x) < ℓ1(x) for all x ∈ Ω and r(x) < ℓ2(x)
for all x ∈ Ω.

Furthermore, we denote by C0, 1
| log t| (Ω) the set of all functions h : Ω → R that are log-Hölder

continuous, that is, there exists C > 0 such that

|h(x) − h(y)| ≤
C

| log |x− y||
for all x, y ∈ Ω with |x− y| <

1

2
. (2.1)

Now we can state the embedding from W 1,r(·)(Ω) into Lr
∗(·)(Ω) under condition (2.1), see

Diening-Harjulehto-Hästö-Růžička [25, Corollary 8.3.2] or Fan [29, Proposition 2.2] and Fan-
Shen-Zhao [31].

Proposition 2.1. Let r ∈ C0, 1
| log t| (Ω) ∩ C+(Ω) and let s ∈ C(Ω) be such that

1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω.

Then, we have the continuous embedding

W 1,r(·)(Ω) →֒ Ls(·)(Ω).

If r ∈ C+(Ω), s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for all x ∈ Ω, then the embedding above is
compact.

In the same way we have the embedding into the boundary Lebesgue space, see Fan [29,
Proposition 2.1] and Ho-Kim-Winkert-Zhang [45, Proposition 2.5] for the continuous and Fan
[27, Corollary 2.4] for the compact embedding.

Proposition 2.2. Suppose that r ∈ C+(Ω) ∩W
1,γ(Ω) for some γ > N . Let s ∈ C(Ω) be such

that

1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω.

Then, we have the continuous embedding

W 1,r(·)(Ω) →֒ Ls(·)(∂Ω).

If r ∈ C+(Ω), s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for all x ∈ Ω, then the embedding above is
compact.

Remark 2.3. Note that for a bounded domain Ω ⊂ R
N and γ > N we have the following

inclusions

C0,1(Ω) ⊂W 1,γ(Ω) ⊂ C0,1−N
γ (Ω) ⊂ C0, 1

| log t| (Ω).
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Finally, we recall the relation between the norm and the related modular function which is
defined by

̺r(·)(u) =

∫

Ω

|u|r(x) dx for all u ∈ Lr(·)(Ω) with r ∈ C+(Ω).

Proposition 2.4. If r ∈ C+(Ω) and u ∈ Lr(·)(Ω), then we have the following assertions:

(i) ‖u‖r(·) = λ ⇐⇒ ̺r(·)
(

u
λ

)

= 1 with u 6= 0;
(ii) ‖u‖r(·) < 1 (resp. = 1, > 1) ⇐⇒ ̺r(·)(u) < 1 (resp. = 1, > 1);

(iii) ‖u‖r(·) < 1 =⇒ ‖u‖
r+
r(·) ≤ ̺r(·)(u) ≤ ‖u‖

r−
r(·);

(iv) ‖u‖r(·) > 1 =⇒ ‖u‖
r−
r(·) ≤ ̺r(·)(u) ≤ ‖u‖

r+
r(·);

(v) ‖un‖r(·) → 0 ⇐⇒ ̺r(·)(un) → 0;
(vi) ‖un‖r(·) → +∞ ⇐⇒ ̺r(·)(un) → +∞.
(vii) ‖un‖r(·) → 1 ⇐⇒ ̺r(·)(un) → 1.

(viii) un → u in Lr(·)(Ω) =⇒ ̺r(·)(un) → ̺r(·)(u).

Now we recall some definitions and properties concerning Musielak-Orlicz spaces which are
mainly taken from the book of Musielak [53]. We also refer to the books of Diening-Harjulehto-
Hästö-Růžička [25] and Harjulehto-Hästö [41] as well as the papers of Colasuonno-Squassina [19]
and Fan [26].

We start with the following definition.

Definition 2.5.

(i) A continuous and convex function ϕ : [0,∞) → [0,∞) is said to be a Φ-function if
ϕ(0) = 0 and ϕ(t) > 0 for all t > 0.

(ii) A function ϕ : Ω × [0,∞) → [0,∞) is said to be a generalized Φ-function if ϕ(·, t) is
measurable for all t ≥ 0 and ϕ(x, ·) is a Φ-function for a. a. x ∈ Ω. We denote the set
of all generalized Φ-functions on Ω by Φ(Ω).

(iii) A function ϕ ∈ Φ(Ω) is locally integrable if ϕ(·, t) ∈ L1(Ω) for all t > 0.
(iv) A function ϕ ∈ Φ(Ω) satisfies the ∆2-condition if there exist a positive constant C and

a nonnegative function h ∈ L1(Ω) such that

ϕ(x, 2t) ≤ Cϕ(x, t) + h(x)

for a. a. x ∈ Ω and for all t ∈ [0,∞).
(v) Given ϕ, ψ ∈ Φ(Ω), we say that ϕ is weaker than ψ, denoted by ϕ ≺ ψ, if there exist

two positive constants C1, C2 and a nonnegative function h ∈ L1(Ω) such that

ϕ(x, t) ≤ C1ψ(x,C2t) + h(x)

for a. a. x ∈ Ω and for all t ∈ [0,∞).

For a given ϕ ∈ Φ(Ω) we define the corresponding modular ρϕ by

ρϕ(u) :=

∫

Ω

ϕ (x, |u|) dx. (2.2)

Then, the Musielak-Orlicz space Lϕ(Ω) is defined by

Lϕ(Ω) := {u ∈M(Ω) : there exists α > 0 such that ρϕ(αu) < +∞}

equipped with the norm

‖u‖ϕ := inf
{

α > 0 : ρϕ

(u

α

)

≤ 1
}

.

The following proposition can be found in Musielak [53, Theorem 7.7 and Theorem 8.5].

Proposition 2.6.

(i) Let ϕ ∈ Φ(Ω). Then the Musielak-Orlicz space Lϕ(Ω) is complete with respect to the
norm ‖ · ‖ϕ, that is, (L

ϕ(Ω), ‖ · ‖ϕ) is a Banach space.
(ii) Let ϕ, ψ ∈ Φ(Ω) be locally integrable with ϕ ≺ ψ. Then

Lψ(Ω) →֒ Lϕ(Ω).

Next, we recall the unit ball property, see the books of Musielak [53, Theorem 8.13] and
Diening-Harjulehto-Hästö-Růžička [25, Lemma 2.1.14].
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Proposition 2.7. Let ϕ ∈ Φ(Ω).

(i) If ϕ satisfy the ∆2-condition, then

Lϕ(Ω) = {u ∈M(Ω) : ρϕ(u) < +∞} .

(ii) Furthermore, if u ∈ Lϕ(Ω), then ρϕ(u) < 1 (resp.= 1; > 1) if and only if ‖u‖ϕ < 1
(resp.= 1; > 1).

Now we are in the position to give the definition of a N -function.

Definition 2.8. The function ϕ : [0,∞) → [0,∞) is called N -function if it is a Φ-function such
that

lim
t→0+

ϕ(t)

t
= 0 and lim

t→∞

ϕ(t)

t
= ∞.

We call a function ϕ : Ω × R → [0,∞) a generalized N -function if ϕ(·, t) is measurable for
all t ∈ R and ϕ(x, ·) is a N -function for a. a. x ∈ Ω. We denote the class of all generalized
N -functions by N(Ω). Note that ϕ∗ ∈ N(Ω) whenever ϕ ∈ N(Ω).

Definition 2.9. Let φ, ψ ∈ N(Φ). The function φ increases essentially slower than ψ near
infinity, if for any k > 0

lim
t→∞

φ(x, kt)

ψ(x, t)
= 0 uniformly for a. a. x ∈ Ω.

We write φ≪ ψ.

Let ϕ ∈ Φ(Ω). The corresponding Sobolev space W 1,ϕ(Ω) is defined by

W 1,ϕ(Ω) := {u ∈ Lϕ(Ω) : |∇u| ∈ Lϕ(Ω)}

equipped with the norm

‖u‖1,ϕ = ‖u‖ϕ + ‖∇u‖ϕ

where ‖∇u‖ϕ = ‖ |∇u| ‖ϕ. We denote ρϕ(∇u) = ρϕ(|∇u|) as well. If ϕ ∈ N(Ω) is locally

integrable, we denote by W 1,ϕ
0 (Ω) the completion of C∞

0 (Ω) in W 1,ϕ(Ω).
The next theorem gives a criterion when the Sobolev spaces are Banach spaces and also

reflexive. This result can be found in Musielak [53, Theorem 10.2] and Fan [28, Proposition 1.7
and 1.8].

Theorem 2.10. Let ϕ ∈ N(Ω) be locally integrable such that

inf
x∈Ω

ϕ(x, 1) > 0. (2.3)

Then the spaces W 1,ϕ(Ω) and W 1,ϕ
0 (Ω) are separable Banach spaces which are reflexive if Lϕ(Ω)

is reflexive.

Let us now come to our special double phase N -function. To this end, let H : Ω× [0,∞) →
[0,∞) be defined as

H(x, t) := tp(x) + µ(x)tq(x) for all (x, t) ∈ Ω× [0,∞),

where we suppose the following:

Ω ⊆ R
N , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω,

p, q ∈ C+(Ω) such that 1 < p(x) < N and p(x) < q(x) for all x ∈ Ω,

and 0 ≤ µ(·) ∈ L1(Ω).

(2.4)

It is clear that H is a locally integrable, generalized N -function which satisfies (2.3) and it
fulfills the ∆2-condition, that is,

H(x, 2t) = (2t)p(x) + µ(x)(2t)q(x) ≤ 2q+H(x, t). (2.5)

Recall that the corresponding modular to H is given by

ρH(u) =

∫

Ω

H(x, |u|) dx.
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Then, the corresponding Musielak-Orlicz space LH(Ω) is given by

LH(Ω) = {u ∈M(Ω) : ρH(u) < +∞} ,

see Proposition 2.7, endowed with the norm

‖u‖H = inf
{

τ > 0 : ρH

(u

τ

)

≤ 1
}

.

Similarly, we can introduce the spaces W 1,H(Ω) and W 1,H
0 (Ω) equipped with the norm

‖u‖1,H = ‖u‖H + ‖∇u‖H.

We recall the following definition which is needed for the reflexivity of the spaces LH(Ω),

W 1,H(Ω) and W 1,H
0 (Ω).

Definition 2.11. A function ϕ ∈ N(Ω) is said to be uniformly convex if for every ε > 0 there
exists δ > 0 such that

|t− s| ≤ εmax{t, s} or ϕ

(

x,
t+ s

2

)

≤ (1− δ)
ϕ(x, t) + ϕ(x, s)

2

for all t, s ≥ 0 and for a. a. x ∈ Ω.

Now we can state the following result which is inspired by the work of Colasuonno-Squassina
[19].

Proposition 2.12. Let hypotheses (2.4) be satisfied. Then, the norm ‖ · ‖H defined on LH(Ω)

is uniformly convex and hence the spaces LH(Ω), W 1,H(Ω) and W 1,H
0 (Ω) are reflexive Banach

spaces. Furthermore, for any sequence {un}n∈N ⊆ LH(Ω) such that

un ⇀ u in LH(Ω) and ρH(un) → ρH(u)

it follows that un → u in LH(Ω).

Proof. First note that by Propositions 2.6 and 2.10 we know that LH(Ω),W 1,H(Ω) andW 1,H
0 (Ω)

are complete. For the first part we only need to show that LH(Ω) is uniformly convex, then
LH(Ω) is reflexive by the Milman-Pettis theorem, see, for example, Papageorgiou-Winkert [58,

Theorem 3.4.28]. Applying Proposition 2.10 then shows thatW 1,H(Ω) andW 1,H
0 (Ω) are reflexive

as well.
In order to prove the uniform convexity of the space LH(Ω), it is enough to show that the

N -function H is uniformly convex, see Diening-Harjulehto-Hästö-Růžička [25, Definition 2.4.5,
Theorems 2.4.11 and 2.4.14]. Furthermore, the second assertion also follows by the results in
Diening-Harjulehto-Hästö-Růžička [25, Lemma 2.4.17 and Remark 2.4.19]

To this end, let ε > 0 and let t, s ≥ 0 be such that |t − s| > εmax{t, s}. Since the function
t 7→ tℓ is uniformly convex whenever ℓ > 1, see Diening-Harjulehto-Hästö-Růžička [25, Remark
2.4.6], there exists δp = δp(ε, p−) > 0 such that

(

t+ s

2

)p−

≤ (1− δp)
tp− + sp−

2
.

Thus, using also the convexity of t 7−→ t
p(x)
p− for x ∈ Ω, we get

(

t+ s

2

)p(x)

≤

(

(1− δp)
tp− + sp−

2

)

p(x)
p−

≤ (1 − δp)
tp(x) + sp(x)

2
.

Analogously we have
(

t+ s

2

)q(x)

≤ (1− δq)
tq(x) + sq(x)

2

for some δq = δq(ε, q−) > 0. Finally, we reach
(

t+ s

2

)p(x)

+ µ(x)

(

t+ s

2

)q(x)

≤ (1−min{δp, δq})
tp(x) + µ(x)tq(x) + sp(x) + µ(x)sq(x)

2
.

This completes the proof of the uniform convexity of LH(Ω). �



A NEW CLASS OF DOUBLE PHASE VARIABLE EXPONENT PROBLEMS 9

Next, we want to check the relation between the modular ρH and its norm ‖ · ‖H, see also
Harjulehto-Hästö [41].

Proposition 2.13. Let hypotheses (2.4) be satisfied and let ρH be defined by

ρH(u) =

∫

Ω

(

|u|p(x) + µ(x)|u|q(x)
)

dx for all u ∈ LH(Ω).

(i) If u 6= 0, then ‖u‖H = λ if and only if ρH(uλ) = 1;
(ii) ‖u‖H < 1 (resp.> 1, = 1) if and only if ρH(u) < 1 (resp.> 1, = 1);
(iii) If ‖u‖H < 1, then ‖u‖

q+
H 6 ρH(u) 6 ‖u‖

p−
H ;

(iv) If ‖u‖H > 1, then ‖u‖
p−
H 6 ρH(u) 6 ‖u‖

q+
H ;

(v) ‖u‖H → 0 if and only if ρH(u) → 0;
(vi) ‖u‖H → +∞ if and only if ρH(u) → +∞.
(vii) ‖u‖H → 1 if and only if ρH(u) → 1.
(viii) If un → u in LH(Ω), then ρH(un) → ρH(u).

Proof. (i) First note that, for u ∈ LH(Ω), the function ρH(λu) is continuous, convex and even
in the variable λ and it is strictly increasing when λ ∈ [0,+∞). So, by definition, we directly
obtain

‖u‖H = λ if and only if ρH

(u

λ

)

= 1,

which proves (i) and (ii) follows from (i). Let us show (iii). For u ∈ LH(Ω) we have the
inequalities

bp−ρH(u) ≤ ρH(bu) ≤ bq+ρH(u) if b > 1,

bq+ρH(u) ≤ ρH(bu) ≤ bp−ρH(u) if 0 < b < 1.
(2.6)

Let ‖u‖H = λ with 0 < λ < 1. Then, we have ρH
(

u
λ

)

= 1 from (i). Since 1
λ > 1 we can apply

the first inequality in (2.6) in order to obtain

ρH(u)

λp−
≤ ρH

(u

λ

)

= 1 ≤
ρH(u)

λq+
.

This shows (iii). The same argument can be used in order to show (iv) by using the second
inequality in (2.6). Moreover, (v) follows from (iii), (vi) follows from (iv) and (vii) follows from
(iii) and (iv). Finally, when un → u in LH(Ω), by (v) and as both addends are positive, it follows
that ̺p(·)(un − u) → 0, hence by Proposition 2.4 and the usual embeddings ‖un− u‖p− → 0, so
un → u a. e. through a subsequence (still denoted by un). On the other hand, as

|un|
p(x) + µ(x)|un|

q(x) ≤ 2q+
(

|un − u|p(x) + |u|p(x) + µ(x)|un − u|q(x) + µ(x)|u|q(x)
)

and by (v) there holds ρH(un − u) → 0, we know that
{

|un|
p(x) + µ(x)|un|

q(x)
}

n∈N
is a uni-

formly integrable sequence, which furthermore converges a. e. to |u|p(x) + µ(x)|u|q(x) by the
a. e. convergence of un → u. By Vitali’s Theorem (see Bogachev [15, Theorem 4.5.4]) it follows
that ρH(un) → ρH(u) through this subsequence. One can recover the whole sequence by the
subsequence principle and this proves (viii). �

We now equip the space W 1,H(Ω) with the equivalent norm

‖u‖ρ̂H := inf

{

λ > 0 :

∫

Ω

[

∣

∣

∣

∣

∇u

λ

∣

∣

∣

∣

p(x)

+ µ(x)

∣

∣

∣

∣

∇u

λ

∣

∣

∣

∣

q(x)

+
∣

∣

∣

u

λ

∣

∣

∣

p(x)

+ µ(x)
∣

∣

∣

u

λ

∣

∣

∣

q(x)
]

dx ≤ 1

}

,

where the modular ρ̂H is given by

ρ̂H(u) =

∫

Ω

(

|∇u|p(x) + µ(x)|∇u|q(x)
)

dx+

∫

Ω

(

|u|p(x) + µ(x)|u|q(x)
)

dx (2.7)

for u ∈ W 1,H(Ω).
The following proposition gives the relation between the norm ‖ · ‖ρ̂H and the corresponding

modular function ρ̂H. The proof is similar to that one of Proposition 2.13.

Proposition 2.14. Let hypotheses (2.4) be satisfied, let y ∈ W 1,H(Ω) and let ρ̂H be defined as
in (2.7).
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(i) If y 6= 0, then ‖y‖ρ̂H = λ if and only if ρ̂H( yλ ) = 1;
(ii) ‖y‖ρ̂H < 1 (resp.> 1, = 1) if and only if ρ̂H(y) < 1 (resp.> 1, = 1);
(iii) If ‖y‖ρ̂H < 1, then ‖y‖

q+
ρ̂H

6 ρ̂H(y) 6 ‖y‖
p−
ρ̂H

;

(iv) If ‖y‖ρ̂H > 1, then ‖y‖
p−
ρ̂H

6 ρ̂H(y) 6 ‖y‖
q+
ρ̂H

;

(v) ‖y‖ρ̂H → 0 if and only if ρ̂H(y) → 0;
(vi) ‖y‖ρ̂H → +∞ if and only if ρ̂H(y) → +∞.
(vii) ‖y‖ρ̂H → 1 if and only if ρ̂H(y) → 1.
(viii) If un → u in W 1,H(Ω), then ρ̂H(un) → ρ̂H(u).

Moreover, this norm is a uniformly convex norm on this space and satisfies the Radon–Riesz
(or Kadec-Klee) property with respect to the modular, as one can see in the following proposition.

Proposition 2.15. Let hypotheses (2.4) be satisfied.

(i) The norm ‖ · ‖ρ̂H on W 1,H(Ω) is uniformly convex.
(ii) For any sequence {un}n∈N ⊆W 1,H(Ω) such that

un ⇀ u in W 1,H(Ω) and ρ̂H(un) → ρ̂H(u)

it holds that un → u in W 1,H(Ω).

Proof. Both results follow by Theorems 3.2, 3.5 of Fan-Guan [30]. First note that their condition
∆2,δ(x) is a more general version of our ∆2-condition. Moreover (UC)1 is exactly the same as the
uniform convexity from Definition 2.11, by taking t = βs with s ≥ t, the left-hand side condition
from Definition 2.11 is equivalent to β < 1 − ε for ε < 1, hence one can take σ(1 − ε) = δ.
In the proof of Proposition 2.12 we already verified these properties for H, so (i) follows by
Theorem 3.2 of Fan-Guan [30]. Regarding the assumptions (Q), take Y = W 1,H(Ω) = X and
the modular ρ̂H, then we already know that (Q1)-(Q7) hold in Proposition 2.14. Fix now any
c > 0. Then the N -function given by cH is uniformly convex and W 1,cH(Ω) =W 1,H(Ω) as sets,
so again by Theorem 3.2 of Fan-Guan [30] the norm ‖ · ‖ρ̂cH on W 1,H(Ω) is uniformly convex.
Note also that ρ̂H(u) → 0 if and only if ρ̂cH(u) → 0, so they generate the same topology. It
is straightforward that (Q1) and (Q2) hold for cH, and (Q3)-(Q7) follow doing an analogous
argument to Proposition 2.14. Thus (ii) follows from Theorem 3.5 of Fan-Guan [30]. �

Now we introduce the seminormed space

Lq(·)µ (Ω) =

{

u ∈M(Ω) :

∫

Ω

µ(x)|u|q(x) dx < +∞

}

and endow it with the seminorm

‖u‖q(·),µ = inf

{

τ > 0 :

∫

Ω

µ(x)

(

|u|

τ

)q(x)

dx ≤ 1

}

.

We have the following embedding results, see Proposition 2.15 of Colasuonno-Squassina [19]
for the constant exponent case.

Proposition 2.16. Let hypotheses (2.4) be satisfied and let

p∗(x) :=
Np(x)

N − p(x)
and p∗(x) :=

(N − 1)p(x)

N − p(x)
for all x ∈ Ω (2.8)

be the critical exponents to p. Then the following embeddings hold:

(i) LH(Ω) →֒ Lr(·)(Ω), W 1,H(Ω) →֒ W 1,r(·)(Ω), W 1,H
0 (Ω) →֒ W

1,r(·)
0 (Ω) are continuous for

all r ∈ C(Ω) with 1 ≤ r(x) ≤ p(x) for all x ∈ Ω;

(ii) if p ∈ C+(Ω) ∩ C
0, 1

| log t| (Ω), then W 1,H(Ω) →֒ Lr(·)(Ω) and W 1,H
0 (Ω) →֒ Lr(·)(Ω) are

continuous for r ∈ C(Ω) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ Ω;

(iii) W 1,H(Ω) →֒ Lr(·)(Ω) and W 1,H
0 (Ω) →֒ Lr(·)(Ω) are compact for r ∈ C(Ω) with 1 ≤

r(x) < p∗(x) for all x ∈ Ω;

(iv) if p ∈ C+(Ω) ∩W
1,γ(Ω) for some γ > N , then W 1,H(Ω) →֒ Lr(·)(∂Ω) and W 1,H

0 (Ω) →֒

Lr(·)(∂Ω) are continuous for r ∈ C(Ω) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ Ω;

(v) W 1,H(Ω) →֒ Lr(·)(∂Ω) and W 1,H
0 (Ω) →֒ Lr(·)(∂Ω) are compact for r ∈ C(Ω) with

1 ≤ r(x) < p∗(x) for all x ∈ Ω;
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(vi) LH(Ω) →֒ L
q(·)
µ (Ω) is continuous;

(vii) if µ ∈ L∞(Ω), then Lq(·)(Ω) →֒ LH(Ω) is continuous.

Proof. We take Hp(·)(x, t) = tp(x) for all t ≥ 0 and for all x ∈ Ω. It is easy to see that Hp(·) ≺ H,

see Definition 2.5 (v). Hence, from Proposition 2.6 (ii) we obtain that LH(Ω) →֒ Lp(·)(Ω) and

W 1,H(Ω) →֒ W 1,p(·)(Ω) continuously, and by definition it follows that W 1,H
0 (Ω) →֒ W

1,p(·)
0 (Ω)

continuously. Thus, assertion (i) is a direct consequence of the classical embedding results for
variable Lebesgue and Sobolev spaces due to the boundedness of Ω. The same arguments show
(ii)–(v), see also Propositions 2.1 and 2.2. Let us prove (vi). To this end, let u ∈ LH(Ω), then
we have

∫

Ω

µ(x)|u|q(x) dx ≤

∫

Ω

(

|u|p(x) + µ(x)|u|q(x)
)

dx = ρH(u),

see (2.2). Since ρH

(

u
‖u‖H

)

= 1 whenever u 6= 0, we obtain for u 6= 0

∫

Ω

µ(x)

(

u

‖u‖H

)q(x)

dx ≤ 1.

Thus

‖u‖q(·),µ ≤ ‖u‖H.

Finally, assertion (vii) follows from the estimate

H(x, t) ≤
(

1 + tq(x)
)

+ µ(x)tq(x) ≤ 1 + (1 + ‖µ‖∞) tq(x)

for all t ≥ 0 and for a. a.x ∈ Ω by applying again Proposition 2.6 (ii). �

A useful property for existence results is the fact that a space is closed with respect to

truncations. We prove this property for W 1,H(Ω) and W 1,H
0 (Ω) in the following proposition.

For any s ∈ R we denote s± = max{±s, 0}, that means s = s+ − s− and |s| = s+ + s−. For any
function v : Ω → R we denote v±(·) = [v(·)]±.

Proposition 2.17. Let (2.4) be satisfied, then the following hold:

(i) if u ∈W 1,H(Ω), then ±u± ∈ W 1,H(Ω) with ∇(±u±) = ∇u1{±u>0};

(ii) if un → u in W 1,H(Ω), then ±u±n → ±u± in W 1,H(Ω);

(iii) if µ ∈ L∞(Ω) and u ∈W 1,H
0 (Ω), then ±u± ∈ W 1,H

0 (Ω).

Proof. (i) It is a well-known fact that for v ∈ W 1,ℓ(Ω), where 1 ≤ ℓ ≤ ∞, the statement holds
and ∇(±v±) = ∇v1{±v>0}, see for example Heinonen-Kilpeläinen-Martio [44, Lemma 1.19].

Hence, by Proposition 2.16 (i), u ∈W 1,p−(Ω) and ∇(±u±) = ∇u1{±u>0} it follows that

ρH(±u±) ≤ ρH(u) <∞,

ρH(∇[±u±]) ≤ ρH(∇u) <∞.

(ii) Consider a sequence such that un → u inW 1,H(Ω). As |±u±n ∓u±| ≤ |un−u| pointwisely
in Ω, it is straightforward that ±u±n → ±u± in LH(Ω) by proving the convergence in ρH and
Proposition 2.13 (v). For the convergence of the gradients, consider

∫

Ω

| ± ∇u±n ∓∇u±|p(x) dx

=

∫

Ω

|1{±un>0}∇un − 1{±u>0}∇u|
p(x) dx

≤ 2p+
∫

Ω

|∇un −∇u|p(x) dx+ 2p+
∫

Ω

|∇u|p(x)|1{±un>0} − 1{±un>0}|
p(x) dx,

where the first term converges to zero by Proposition 2.16 (i) and Proposition 2.13 (v), and the
second term converges to zero by taking a.e. convergent subsequences and using the Dominated
Convergence Theorem (note that ∇u = 0 a. e. on the set {u = 0} because, by (i), ∇u =
∇u1{u>0} + ∇u1{u<0}), and then make use of the subsequence principle. Using exactly the



12 Á. CRESPO-BLANCO, L.GASIŃSKI, P.HARJULEHTO, AND P.WINKERT

same argument we can prove the analogous convergence with exponent q(x) and weight µ(x),
i.e., there holds

ρH
(

±∇u±n ∓∇u∓
)

→ 0 as n→ ∞,

which by Proposition 2.13 (v) implies ±∇u±n → ±∇u± in LH(Ω) and the proof is complete.

(iii) By definition of W 1,H
0 (Ω), there exists a sequence {vn}n∈N ⊆ C∞

0 (Ω) such that vn → u
in W 1,H(Ω). By (ii), we know that ±v±n → ±u± in W 1,H(Ω).

Note that {±v±n }n∈N ⊆ C0(Ω) = {v ∈ C(Ω) : supp v is compact} and, by (i), their weak
derivatives satisfy {±∂xi

v±n }n∈N ⊆ L∞(Ω). By using the standard mollifier ηε, for ε small
enough there holds {ηε ∗ (±v

±
n )}n∈N ⊆ C∞

0 (Ω). Furthermore, we also have the convergences

ηε ∗ (±v
±
n ) → ±v±n uniformly in Ω as ε→ 0,

∂xi
(ηε ∗ (±v

±
n )) = ηε ∗ (±∂xi

v±n ) → ±∂xi
v±n in Lq+(Ω) as ε→ 0.

Hence, ηε ∗ (±v
±
n ) → ±v±n in W 1,H(Ω) by Proposition 2.13 (v) via checking the convergence in

ρH (note that Lq+(Ω) →֒ Lq(·)(Ω) →֒ LH(Ω) by Proposition 2.16 (vii)). This means that for
each ±v±n we can find another ṽ±,n ∈ C∞

0 (Ω) as close to ±v±n as we want in the norm ‖ · ‖H and
this new sequence satisfies ṽ±,n → ±u± in W 1,H(Ω).

�

From Proposition 2.16 we can derive the compact embedding of W 1,H(Ω) into LH(Ω) and

a equivalent norm for W 1,H
0 (Ω). For this purpose we need the following assumptions, more

restrictive as in (2.4).

(H) Ω ⊆ R
N , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, 0 ≤ µ(·) ∈ L∞(Ω)

and p, q ∈ C+(Ω) are such that
(i) 1 < p(x) < N for all x ∈ Ω;
(ii) p(x) < q(x) < p∗(x) for all x ∈ Ω.

Note that in any case they are significantly less restrictive as those used for the same purpose
in Proposition 2.18 of Colasuonno-Squassina [19]. For many results, this is the only reason to
ask for so restrictive assumptions, so they could be generalized to (H).

Proposition 2.18. Let hypothesis (H) be satisfied. Then the following hold:

(i) W 1,H(Ω) →֒ LH(Ω) is a compact embedding;
(ii) There exists a constant C > 0 independent of u such that

‖u‖H ≤ C‖∇u‖H for all u ∈W 1,H
0 (Ω).

Proof. The proof of (i) follows from Proposition 2.16 (iii) and (vii). For (ii), let us assume the

assertion is not true. Then there exists a sequence {un}n∈N ⊆W 1,H
0 (Ω) such that

‖un‖H > n ‖∇un‖H .

Let yn := un

‖un‖H
, then

1 >
1

n
> ‖∇yn‖H and ‖yn‖H = 1 for all n ∈ N,

i.e. the sequence {yn}n∈N is bounded in W 1,H
0 (Ω). Therefore, there exists a subsequence (not

relabeled) and y ∈ W 1,H
0 (Ω) such that

yn ⇀ y in W 1,H(Ω).

By the weak lower semicontinuity of the mapping v 7→ ‖∇v‖H on W 1,H
0 (Ω) (it is a convex,

continuous mapping) there holds

‖∇y‖H ≤ lim inf
n→∞

‖∇yn‖H ≤ lim
n→∞

1

n
= 0,

thus y = c ∈ R is a constant function. And by Proposition 2.16 (i) we have that y ∈ W
1,p(·)
0 (Ω),

where it is known that the only constant function is y = 0. However, this leads to a contradiction
since by (i)

yn → y in LH(Ω),

hence ‖y‖H = limn→∞ ‖yn‖H = 1, so y 6= 0. �
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Based on Proposition 2.18 we equip the space W 1,H
0 (Ω) with the norm

‖u‖1,H,0 = ‖∇u‖H for all u ∈ W 1,H
0 (Ω).

Similarly to Proposition 2.15, we next prove that this norm is a uniformly convex norm on
this space and satisfies the Radon–Riesz (or Kadec-Klee) property with respect to the modular.

Proposition 2.19. Let hypotheses (H) be satisfied.

(i) The norm ‖ · ‖1,H,0 on W 1,H
0 (Ω) is uniformly convex.

(ii) For any sequence {un}n∈N ⊆W 1,H
0 (Ω) such that

un ⇀ u in W 1,H
0 (Ω) and ρH(∇un) → ρH(∇u)

it holds that un → u in W 1,H
0 (Ω).

Proof. The argument is analogous to the one of the proof of Proposition 2.15 with some extra
considerations. First of all, consider the space (LH(Ω))N equipped with the Luxemburg norm
‖ · ‖ρH,N

given by the modular ρH,N (u) = ρH(|u|) for all u ∈ (LH(Ω))N . By Theorem 2.4 of

Fan-Guan [30], the norm ‖ · ‖ρH,N
on (LH(Ω))N is uniformly convex, and there is an isometric

embedding from W 1,H
0 (Ω) into (LH(Ω))N given by u 7→ ∇u. This finishes the proof of (i).

Regarding the assumptions (Q), take Y = W 1,H
0 (Ω) = X and the modular ρH(∇·), then (Q1)-

(Q6) hold by Proposition 2.13 and (Q7) holds by an analogous argument to the proof of (viii) in
the same proposition. Fix now any c > 0. Then the N -function given by cH is uniformly convex
and, by repeating the proof of (i) for this N -function, one gets that the norm ‖ · ‖1,cH,0 on

W 1,H
0 (Ω) is uniformly convex. Note also that ρH(∇u) → 0 if and only if ρcH(∇u) → 0, so they

generate the same topology. It is straightforward that (Q1) and (Q2) hold for cH, and (Q3)-(Q7)
follow doing an analogous argument to Proposition 2.13. Thus (ii) follows from Theorem 3.5 of
Fan-Guan [30]. �

It is also possible to have a more general criterion for compact embeddings of W 1,H(Ω) into
some Musielak-Orlicz spaces. This will also have as a consequence a Poincaré inequality for

W 1,H
0 (Ω). In order to do so we first need the definition of the Sobolev conjugate function of H.

We define for all x ∈ Ω

H1(x, t) =

{

tH(x, 1) if 0 ≤ t ≤ 1,

H(x, t) if t > 1.

Since Ω is a bounded, we know that LH(Ω) = LH1(Ω) and W 1,H(Ω) = W 1,H1(Ω), see
Musielak [53]. Therefore, for embedding results of W 1,H(Ω) we may use H1 instead of H. For
simplification, we write H instead of H1.

Definition 2.20. We denote by H−1(x, ·) : [0,∞) → [0,∞) for all x ∈ Ω the inverse function
of H(x, ·). Furthermore, we define H−1

∗ : Ω× [0,∞) → [0,∞) by

H−1
∗ (x, s) =

∫ s

0

H−1
1 (x, τ)

τ
N+1
N

dτ for all (x, s) ∈ Ω× [0,∞),

where H∗ : (x, t) ∈ Ω× [0,∞) → s ∈ [0,∞) is such that H−1
∗ (x, s) = t. The function H∗ is called

the Sobolev conjugate function of H.

We suppose the following stronger assumptions as that in (H).

(H’) Ω ⊆ R
N , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, 0 ≤ µ(·) ∈ C0,1(Ω)

and p, q ∈ C0,1(Ω) are chosen such that
(i) 1 < p(x) < N and p(x) < q(x) for all x ∈ Ω;

(ii)
q+
p−

< 1 +
1

N
,

Proposition 2.21. Let hypotheses (H’) be satisfied. Then the following hold:

(i) W 1,H(Ω) →֒ LH∗(Ω) continuously;
(ii) Let K : Ω × [0,∞) → [0,∞) be continuous such that K ∈ N(Ω) and K ≪ H∗, then

W 1,H(Ω) →֒ LK(Ω) compactly;
(iii) It holds H ≪ H∗ and in particular, W 1,H(Ω) →֒ LH(Ω) compactly;
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(iv) It holds

‖u‖H ≤ C‖∇u‖H for all u ∈W 1,H
0 (Ω),

where C > 0 is a constant independent of u.

Proof. The proof of the proposition follows directly from Theorems 1.1 and 1.2 of Fan [26], see
also Proposition 2.18 of Colasuonno-Squassina [19]. We only need to prove (P4) and condition
(2) of Proposition 3.1 in Fan [26], that is,

lim
t→+∞

H−1
∗ (x, t) = +∞ for all x ∈ Ω (2.9)

and there exist positive constants δ1 <
1
N , c1 and t1 such that

∣

∣

∣

∣

∂H(x, t)

∂xj

∣

∣

∣

∣

≤ c1(H(x, t))1+δ1 (j = 1, . . . , N) (2.10)

for all x ∈ Ω and t ≥ t1 for which ∇µ(x),∇p(x) and ∇q(x) exist and so ∂H(x,t)
∂xj

does. First,

note that for (x, t) ∈ µ−1({0})× [1,+∞) it holds H−1
1 (x, t) = t

1
p(x) and hence

H−1
∗ (x, t) = H−1

∗ (x, 1) +

∫ t

1

s(
1

p(x)−
N+1
N ) ds

= H−1
∗ (x, 1) +

1
1

p(x) −
N+1
N + 1

[

t(
1

p(x)
−N+1

N
+1) − 1

]

t→+∞
−−−−→ +∞

as 0 <
[

1
p(x) −

1
N

]

< 1 due to 1 < p(x) < N for all x ∈ Ω. For the rest of the points, i.e.,

(x, t) ∈ µ−1((0,+∞))× [1,+∞), note that

lim
t→+∞

tp(x) + µ(x)tq(x)

tq(x)
= µ(x) for all x ∈ Ω.

So for any ε > 0 there exist some Kx > 1 such that

tp(x) + µ(x)tq(x) < [ε+ µ(x)] tq(x) for all x ∈ Ω and for all t ≥ Kx,

and by inverting these strictly increasing functions

H−1
1 (x, t) >

(

t

ε+ µ(x)

)
1

q(x)

for all x ∈ Ω and for all t ≥ Kx,

which yields the situation to repeat the argument of the integral above. Hence (2.9) is satisfied.
For the second condition, we can find η > 0 small enough such that

q+ + η

p−
< 1 +

1

N
, (2.11)

see (H)(ii), and

ln(t) ≤ ctη (2.12)

with c depending only on η and ln being the natural logarithm. Denoting by cµ, cp, cq the
Lipschitz constants of µ, p, q, respectively, we have for t ≥ 1 by using (2.12),

∣

∣

∣

∣

∂H(x, t)

∂xj

∣

∣

∣

∣

≤ tp(x)
∣

∣

∣

∣

∂p

∂xj
(x)

∣

∣

∣

∣

ln(t) +

∣

∣

∣

∣

∂µ

∂xj
(x)

∣

∣

∣

∣

tq(x) + µ(x)tq(x)
∣

∣

∣

∣

∂q

∂xj
(x)

∣

∣

∣

∣

ln(t)

≤ (cpc+ cµ + cqc‖µ‖∞) tq(x)+η

≤ (cpc+ cµ + cqc‖µ‖∞)
(

tp(x) + µ(x)tq(x)
)

q++η

p−
.

Then, condition (2.10) is satisfied with

c1 = cpc+ cµ + cqc‖µ‖∞, t0 ≥ 1 and δ1 =
q+ + η

p−
− 1 <

1

N
,

see also (2.11). �
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Next, we want to answer the question when smooth functions are dense in W 1,H(Ω). This
result is of independent interest and our idea is to apply Theorem 6.4.7 of Harjulehto-Hästö
[41]. First we recall some definitions stated in [41].

Definition 2.22.

(i) We call a function g : (0,∞) → R almost increasing if there exists a constant a ≥ 1 such
that g(s) ≤ ag(t) for all 0 < s < t. Similarly, we define almost decreasing functions.

(ii) We say that ϕ : Ω× [0,∞) → [0,∞] is a Φ-prefunction if x 7→ ϕ(x, |f(x)|) is measurable
for every measurable function f : Ω → R, ϕ(x, 0) = 0,

lim
t→0+

ϕ(x, t) = 0 and lim
t→∞

ϕ(x, t) = ∞ for a. a. x ∈ Ω.

If in addition the condition

ϕ(x, t)

t
is almost increasing for a. a. x ∈ Ω

is satisfied, then ϕ is called a weak Φ-function and the class of all weak Φ-functions is
denoted by Φw(Ω).

(iii) We say that ϕ ∈ Φw(Ω) satisfies (A0), if there exists a constant β ∈ (0, 1] such that
β ≤ ϕ−1(x, 1) ≤ 1

β for a. a. x ∈ Ω.

(iv) We say that ϕ ∈ Φw(Ω) satisfies (A1), if there exists β ∈ (0, 1) such that

βϕ−1(x, t) ≤ ϕ−1(y, t)

for every t ∈ [1, 1
|B| ], for a. a. x, y ∈ B ∩ Ω and for every ball B with |B| ≤ 1.

(v) We say that ϕ ∈ Φw(Ω) satisfies (A1’), if there exists β ∈ (0, 1) such that

ϕ(x, βt) ≤ ϕ(y, t)

for every ϕ(y, t) ∈ [1, 1
|B| ], for a. a. x, y ∈ B ∩ Ω and for every ball B with |B| ≤ 1.

(vi) We say that ϕ ∈ Φw(Ω) satisfies (A2), if for every s > 0 there exist β ∈ (0, 1] and
h ∈ L1(Ω) ∩ L∞(Ω) such that

βϕ−1(x, t) ≤ ϕ−1(y, t)

for a. a. x ∈ Ω and for all t ∈ [h(x) + h(y), s].
(vii) We say that ϕ : Ω× (0,∞) → R satisfies (aDec) if there exists ℓ ∈ (0,∞) such that

ϕ(x, t)

tℓ
is almost decreasing for a. a. x ∈ Ω.

In the sequel we will use f ≈ g and f . g if there exist constants c1, c2 > 0 such that
c1f ≤ g ≤ c2f and f ≤ c2g, respectively.

Now we are ready to prove the density of smooth functions in the Musielak-Orlicz Sobolev
space W 1,H(Ω).

Theorem 2.23. Let hypotheses (H’) be satisfied, where (H’)(ii) is replaced by

q+
p−

≤ 1 +
1

N
. (2.13)

Then C∞(Ω) ∩W 1,H(Ω) is dense in W 1,H(Ω).

Proof. We are going to apply Theorem 6.4.7 of Harjulehto-Hästö [41]. First note thatH ∈ Φw(Ω)
(see also Definitions 2.1.2, 2.5.1 and 2.5.2 in [41]). Furthermore we have

1 ≤ H(x, 2) ≤ (2p+ + ‖µ‖∞2q+) · 1 for all x ∈ Ω.

Hence H(x, 2) ≈ 1 and so we can apply Corollary 3.7.5 in [41] which shows that H satisfies
condition (A0). For t ∈ [0, s] we have

tp(x) + µ(x)tq(x) ≈ tp(x),

where the constants depend on s. Hence, Lemma 4.2.5 in [41] implies that condition (A2) is
satisfied. Moreover, by Lemma 2.2.6 in [41], we know that (aDec) is satisfied since H ∈ Φw(Ω)
fulfills the ∆2-condition, see (2.5).
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It remains to show that (A1) is satisfied. First we note that since H ∈ Φw(Ω) satisfies (A0),
we know that it is enough to show that H ∈ Φw(Ω) fulfills (A1’), see [41, Corollary 4.1.6].
Therefore, we need to show that there exists β ∈ (0, 1) such that

H(x, βt) ≤ H(y, t)

for every H(y, t) ∈ [1, 1
|B| ], for a. a.x, y ∈ B ∩ Ω and for every ball B with |B| ≤ 1.

For this purpose let us fix a ball B ⊆ R
N of radius r > 0, such that |B| ≤ 1 (in particular

r < 1). We know that |B| = α(N)rN , where α(N) > 1 is a constant depending only on the
dimension N . Note that the condition

H(y, t) = tp(y) + µ(y)tq(y) ∈

[

1,
1

α(N)rN

]

(2.14)

implies that

tp− (1 + ‖µ‖∞) = tp− + ‖µ‖∞t
p− ≥

{

tp(y) + µ(y)tq(y) ≥ 1, if t ≤ 1,

1, if t ≥ 1,

and

tp− ≤

{

tp(y) ≤ tp(y) + µ(y)tq(y) ≤ 1
α(N)rN

, if t ≥ 1,
1

α(N)rN , if t ≤ 1.

Note that the last inequality for t ≤ 1 is always true since tp− ≤ 1 ≤ 1
|B| as |B| ≤ 1. Hence,

(2.14) implies in particular that

t ∈
[

(1 + ‖µ‖∞)
− 1

p− , α(N)
− 1

p− r
− N

p−

]

. (2.15)

Now, it is enough to show that there exists β ∈ (0, 1) such that

(βt)p(x) + µ(x)(βt)q(x) ≤ tp(y) + µ(y)tq(y) (2.16)

for all t satisfying (2.15) and almost all x, y ∈ Ω such that |x− y| ≤ 2r.
Claim: For all t satisfying (2.15) and almost all x, y ∈ Ω such that |x− y| ≤ 2r we have

tp(x) ≤M · tp(y) and tq(x) ≤M · tq(y), (2.17)

for some constant M =M(N, p, q, µ) > 0 not depending on x, y, t.
So, let us fix t satisfying (2.15) and x, y ∈ Ω such that |x − y| ≤ 2r. Since p ∈ C0,1(Ω) we

have
|p(x)− p(y)| ≤ cp|x− y| ≤ 2rcp, (2.18)

where cp > 0 denotes the Lipschitz constant of the function p.
Case I: If t ≤ 1 and p(x) ≥ p(y) or t ≥ 1 and p(x) ≤ p(y) then the first inequality in (2.17)

holds with M = 1.
Case II: If t ≤ 1 and p(x) ≤ p(y) then by applying (2.15) it follows that

tp(x) = tp(x)−p(y)tp(y) ≤
(

(1 + ‖µ‖∞)
1

p−

)p(y)−p(x)

tp(y) ≤ (1 + ‖µ‖∞)
p+
p− tp(y).

Thus the first inequality in (2.17) hold with M = (1 + ‖µ‖∞)
p+
p− .

Case III: If t ≥ 1 and p(x) ≥ p(y) we have by using (2.15) and (2.18)

tp(x) = tp(x)−p(y)tp(y) ≤
(

α(N)
− 1

p− r
− N

p−

)2rcp
tp(y) ≤

(

α(N)
−

2cp
p−

)r

(rr)
−

2Ncp
p− tp(y).

Note that the function δ(r) =
(

α(N)
−

2cp
p−
)r
(rr)

−
2Ncp
p− is strictly positive and continuous on the

interval

[

0, 1

α(N)
1
N

]

where δ(0) = 1. Hence it attains its maximum at some r0 ∈

[

0, 1

α(N)
1
N

]

.

Then the first inequality in (2.17) holds for M = δ(r0) > 0. The second inequality in (2.17) can
be done in an analogous way again via three cases. Taking M as the maximum of the six cases
shows the assertion of the Claim.

Let us now prove (2.16). Since µ ∈ C0,1(Ω) and |x− y| ≤ 2r we have

|µ(x)− µ(y)| ≤ cµ|x− y| ≤ 2cµr, (2.19)
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where cµ > 0 is the Lipschitz constant of the function µ.
Let us start with the left hand side of (2.16). Since β ∈ (0, 1) and taking (2.17) as well as

(2.19) into account, we get

(βt)p(x) + µ(x)(βt)q(x) ≤ βp− tp(x) + µ(x)βp− tq(x)

≤ βp−M
(

tp(y) + µ(x)tq(y)
)

≤ βp−M
(

tp(y) + µ(y)tq(y) + 2cµrt
q(y)
)

≤ βp−M
(

tp(y) + 2cµrt
q(y)
)

+ µ(y)tq(y),

(2.20)

where the last inequality holds providing β < M
− 1

p− . Continuing (2.20) and applying (2.15) we
have

(βt)p(x) + µ(x)(βt)q(x) ≤ βp−Mtp(y)
(

1 + 2cµrt
q(y)−p(y)

)

+ µ(y)tq(y)

≤ βp−Mtp(y)
(

1 + 2cµr
(

α(N)
− 1

p− r
− N

p−

)q+−p−
)

+ µ(y)tq(y)

= βp−Mtp(y)
(

1 + 2cµα(N)
−

q+
p−

+1
r
1+N−N

q+
p−

)

+ µ(y)tq(y).

(2.21)

From (2.13) we have 1+N −N q+
p−

≥ 0. Using this we may continue (2.21) since r < 1 as follows

(βt)p(x) + µ(x)(βt)q(x) ≤ βp−Mtp(y)
(

1 + 2cµα(N)
−

q+
p−

+1
)

+ µ(y)tq(y).

Choosing β > 0 small enough, namely

β < M
− 1

p−

(

1 + 2cµα(N)
−

q+
p−

+1
)− 1

p−

,

we see that (2.16) holds. Note that the choice of β depends only on N, p, q and µ. Therefore,
H ∈ Φw(Ω) satisfies (A1’) and so (A1). The assertion of the proposition follows now from
Theorem 6.4.7 of Harjulehto-Hästö [41]. �

A careful reading of the proof of Theorem 2.23 shows that the boundedness of Ω is not used.
This leads to the following result.

Theorem 2.24. Let hypotheses (H’) be satisfied, where Ω ⊆ R
N , N ≥ 2 is an unbounded

domain, 0 ≤ µ(·) ∈ L∞(Ω) ∩ C0,1(Ω) and condition (H)(ii) is replaced by

q+
p−

≤ 1 +
1

N
.

Then C∞(Ω) ∩W 1,H(Ω) is dense in W 1,H(Ω).

Next, we are going to prove the density under weaker assumptions as in the Theorems 2.23
and 2.24. First we recall the following definition.

Definition 2.25. We say that a function g : Ω → R satisfies the log-Hölder decay condition if
there exists g∞ ∈ R and a constant cg > 0 such that

|g(x)− g∞| ≤
cg

log(e+ |x|)
for all x ∈ Ω.

We suppose the following conditions which are weaker than (H’):

(H”) Ω ⊆ R
N , N ≥ 2, is an unbounded domain, 0 ≤ µ(·) ∈ L∞(Ω) and p : Ω → [1,∞),

q : Ω → [1,∞) are bounded functions that are log-Hölder continuous and satisfy the
log-Hölder decay condition with p(x) ≤ q(x) for all x ∈ Ω.

We start with a characterization of condition (A1).

Proposition 2.26. Let hypotheses (H”) be satisfied. Then H(x, t) = tp(x) + µ(x)tq(x) satisfies
condition (A1) if and only if there exists a constant β > 0 such that

βµ(y)
1

q(y) ≤ |x− y|N(
1

p(y)
− 1

q(y) ) + µ(x)
1

q(x)
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for every x, y ∈ Ω.

Proof. Let us first observe that H(x, t) ≈ max{tp(x), µ(x)tq(x)} and hence

H−1(x, t) ≈ min

{

t
1

p(x) ,

(

t

µ(x)

)
1

q(x)

}

.

After dividing by t
1

q(y) condition (A1) becomes

βmin
{

t
1

p(x)−
1

q(y) , µ(x)−
1

q(x) t
1

q(x)−
1

q(y)

}

≤ min
{

t
1

p(y)−
1

q(y) , µ(y)−
1

q(y)

}

for x, y ∈ B ∩ Ω, |B| ≤ 1 and t ∈
[

1, 1
|B|

]

.

If p(x) ≤ p(y), then

t
1

p(x) ≤ t
1

p(x)
− 1

p(y) t
1

p(y) ≤ |B|
1

p(y)
− 1

p(x) t
1

p(y) . t
1

p(y) ,

where we have used the log-Hölder continuity of 1
p and t ∈

[

1, 1
|B|

]

, see Lemma 4.16 in Diening-

Harjulehto-Hästö-Růžička [25]. If p(x) ≥ p(y), then t
1

p(x) ≤ t
1

p(y) since t ≥ 1. Similarly we

obtain by the log-Hölder continuity that t
1

q(x)
− 1

q(y) ≤ C.
Thus for (A1) we need to verify that

βmin
{

t
1

p(y)
− 1

q(y) , µ(x)−
1

q(x)

}

≤ min
{

t
1

p(y)
− 1

q(y) , µ(y)−
1

q(y)

}

for x, y ∈ B ∩ Ω, |B| ≤ 1 and t ∈
[

1, 1
|B|

]

.

We may assume that diam(B) ≤ 2|x − y|. The case µ(y)−
1

q(y) ≥ t
1

p(y)
− 1

q(y) is trivial, so the
condition is equivalent to

βmin
{

t
1

p(y)
− 1

q(y) , µ(x)−
1

q(x)

}

≤ µ(y)−
1

q(y)

for µ(y)−
1

q(y) < t
1

p(y)−
1

q(y) . Since the exponent of t is positive, we only need to check the
inequality for the upper bound of t, namely t = 1

|B| . Moreover, |B| ≈ |x − y|N . Thus the

condition is further equivalent to

βmin
{

|x− y|−N(
1

p(y)
− 1

q(y) ), µ(x)−
1

q(x)

}

≤ µ(y)−
1

q(y) ,

that is, equivalent to

βµ(y)
1

q(y) ≤ max
{

|x− y|N(
1

p(y)−
1

q(y) ), µ(x)
1

q(x)

}

≈ |x− y|N(
1

p(y)−
1

q(y) ) + µ(x)
1

q(x) .

�

Next we can give a sufficient condition for H(·, ·) to satisfy assumption (A1).

Proposition 2.27. Let hypotheses (H”) be satisfied and let in addition q : Ω → [1,∞) be α
q−

-

Hölder continuous and µ : Ω → [0,∞) be α-Hölder continuous. If q(x)
p(x) ≤ 1 + α

N , then H(x, t) =

tp(x) + µ(x)tq(x) satisfies condition (A1).

Proof. From Proposition 2.26 we know that (A1) holds with β = 1 if
∣

∣

∣µ(x)
1

q(x) − µ(y)
1

q(y)

∣

∣

∣ ≤ |x− y|Nγ

for all x and y with |x− y| ≤ 1 where γ = max
{

1
p(y) −

1
q(y) ,

1
p(x) −

1
q(x)

}

. We may assume that
1

p(y) −
1

q(y) ≥
1

p(x) −
1

q(x) . First we use the triangle inequality to obtain
∣

∣

∣µ(x)
1

q(x) − µ(y)
1

q(y)

∣

∣

∣ =
∣

∣

∣µ(x)
1

q(x) − µ(x)
1

q(y) + µ(x)
1

q(y) − µ(y)
1

q(y)

∣

∣

∣

≤
∣

∣

∣µ(x)
1

q(x) − µ(x)
1

q(y)

∣

∣

∣+
∣

∣

∣µ(x)
1

q(y) − µ(y)
1

q(y)

∣

∣

∣ .
(2.22)

We estimate the first term on the right-hand side of (2.22). To this end, let f(t) = at. Then,
by the mean value theorem, f(v)− f(u) = f ′(ξ)(v − u) for some ξ between u and v. We choose
a = µ(x), u = 1

q(x) and v = 1
q(y) . Then a ∈ [0, ‖µ‖∞] and u, v ∈ [ 1

q+
, 1].
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Next we show that |f ′(ξ)| is bounded. If a ≥ 1, then

|f ′(ξ)| = aξ ln(a) ≤ ‖µ‖∞ ln(‖µ‖∞).

For a ∈ [0, 1) we obtain

|f ′(ξ)| = −aξ ln(a) ≤ −a
1

q+ ln(a).

A simple calculation shows that a 7→ −a
1

q+ ln(a) got it largest value in [0, 1] at e−q+ . Hence
|f ′(ξ)| ≤ q+

e . Thus we have
∣

∣

∣µ(x)
1

q(x) − µ(x)
1

q(y)

∣

∣

∣ = |f(v)− f(u)| ≤ c

∣

∣

∣

∣

1

q(x)
−

1

q(y)

∣

∣

∣

∣

≤ c|q(y)− q(x)| ≤ ccq|x− y|
α
q− ,

(2.23)

where c is a constant depending on a and q, the constant cq is from the α
q−

-Hölder continuity of

q and |x− y| ≤ 1.

From q(x)
p(x) ≤ 1 + α

N we obtain

N

(

1

p(y)
−

1

q(y)

)

≤
N

q(y)

(

q(y)

p(y)
− 1

)

≤
N

q(y)

α

N
≤

α

q−
. (2.24)

Combining (2.23) and (2.24) gives
∣

∣

∣µ(x)
1

q(x) − µ(x)
1

q(y)

∣

∣

∣ ≤ c (‖a‖∞, q+) cq|x− y|N(
1

p(y)
− 1

q(y) ).

Let us now estimate the second term of the right-hand side of (2.22). We use the inequality
|xr − yr| ≤ |x− y|r, where x, y ≥ 0 and r ∈ (0, 1], in order to obtain

∣

∣

∣
µ(x)

1
q(y) − µ(y)

1
q(y)

∣

∣

∣
≤ |µ(x) − µ(y)|

1
q(y) ≤ c

1
q−
µ |x− y|

α
q(y) , (2.25)

where the constant cµ is from the α-Hölder continuity of µ.

From q(x)
p(x) ≤ 1 + α

N we obtain

N

(

1

p(y)
−

1

q(y)

)

≤
N

q(y)

(

q(y)

p(y)
− 1

)

≤
N

q(y)

α

N
=

α

q(y)
. (2.26)

Combining (2.25) and (2.26) gives
∣

∣

∣µ(x)
1

q(y) − µ(y)
1

q(y)

∣

∣

∣ ≤ c
1

q−
µ |x− y|N(

1
p(y)

− 1
q(y) ).

�

Now we are ready to prove the density of the smooth functions in the Musielak-Orlicz Sobolev
space W 1,H(Ω) when Ω is unbounded under the assumptions (H”).

Theorem 2.28. Let hypotheses (H”) be satisfied and let in addition q : Ω → [1,∞) be α
q−

-Hölder

continuous and µ : Ω → [0,∞) be α-Hölder continuous. If q(x)p(x) ≤ 1+ α
N , then C∞(Ω)∩W 1,H(Ω)

is dense in W 1,H(Ω).

Proof. As in Theorem 2.23 we will show the result by applying Theorem 6.4.7 of Harjulehto-
Hästö [41]. In the same way as in Theorem 2.23 we know that H ∈ Φw(Ω) fulfills (A0) , (A2)
and (aDec). Finally, from Proposition 2.27 we know that (A1) is satisfied and the assertion of
the theorem follows. �

Remark 2.29. Note that for bounded domains the log-Hölder condition (local condition) in
(H”) is enough, we do not need the log-Hölder decay condition (condition near infinity).

Comparison the assumptions of Theorems 2.23 and 2.28 for bounded domains with Lipschitz
boundary, we see that the assumptions in Theorem 2.28 are weaker than those in Theorem 2.23.
Indeed the Lipschitz continuity can be replaced by certain Hölder or log-Hölder conditions and
the inequality (2.13) implies

q(x)

p(x)
≤ 1 +

1

N
for all x ∈ Ω and for α = 1.
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In the unbounded case the situation is a bit different. The assumptions of Theorem 2.24 imply
the ones of Theorem 2.28 except the log-Hölder decay condition. Indeed, Lipschitz continuity
does not imply the log-Hölder decay condition.

Let us now comment on the well-known eigenvalue problem for the r-Laplacian with homo-
geneous Dirichlet boundary condition and 1 < r <∞ defined by

−∆ru = λ|u|r−2u in Ω,

u = 0 on ∂Ω.
(2.27)

It is known that the first eigenvalue λ1,r of (2.27) is positive, simple, and isolated. Moreover,
it can be variationally characterized through

λ1,r = inf
u∈W 1,r(Ω)

{∫

Ω

|∇u|r dx :

∫

Ω

|u|r dx = 1

}

, (2.28)

see Lê [46]. We will make use of the first eigenvalue in the statements of Theorems 4.4 and 4.6.
We now recall some definitions that we will use in the sequel.

Definition 2.30. Let X be a reflexive Banach space, X∗ its dual space and denote by 〈· , ·〉 its
duality pairing. Let A : X → X∗, then A is called

(i) to satisfy the (S+)-property if un ⇀ u in X and lim supn→∞〈Aun, un − u〉 ≤ 0 imply
un → u in X;

(ii) pseudomonotone if un ⇀ u in X and lim supn→∞〈Aun, un − u〉 ≤ 0 imply

lim inf
n→∞

〈Aun, un − v〉 ≥ 〈Au, u− v〉 for all v ∈ X ;

(iii) coercive if there exists some function g : [0,∞) → R such that limt→+∞ g(t) = +∞ and

〈Au, u〉

‖u‖X
≥ g(‖u‖X) for all u ∈ X.

Remark 2.31. Note that if the operator A : X → X∗ is bounded, then the definition of pseu-
domonotonicity in Definition 2.30 (ii) is equivalent to un ⇀ u in X and lim supn→∞〈Aun, un−
u〉 ≤ 0 imply Aun ⇀ Au and 〈Aun, un〉 → 〈Au, u〉. We will use this equivalent condition for
bounded operators in Section 4.

Our existence result is based on the following surjectivity result for pseudomonotone opera-
tors, see, for example, Papageorgiou-Winkert [58, Theorem 6.1.57].

Theorem 2.32. Let X be a real, reflexive Banach space, let A : X → X∗ be a pseudomonotone,
bounded, and coercive operator, and b ∈ X∗. Then, a solution of the equation Au = b exists.

3. Properties of the variable exponent double phase operator

In this section we introduce the new double phase operator A related to our problem (1.6) and

its corresponding energy functional I given in (1.3). To this end, let A : W 1,H
0 (Ω) →W 1,H

0 (Ω)∗

be given by

〈A(u), v〉H =

∫

Ω

(

|∇u|p(x)−2∇u · ∇v + µ(x)|∇u|q(x)−2∇u · ∇v
)

dx,

for all u, v ∈ W 1,H
0 (Ω), where 〈· , ·〉H denotes the duality pairing between W 1,H

0 (Ω) and its dual

space W 1,H
0 (Ω)∗. As mentioned in the Introduction, the energy functional I : W 1,H

0 (Ω) → R

related to A is given by

I(u) =

∫

Ω

(

|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)

dx

for all u ∈W 1,H
0 (Ω).

Proposition 3.1. Let hypothesis (2.4) be satisfied. Then the functional I is well-defined and
of class C1 with I ′(u) = A(u).
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Proof. The energy functional I is well defined for any u ∈WH
0 (Ω) since

0 ≤
ρH(∇u)

q+
≤ I(u) ≤

ρH(∇u)

p−
<∞.

The Gateaux derivative is given by A since for any u, h ∈ WH
0 (Ω), some t ∈ R and some

θx,t ∈ (0, 1) given by the Mean Value Theorem, we have

∫

Ω

|∇u+ t∇h|
p(x)

− |∇u|
p(x)

tp(x)
dx =

∫

Ω

|∇u+ θx,tt∇h|
p(x)−2

(∇u + θx,tt∇h) · ∇h dx

t→0
−−−→

∫

Ω

|∇u|
p(x)−2

∇u · ∇h dx.

The limit follows from the Dominated Convergence Theorem, Proposition 2.16 (i), Hölder’s
inequality and Proposition 2.4 (iii) and (iv), as for 0 < |t| < t0, it holds

|∇u+ θx,tt∇h|
p(x)−2 (∇u+ θx,tt∇h) · ∇h ≤ 2p+−1

(

|∇u|p(x)−1 + t0 |∇h|
p(x)−1

)

|∇h|

and
∫

Ω

|∇u|
p(x)−1

|∇h| dx ≤ 2
∥

∥

∥|∇u|
p(·)−1

∥

∥

∥

p(·)
p(x)−1

‖∇h‖p(·)

≤ 2
(

̺p(·)(|∇u|)
)a

‖∇h‖p(·) ≤ 2 ‖∇u‖bp(·) ‖∇h‖p(·) ,

where a, b > 0 are the exponents depending on the cases of Proposition 2.4 (iii) and (iv).
The same arguments work on the terms with exponent q(·) by using Proposition 2.16 (vi) and

splitting µ(x) = µ(x)
1

q(x) µ(x)
q(x)−1
q(x) for using Hölder’s inequality.

The C1-property follows since for any sequence un → u in WH
0 (Ω) and h ∈ WH

0 (Ω) with
‖h‖1,H = 1, we have by Hölder’s inequality and Proposition 2.16 (i)

∫

Ω

(

|∇un|
p(x)−2

∇un − |∇u|
p(x)−2

∇u
)

· ∇h dx

≤ 2
∥

∥

∥

∣

∣

∣|∇un|
p(·)−2

∇un − |∇u|
p(·)−2

∇u
∣

∣

∣

∥

∥

∥

p(·)
p(·)−1

‖∇h‖p(·)
n→∞
−−−−→ 0.

The convergence in L
p(·)

p(·)−1 (Ω) follows by Proposition 2.4 (v) and Vitali’s Theorem (see Bo-
gachev [15, Theorem 4.5.4]) since we have the convergence in measure because of ∇un → ∇u
in Lp(·)(Ω) and we have the uniform integrability by the uniform integrability of the sequence

{|∇un|
p(x)}n∈N due to the same convergence in Lp(·) as before and

∣

∣

∣|∇un|
p(x)−2

∇un − |∇u|
p(x)−2

∇u
∣

∣

∣

p(x)
p(x)−1

≤ 2
p+

p−−1−1
(

|∇un|
p(x)

+ |∇u|
p(x)
)

.

The same arguments work on the terms with exponents q(x) by using Proposition 2.4(iii), (iv),

Proposition 2.16(vi) and splitting µ(x) = µ(x)
1

q(x) µ(x)
q(x)−1
q(x) again for using Hölder’s inequality.

�

Before we give the main properties of the operator, we first state a general version of the
reverse Hölder inequality. Since we did not find any reference, we will also give the proof for it.

Lemma 3.2. Let (S,Σ, λ) be a measure space with λ(S) > 0 and let r : S → [1,∞) be measurable
with 1 < r− := ess infS r ≤ r+ := ess supS r <∞. Then for any measurable functions f, g : S →
K such that g(s) 6= 0 µ-a.e. it holds

max

{

‖fg‖
1

r−

1 , ‖fg‖
1

r+

1

}

≥

[

1

r−
+

1

r′−

]−1
∥

∥

∥|f |
1

r(·)

∥

∥

∥

1
min

{

∥

∥

∥|g|
−1

r(·)−1

∥

∥

∥

1−r+
r−

1
,
∥

∥

∥|g|
−1

r(·)−1

∥

∥

∥

1−r−
r+

1

}

≥
1

2

∥

∥

∥
|f |

1
r(·)

∥

∥

∥

1
min

{

∥

∥

∥
|g|

−1
r(·)−1

∥

∥

∥

1−r+
r−

1
,
∥

∥

∥
|g|

−1
r(·)−1

∥

∥

∥

1−r−
r+

1

}

.
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Proof. Applying Hölder’s inequality one gets
∥

∥

∥|f |
1

r(·)

∥

∥

∥

1
=
∥

∥

∥|fg|
1

r(·) |g|
−1
r(·)

∥

∥

∥

1
≤

[

1

r−
+

1

r′−

]

∥

∥

∥|fg|
1

r(·)

∥

∥

∥

r(·)

∥

∥

∥|g|
−1
r(·)

∥

∥

∥

r(·)
r(·)−1

.

From the comparison between the norm and the modular, see Proposition 2.4 (iii) and (iv), we
obtain

∥

∥

∥|f |
1

r(·)

∥

∥

∥

1
≤

[

1

r−
+

1

r′−

]

max

{

‖fg‖
1

r−

1 , ‖fg‖
1

r+

1

}

max

{

∥

∥

∥|g|
−1

r(·)−1

∥

∥

∥

r+−1

r−

1
,
∥

∥

∥|g|
−1

r(·)−1

∥

∥

∥

r−−1

r+

1

}

.

�

Now we are in the position to present the main properties of the operator A motivated by
the work of Liu-Dai [48] for the constant exponent case.

Theorem 3.3.

(i) Let hypothesis (2.4) be satisfied. Then the operator A : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ is con-
tinuous, bounded and strictly monotone.

(ii) Let hypothesis (H) be satisfied. Then the operator A : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ satisfies
the (S+)-property, that is,

un ⇀ u in W 1,H
0 (Ω) and lim sup

n→∞
〈A(un), un − u〉 ≤ 0,

imply un → u in W 1,H
0 (Ω);

(iii) Let hypothesis (H) be satisfied. Then the operator A : W 1,H
0 (Ω) →W 1,H

0 (Ω)∗ is coercive
and a homeomorphism.

Proof. (i) By Proposition 3.1, A = I ′ with I of class C1, so A is continuous.
From the well-known inequality

(

|ξ|r−2ξ − |η|r−2η
)

· (ξ − η) > 0 if r > 1, for all ξ, η ∈ R
N with ξ 6= η,

we see that

〈A(u)−A(v), u − v〉 =

∫

Ω

(

|∇u|p(x)−2∇u− |∇v|p(x)−2∇v
)

· (∇u−∇v) dx

+

∫

Ω

µ(x)
(

|∇u|q(x)−2∇u− |∇v|q(x)−2∇v
)

· (∇u −∇v) dx > 0

whenever u 6= v which proves the strict monotonicity of A. Let us now prove that A is bounded.

Taking u, v ∈ W 1,H
0 (Ω) \ {0}, by applying Young’s inequality, we obtain

min

{

1

‖u‖
q+−1
1,H

,
1

‖u‖
p−−1
1,H

}

〈

A(u),
v

‖v‖1,H

〉

≤ min

{

1

‖u‖
q+−1
1,H

,
1

‖u‖
p−−1
1,H

}

∫

Ω

[

|∇u|p(x)−1 |∇v|

‖v‖1,H
+µ(x)|∇u|q(x)−1 |∇v|

‖v‖1,H

]

dx

≤

∫

Ω

[

∣

∣

∣

∣

∇u

‖u‖1,H

∣

∣

∣

∣

p(x)−1
|∇v|

‖v‖1,H
+ µ(x)

q(x)−1
q(x)

∣

∣

∣

∣

∇u

‖u‖1,H

∣

∣

∣

∣

q(x)−1

µ(x)
1

q(x)
|∇v|

‖v‖1,H

]

dx

≤
p+ − 1

p−

∫

Ω

∣

∣

∣

∣

∇u

‖u‖1,H

∣

∣

∣

∣

p(x)

dx+
1

p−

∫

Ω

∣

∣

∣

∣

∇v

‖v‖1,H

∣

∣

∣

∣

p(x)

dx

+
q+ − 1

q−

∫

Ω

µ(x)

∣

∣

∣

∣

∇u

‖u‖1,H

∣

∣

∣

∣

q(x)

dx+
1

q−

∫

Ω

µ(x)

∣

∣

∣

∣

∇v

‖v‖1,H

∣

∣

∣

∣

q(x)

dx

≤
q+ − 1

p−
ρH

(

∇u

‖u‖1,H

)

+
1

p−
ρH

(

∇v

‖v‖1,H

)

≤
q+ − 1

p−
ρH

(

∇u

‖u‖1,H,0

)

+
1

p−
ρH

(

∇v

‖v‖1,H,0

)

=
q+ − 1

p−
+

1

p−
=
q+
p−
.
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This fact gives

‖A(u)‖∗ = sup
v∈W 1,H

0 (Ω)
v 6=0

〈A(u), v〉

‖v‖1,H
≤
q+
p−

max
{

‖u‖
q+−1
1,H , ‖u‖

p−−1
1,H

}

.

Hence, A is bounded.

(ii) Let {un}n∈N ⊆W 1,H
0 (Ω) be a sequence such that

un ⇀ u in W 1,H
0 (Ω) and lim sup

n→∞
〈A(un), un − u〉 ≤ 0. (3.1)

The weak convergence of un to u in W 1,H
0 (Ω) yields

lim
n→∞

〈A(u), un − u〉 = 0.

This fact along with (3.1) gives

lim sup
n→∞

〈A(un)−A(u), un − u〉 ≤ 0.

Then, the strict monotonicity of A implies that

0 ≤ lim inf
n→∞

〈A(un)−A(u), un − u〉 ≤ lim sup
n→∞

〈A(un)−A(u), un − u〉 ≤ 0.

Hence, we get
lim
n→∞

〈A(un)−A(u), un − u〉 = 0 = lim
n→∞

〈A(u), un − u〉 . (3.2)

Claim: ∇un → ∇u in Lp(·)(Ω)
Splitting the integral in {p ≥ 2} := {x ∈ Ω : p(x) ≥ 2} and {p < 2} := {x ∈ Ω : p(x) < 2}

and noting that all four terms in (3.2) are non-negative yields

lim
n→∞

∫

{p≥2}

(

|∇un|
p(x)−2

∇un − |∇u|
p(x)−2

∇u
)

· (∇un −∇u) dx = 0, (3.3)

lim
n→∞

∫

{p<2}

(

|∇un|
p(x)−2

∇un − |∇u|
p(x)−2

∇u
)

· (∇un −∇u) dx = 0. (3.4)

From Simon [65, formula (2.2)] we have the well-known inequalities

cp|ξ − η|p ≤
(

|ξ|p−2ξ − |η|p−2η
)

· (ξ − η) if p ≥ 2, (3.5)

Cp|ξ − η|2 ≤
(

|ξ|p−2ξ − |η|p−2η
)

· (ξ − η) (|ξ|p + |η|p)
2−p
p if 1 ≤ p ≤ 2, (3.6)

for all ξ, η where

cp = 5
2−p
2 and Cp = (p− 1)2

(p−1)(p−2)
p , (3.7)

see also Lindqvist [47, chapter 12]. Note that the constants in (3.7) are not optimal, but sufficient
for our treatment.

From (3.3) and by the inequality (3.5) it follows

lim
n→∞

∫

{p≥2}

|∇un −∇u|p(x) dx = 0,

and in the following lines it will be proved that the same holds in {p < 2}, hence

lim
n→∞

̺p(·)(∇un −∇u) = lim
n→∞

∫

Ω

|∇un −∇u|
p(x)

dx = 0,

so the Claim follows by Proposition 2.4.
Let En = {∇un 6= 0}∪{∇u 6= 0}. By the absolute continuity of the Lebesgue integral, as the

integrand is zero outside En, and by (3.6) with p+,k = 2− 1/k (note also p− 2 < 0) it follows
∫

{p<2}

(

|∇un|
p(x)−2 ∇un − |∇u|p(x)−2 ∇u

)

· (∇un −∇u) dx

= lim
k→∞

∫

En∩{p≤p+,k}

(

|∇un|
p(x)−2

∇un − |∇u|
p(x)−2

∇u
)

· (∇un −∇u) dx

≥ lim sup
k→∞

(p− − 1)2
(p+,k−1)(p−−2)

p−

∫

En∩{p≤p+,k}

|∇un −∇u|
2
(

|∇un|
p(x)

+ |∇u|
p(x)
)

p(x)−2
p(x)

dx
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≥ (p− − 1)2
(p−−2)

p− lim sup
k→∞

∫

En∩{p≤2−1/k}

|∇un −∇u|
2
(

|∇un|
p(x)

+ |∇u|
p(x)
)

p(x)−2
p(x)

dx.

By (3.4), for n ≥ n0 for some n0 ∈ N, the limit superior is strictly smaller than one, thus the
same holds for the integrals k large enough. Hence, when we apply Lemma 3.2 to our integral

with r(·) = 2
p(·) the maximum of the left-hand side of the lemma is attained at ‖fg‖

1
r+

1 . Note

that (consider p−,k = p−)

r±,k =
2

p∓,k
and

1− r±,k
r∓,k

=
p±,k(p∓,k − 2)

2p∓,k
.

Applying this result, again because the integrands are zero outside En, as {un}n∈N is bounded
in the modular by some constant M > 1 (due to its weak convergence and Proposition 2.4 (iii)
and (iv)) and as (p±,k − 2) < 0, for n ≥ n0, we have

∫

{p<2}

(

|∇un|
p(x)−2

∇un − |∇u|
p(x)−2

∇u
)

· (∇un −∇u) dx

≥ (p− − 1)2
(p−−2)

p− lim sup
k→∞

1

2
2

p−

·

(

∫

{p<2−1/k}

|∇un −∇u|
p(x)

dx

)
2

p−

×min











(

∫

{p<2−1/k}

(

|∇un|
p(x) + |∇u|p(x)

)

dx

)

p+,k(p−−2)

p2
−

,

(

∫

{p<2−1/k}

(

|∇un|
p(x) + |∇u|p(x)

)

dx

)

(p+,k−2)

p+,k











≥ (p− − 1)2
(p−−4)

p− lim sup
k→∞

(

∫

{p<2−1/k}

|∇un −∇u|
p(x)

dx

)
2

p−

×min







(

M +

∫

Ω

|∇u|p(x) dx

)

p+,k(p−−2)

p2
−

,

(

M +

∫

Ω

|∇u|p(x) dx

)

(p+,k−2)

p+,k







≥ K lim sup
k→∞

(

∫

{p<2−1/k}

|∇un −∇u|
p(x)

dx

)
2

p−

= K

(

∫

{p<2}

|∇un −∇u|
p(x)

dx

)
2

p−

,

where

K =(p− − 1)2
(p−−4)

p− min







(

M +

∫

Ω

|∇u|
p(x)

dx

)

2(p−−2)

p2
−

,

(

M +

∫

Ω

|∇u|
p(x)

dx

)

(p−−2)

p−







.

By (3.4) it follows that

lim
n→∞

∫

{p<2}

|∇un −∇u|
p(x)

dx = 0.

This proves the Claim.
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From the Claim we know that {∇un}n∈N converges in measure to ∇u in Ω. Applying Young’s
inequality gives

∫

Ω

(

|∇un|
p(x)−2

∇un + µ(x) |∇un|
q(x)−2

∇un

)

· (∇un −∇u) dx

=

∫

Ω

|∇un|
p(x) dx−

∫

Ω

|∇un|
p(x)−2∇un · ∇u dx

+

∫

Ω

µ(x)|∇un|
q(x) dx−

∫

Ω

µ(x)|∇un|
q(x)−2∇un · ∇u dx

≥

∫

Ω

|∇un|
p(x) dx−

∫

Ω

|∇un|
p(x)−1|∇u| dx

+

∫

Ω

µ(x)|∇un|
q(x) dx−

∫

Ω

µ(x)|∇un|
q(x)−1|∇u| dx

≥

∫

Ω

|∇un|
p(x) dx−

∫

Ω

(

p(x)− 1

p(x)
|∇un|

p(x) +
1

p(x)
|∇u|p(x)

)

dx

+

∫

Ω

µ(x)|∇un|
q(x) dx−

∫

Ω

µ(x)

(

q(x)− 1

q(x)
|∇un|

q(x) +
1

q(x)
|∇u|q(x)

)

dx

=

∫

Ω

1

p(x)
|∇un|

p(x) dx−

∫

Ω

1

p(x)
|∇u|p(x) dx

+

∫

Ω

µ(x)

q(x)
|∇un|

q(x) dx−

∫

Ω

µ(x)

q(x)
|∇u|q(x) dx.

Hence by (3.2)

lim sup
n→∞

∫

Ω

(

|∇un|
p(x)

p(x)
+ µ(x)

|∇un|
q(x)

q(x)

)

dx ≤

∫

Ω

(

|∇u|
p(x)

p(x)
+ µ(x)

|∇u|
q(x)

q(x)

)

dx. (3.8)

From Fatou’s Lemma, we obtain

lim inf
n→∞

∫

Ω

(

|∇un|
p(x)

p(x)
+ µ(x)

|∇un|
q(x)

q(x)

)

dx ≥

∫

Ω

(

|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)

dx. (3.9)

Combining (3.9) and (3.8) we conclude that

lim
n→∞

∫

Ω

(

|∇un|
p(x)

p(x)
+ µ(x)

|∇un|
q(x)

q(x)

)

dx =

∫

Ω

(

|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)

dx. (3.10)

By the Claim we have that {∇un}n∈N converges in measure to ∇u, so by straightforward
computations the functions on the left-hand side of (3.10) converge in measure to those on
the right-hand side. The converse of Vitali’s theorem (see Bauer [10, Lemma 21.6]) yields the
uniform integrability of the sequence of functions

{

|∇un|
p(x)

p(x)
+ µ(x)

|∇un|
q(x)

q(x)

}

n∈N

.

On the other side, we know that

|∇un −∇u|p(x) + µ(x)|∇un −∇u|q(x)

≤ 2q+−1q+

(

|∇un|
p(x)

p(x)
+ µ(x)

|∇un|
q(x)

q(x)
+

|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)

,

which implies that the sequence of functions
{

|∇un −∇u|p(x) + µ(x)|∇un −∇u|q(x)
}

n∈N

is uniformly integrable. By straightforward computations and using the convergence in measure
of {∇un}n∈N

to ∇u, this sequence converges in measure to 0. Applying Vitali’s theorem (see
Bogachev [15, Theorem 4.5.4]) it follows that

lim
n→∞

ρH(∇un −∇u) = lim
n→∞

∫

Ω

(

|∇un −∇u|p(x) + µ(x)|∇un −∇u|q(x)
)

dx = 0,

which is equivalent to ‖un − u‖1,H,0 → 0, see Proposition 2.13 (v). Hence, un → u in W 1,H
0 (Ω).
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(iii) The operator A is coercive, since by Proposition 2.13 (i), one has

〈A(u), u〉

‖u‖1,H,0
=

∫

Ω



‖u‖
p(x)−1
1,H,0

(

|∇u|

‖u‖1,H,0

)p(x)

+ ‖u‖
q(x)−1
1,H,0 µ(x)

(

|∇u|

‖u‖1,H,0

)q(x)


dx

≥ min
{

‖u‖
p−−1
1,H,0 , ‖u‖

q+−1
1,H,0

}

ρH

(

∇u

‖∇u‖H

)

→ +∞ as ‖u‖1,H,0 → +∞.

This fact along with assertion (i) of this theorem implies by the Minty-Browder theorem, see,
for example, Zeidler [66, Theorem 26.A], that A is invertible and that A−1 is strictly monotone,
demicontinuous and bounded. We only need to show that A−1 is continuous.

To this end, let {yn}n∈N ⊆ W 1,H
0 (Ω)∗ be a sequence such that yn → y in W 1,H

0 (Ω)∗ and let
un = A−1(yn) as well as u = A−1(y). By the strong convergence of {yn}n∈N and the boundedness

of A−1 we know that un is bounded in W 1,H
0 (Ω). Hence, there exists a subsequence {unk

}k∈N

of {un}n∈N such that

unk
⇀ u0 in W 1,H

0 (Ω).

Using these facts we have

lim
k→∞

〈A(unk
)−A(u0), unk

− u0〉

= lim
k→∞

〈ynk
− y, unk

− u0〉+ lim
k→∞

〈y −A(u0), unk
− u0〉 = 0.

From assertion (ii) of the theorem we know that A fulfills the (S+)-property which implies that

unk
→ u0 in W 1,H

0 (Ω). By the continuity of the operator A we easily see that

A(u0) = lim
k→∞

A(unk
) = lim

k→∞
ynk

= y = A(u).

Since A is injective, it follows that u = u0. By the subsequence principle it is easy to show that
the whole sequence converges. �

We have similar results when the operator A acts on W 1,H(Ω).

Proposition 3.4.

(i) Let hypothesis (2.4) be satisfied. Then the functional I : W 1,H(Ω) → R is well-defined
and of class C1 with I ′(u) = A(u).

(ii) Let hypothesis (2.4) be satisfied. Then the operator A : W 1,H(Ω) → W 1,H(Ω)∗ is con-
tinuous, bounded and strictly monotone.

(iii) Let hypothesis (H) be satisfied. Then the operator A : W 1,H(Ω) → W 1,H(Ω)∗ satisfies
the (S+)-property, that is,

un ⇀ u in W 1,H(Ω) and lim sup
n→∞

〈A(un), un − u〉 ≤ 0,

imply un → u in W 1,H(Ω).

Proof. The assertions (i) and (ii) follow in the same way as in the proof of Theorem 3.3. For
(iii) we make use of the compact embedding W 1,H(Ω) →֒ LH(Ω), see Proposition 2.18 (i). �

In the following let X =W 1,H
0 (Ω) or X =W 1,H(Ω) and let B : X → X∗ be given by

〈B(u), v〉X =

∫

Ω

(

|∇u|p(x)−2∇u · ∇v + µ(x)|∇u|q(x)−2∇u · ∇v
)

dx

+

∫

Ω

(

|u|p(x)−2uv + µ(x)|u|q(x)−2uv
)

dx,

for all u, v ∈ X , where 〈· , ·〉X denotes the duality pairing between X and its dual space X∗.
Moreover, let J : X → R be given by

J(u) =

∫

Ω

(

|∇u|p(x)

p(x)
+ µ(x)

|∇u|q(x)

q(x)

)

dx+

∫

Ω

(

|u|p(x)

p(x)
+ µ(x)

|u|q(x)

q(x)

)

dx

for all u ∈ X .
Under the weaker assumptions in (2.4) we have the following.

Proposition 3.5. Let hypothesis (2.4) be satisfied.
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(i) The functional J : X → R is well-defined and of class C1 with J ′(u) = B(u).
(ii) The operator B : X → X∗ is continuous, bounded and strictly monotone.
(iii) The operator B : X → X∗ satisfies the (S+)-property, that is,

un ⇀ u in X and lim sup
n→∞

〈B(un), un − u〉 ≤ 0,

imply un → u in X.
(iv) The operator B : X → X∗ is coercive and a homeomorphism.

4. Existence and uniqueness results

In this section we prove our main existence and uniqueness results. Recall that the problem
under consideration is the following one

− div
(

|∇u|p(x)−2∇u+ µ(x)|∇u|q(x)−2∇u
)

= f(x, u,∇u) in Ω,

u = 0 on ∂Ω.
(4.1)

We suppose the following assumptions on the nonlinearity f .

H(f) Let f : Ω × R × R
N → R be a Carathéodory function such that f(·, 0, 0) 6= 0 and the

following hold:

(i) There exists α ∈ L
r(·)

r(·)−1 (Ω) and a1, a2 ≥ 0 such that

|f(x, s, ξ)| ≤ a1|ξ|
p(x) r(x)−1

r(x) + a2|s|
r(x)−1 + α(x)

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ R
N , where r ∈ C+(Ω) is such that

r(x) < p∗(x) for all x ∈ Ω with the critical exponent p∗ given in (2.8).
(ii) There exists ω ∈ L1(Ω) and b1, b2 ≥ 0 such that

f(x, s, ξ)s ≤ b1|ξ|
p(x) + b2|s|

p− + ω(x) (4.2)

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ R
N . Moreover,

1− b1 − b2λ
−1
1,p−

> 0 (4.3)

where λ1,p− is the first eigenvalue of the Dirichlet eigenvalue problem for the p−-
Laplacian, see (2.27).

Example 4.1. The following function satisfies hypotheses H(f):

f(x, s, ξ) = −d1|s|
r(x)−2s+ d2|ξ|

(p−−1)( r(x)−1
r(x) ) + d3γ(x),

with l, r ∈ C+(Ω), r(x) < p∗(x) and l(x) ≤ min{p−, r(x)} for all x ∈ Ω, 0 6= γ ∈ L
l(·)

l(·)−1 (Ω),
d1 ≥ 0 and

0 < |d3| < p−λ1,p− as well as 0 ≤ |d2| <
p− − |d3|λ

−1
1,p−

p− − 1 + λ−1
1,p−

.

Definition 4.2. We say that u ∈ W 1,H
0 (Ω) is a weak solution of problem (4.1) if for all test

functions ϕ ∈W 1,H
0 (Ω) it satisfies

∫

Ω

(

|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u
)

· ∇ϕdx =

∫

Ω

f(x, u,∇u)ϕdx. (4.4)

Because of Proposition 2.16 and hypothesis H(f)(i) a weak solution in (4.4) is well-defined.
The following proposition is an immediate consequence of Theorem 3.3.

Proposition 4.3. Let hypothesis (H) be satisfied and let

f(x, s, ξ) = α(x) for all (x, s, ξ) ∈ Ω× R× R
N ,

where r and α are as in H(f)(i). Then (4.1) has a unique weak solution.

Proof. By assumption and Proposition 2.16, W 1,H
0 (Ω) →֒ Lr(·)(Ω), hence α ∈ Lr

′(·)(Ω) =

Lr(·)(Ω)∗ →֒ W 1,H
0 (Ω)∗ and by Proposition 3.3 A is bijective. �

Our main existence result reads as follows.
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Theorem 4.4. Let hypotheses (H) and H(f) be satisfied. Then problem (4.1) admits at least

one nontrivial weak solution u ∈W 1,H
0 (Ω).

Proof. First, we introduce the Nemytskij operator related to f , that is, Nf := i∗ ◦ N̂f , where

N̂f : W
1,H
0 (Ω) → Lr

′(·)(Ω) is given by

N̂f (u) = f(x, u,∇u),

and i∗ : Lr
′(·)(Ω) →W 1,H

0 (Ω)∗ is the adjoint operator of the embedding i : W 1,H
0 (Ω) → Lr(·)(Ω).

It is clear that N̂f is well-defined, bounded and continuous by H(f)(i) and Proposition 2.16 (for
the continuity use Vitali’s Theorem as in Proposition 3.1).

For u ∈W 1,H
0 (Ω) we define A :W 1,H

0 (Ω) →W 1,H
0 (Ω)∗ by

A(u) = A(u)−Nf (u),

which consequently is continuous and bounded by Theorem 3.3.
In order to apply Theorem 2.32 we first show that A is pseudomonotone in the sense of

Remark 2.31. To this end, let {un}n≥1 ⊆W 1,H
0 (Ω) be a sequence such that

un ⇀ u in W 1,H
0 (Ω) and lim sup

n→∞
〈A(un), un − u〉H ≤ 0. (4.5)

The compact embedding from Proposition 2.1 implies that

un → u in Lr(·)(Ω) (4.6)

since r(x) < p∗(x) for all x ∈ Ω. From Hölder’s inequality, the weak convergence of {un}n∈N in

W 1,H
0 (Ω) (hence it is bounded in its norm) and the boundedness of N̂f it follows that

∣

∣

∣

∣

∫

Ω

f (x, un,∇un) (un − u) dx

∣

∣

∣

∣

≤ 2
∥

∥

∥N̂f(un)
∥

∥

∥

r(·)−1
r(·)

‖u− un‖r(·)

≤ 2 sup
n∈N

∥

∥

∥N̂f (un)
∥

∥

∥

r(·)−1
r(·)

‖u− un‖r(·) .

From this along with the strong convergence in (4.6) we see that

lim
n→∞

∫

Ω

f(x, un,∇un)(un − u) dx = 0.

Hence, if we pass to the limit in the weak formulation in (4.4) replacing u by un and ϕ by un−u,
we obtain

lim sup
n→∞

〈A(un), un − u〉H = lim sup
n→∞

〈A(un), un − u〉H ≤ 0. (4.7)

Since A fulfills the (S+)-property, see Theorem 3.3, by using (4.5) and (4.7) it follows that un → u

in W 1,H
0 (Ω). Therefore, by the continuity of the operator A, we conclude that A(un) → A(u)

in W 1,H
0 (Ω)∗. Hence A is pseudomonotone.

Let us now prove that A is coercive, see Definition 2.30. Recall the representation of the first
eigenvalue of the p−-Laplacian, see (2.28), replacing r by p−, we have the inequality

‖u‖p−p− ≤ λ−1
1,p−

‖∇u‖p−p− for all u ∈ W
1,p−
0 (Ω). (4.8)

Note that W 1,H
0 (Ω) ⊆W

1,p−
0 (Ω). Then, by applying (4.8) and (4.2) along with Proposition 2.13

one has

〈A(u), u〉 =

∫

Ω

(

|∇u|p(x)−2∇u + µ(x)|∇u|q(x)−2∇u
)

· ∇u dx−

∫

Ω

f(x, u,∇u)u dx

≥ ρH(∇u)− b1

∫

Ω

|∇u|p(x) dx− b2

∫

Ω

|u|p− dx− ‖ω‖1

≥ ρH(∇u)− b1

∫

Ω

|∇u|p(x) dx− b2λ
−1
1,p−

∫

Ω

|∇u|p− dx− ‖ω‖1

≥
(

1− b1 − b2λ
−1
1,p−

)

ρH(∇u)− b2λ
−1
1,p−

|Ω| − ‖ω‖1

≥
(

1− b1 − b2λ
−1
1,p−

)

min
{

‖∇u‖
q+
H , ‖∇u‖

p−
H

}

− b2λ
−1
1,p−

|Ω| − ‖ω‖1.
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Hence, since 1 < p− < q+ and 1 − b1 − b2λ
−1
1,p−

> 0 by assumption (4.3), we conclude that the

operator A : W 1,H
0 (Ω) →W 1,H

0 (Ω)∗ is coercive.

Therefore, we have proved that the operator A : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ is bounded, pseu-

domonotone and coercive. Applying Theorem 2.32 we get a function u ∈ W 1,H
0 (Ω) such that

A(u) = 0. By the definition of the operator A and the first condition in H(f), u is a nontrivial
weak solution of our original problem (4.1). This completes the proof. �

In the second part of this section we want to discuss the question under what conditions
the solution obtained in Theorem 4.4 is unique. In order to give a positive answer we need to
strengthen our conditions on the nonlinearity f : Ω× R× R

N → R in the following sense.

(U1) There exists c1 ≥ 0 such that

(f(x, s, ξ)− f(x, t, ξ))(s− t) ≤ c1|s− t|2

for a. a.x ∈ Ω, for all s, t ∈ R and for all ξ ∈ R
N .

(U2) There exists ρ ∈ Lr
′(·)(Ω), where r ∈ C+(Ω) is such that r(x) < p∗(x) for all x ∈ Ω, and

c2 ≥ 0 such that the map ξ 7→ f(x, s, ξ)− ρ(x) is linear for a. a.x ∈ Ω, for all s ∈ R and

|f(x, s, ξ)− ρ(x)| ≤ c2|ξ|

for a. a.x ∈ Ω, for all s ∈ R and for all ξ ∈ R
N . Moreover,

c1λ
−1
1,2 + c2λ

− 1
2

1,2 < 1, (4.9)

where λ1,2 is the first eigenvalue of the Dirichlet eigenvalue problem for the Laplace
differential operator, see (2.27).

Example 4.5. The following function satisfies hypotheses H(f), (U1) and (U2), where for
simplicity we drop the s-dependence:

f(x, ξ) =

N
∑

i=1

βiξi + ρ(x) for a. a. x ∈ Ω and for all ξ ∈ R
N ,

with p− = 2 , 0 6= ρ ∈ L2(Ω) and

β = (β1, . . . , βN ) ∈ R
N with |β|2 < min

{

1−
1

2
λ−1
1,2 , λ1,2

}

.

Any r ∈ C+(Ω) such that p− = 2 ≤ r(x) < p∗(x) for all x ∈ Ω is admissible.

Our uniqueness result reads as follows.

Theorem 4.6. Let (H), H(f), (U1), and (U2) be satisfied and let p(x) ≡ 2 for all x ∈ Ω. Then,
problem (4.1) admits a unique weak solution.

Proof. Let u, v ∈ W 1,H
0 (Ω) be two weak solutions of (4.1). Testing the corresponding weak

formulations with ϕ = u− v and subtracting these equations gives
∫

Ω

|∇(u − v)|2 dx+

∫

Ω

µ(x)
(

|∇u|q(x)−2∇u− |∇v|q(x)−2∇u
)

· ∇(u − v) dx

=

∫

Ω

(f(x, u,∇u)− f(x, v,∇u))(u − v) dx +

∫

Ω

(f(x, v,∇u) − f(x, v,∇v))(u − v) dx.

(4.10)

The second term on the left-hand side of (4.10) is nonnegative, so we have the estimate
∫

Ω

|∇(u − v)|2 dx+

∫

Ω

µ(x)
(

|∇u|q(x)−2∇u − |∇v|q(x)−2∇u
)

· ∇(u− v) dx

≥

∫

Ω

|∇(u − v)|2 dx.

(4.11)
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For the right-hand side of (4.10) we can use the assumptions (U1), (U2) and Hölder’s inequality
which leads to

∫

Ω

(f(x, u,∇u)− f(x, v,∇u))(u− v) dx +

∫

Ω

(f(x, v,∇u)− f(x, v,∇v))(u − v) dx

≤ c1‖u− v‖22 +

∫

Ω

(

f

(

x, v,∇

(

1

2
(u− v)2

))

− ρ(x)

)

dx

≤ c1‖u− v‖22 + c2

∫

Ω

|u− v||∇(u − v)| dx

≤
(

c1λ
−1
1,2 + c2λ

− 1
2

1,2

)

‖∇(u− v)‖22.

(4.12)

From (4.10), (4.11) and (4.12) we see that

‖∇(u− v)‖22 =

∫

Ω

|∇(u− v)|2 dx ≤
(

c1λ
−1
1,2 + c2λ

− 1
2

1,2

)

‖∇(u− v)‖22. (4.13)

Then, by (4.9), from (4.13) it follows u = v. �
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[4] A. Bahrouni, V.D. Rădulescu, P. Winkert, Double phase problems with variable growth and convection for

the Baouendi-Grushin operator, Z. Angew. Math. Phys. 71 (2020), no. 6, 183, 14 pp.
[5] G. Barletta, E. Tornatore, Elliptic problems with convection terms in Orlicz spaces, J. Math. Anal. Appl.

495 (2021), no. 2, 124779, 28 pp.
[6] P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal.

121 (2015), 206–222.
[7] P. Baroni, M. Colombo, G. Mingione, Non-autonomous functionals, borderline cases and related function

classes, St. Petersburg Math. J. 27 (2016), 347–379.
[8] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial

Differential Equations 57 (2018), no. 2, Art. 62, 48 pp.
[9] P. Baroni, T. Kuusi, G. Mingione, Borderline gradient continuity of minima, J. Fixed Point Theory Appl.

15 (2014), no. 2, 537–575.
[10] H. Bauer, “Measure and Integration Theory”, De Gruyter, Berlin, 2001.
[11] L. Beck, G. Mingione, Lipschitz bounds and nonuniform ellipticity, Comm. Pure Appl. Math. 73 (2020),

no. 5, 944–1034.
[12] L. Beck, G. Mingione, Optimal Lipschitz criteria and local estimates for non-uniformly elliptic problems,

Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 30 (2019), no. 2, 223–236.
[13] V. Benci, P. D’Avenia, D. Fortunato, L. Pisani, Solitons in several space dimensions: Derrick’s problem

and infinitely many solutions, Arch. Ration. Mech. Anal. 154 (2000), no. 4, 297–324.
[14] S. Biagi, F. Esposito, E. Vecchi, Symmetry and monotonicity of singular solutions of double phase problems,

J. Differential Equations 280 (2021), 435–463.
[15] V.I. Bogachev, “Measure Theory”, Springer-Verlag, Berlin, 2007.
[16] S.-S. Byun, J. Oh, Regularity results for generalized double phase functionals, Anal. PDE 13 (2020), no. 5,

1269–1300.
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[24] C. De Filippis, G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differential Equations

267 (2019), no. 1, 547–586.
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[42] P. Harjulehto, P. Hästö, O. Toivanen, Hölder regularity of quasiminimizers under generalized growth con-

ditions, Calc. Var. Partial Differential Equations 56 (2017), no. 2, Paper No. 22, 26pp.
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[50] O. Kováčik, J. Rákosńık, On spaces Lp(x) and W k,p(x), Czechoslovak Math. J. 41(116) (1991), no. 4,
592–618.

[51] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J.
Differential Equations 90 (1991), no. 1, 1–30.

[52] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth

conditions, Arch. Rational Mech. Anal. 105 (1989), no. 3, 267–284.
[53] J. Musielak, “Orlicz Spaces and Modular Spaces”, Springer-Verlag, Berlin, 1983.
[54] J. Ok, Partial regularity for general systems of double phase type with continuous coefficients, Nonlinear

Anal. 177 (2018), 673–698.
[55] J. Ok, Regularity for double phase problems under additional integrability assumptions, Nonlinear Anal.

194 (2020), 111408.
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32 Á. CRESPO-BLANCO, L.GASIŃSKI, P.HARJULEHTO, AND P.WINKERT

[58] N.S. Papageorgiou, P. Winkert, “Applied Nonlinear Functional Analysis. An Introduction”, De Gruyter,
Berlin, 2018.

[59] K. Perera, M. Squassina, Existence results for double-phase problems via Morse theory, Commun. Contemp.
Math. 20 (2018), no. 2, 1750023, 14 pp.
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(Á. Crespo-Blanco) Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni

136, 10623 Berlin, Germany

Email address: crespo@math.tu-berlin.de
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