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A NEW CLASS OF ENTROPY SOLUTIONS OF THE
BUCKLEY–LEVERETT EQUATION∗

C. J. VAN DUIJN† , L. A. PELETIER‡ , AND I. S. POP†

Abstract. We discuss an extension of the Buckley–Leverett (BL) equation describing two-phase
flow in porous media. This extension includes a third order mixed derivatives term and models the
dynamic effects in the pressure difference between the two phases. We derive existence conditions for
traveling wave solutions of the extended model. This leads to admissible shocks for the original BL
equation, which violate the Oleinik entropy condition and are therefore called nonclassical. In this
way we obtain nonmonotone weak solutions of the initial-boundary value problem for the BL equation
consisting of constant states separated by shocks, confirming results obtained experimentally.
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1. Introduction. We consider the first order initial-boundary value problem

(1.1)

(BL)

⎧⎪⎪⎨
⎪⎪⎩

∂u

∂t
+

∂f(u)

∂x
= 0 in Q = {(x, t) : x > 0, t > 0},

u(x, 0) = 0 x > 0,

u(0, t) = uB t > 0,

where uB is a constant such that 0 ≤ uB ≤ 1. The nonlinearity f : R → R is given
by

(1.2) f(u) =
u2

u2 + M(1 − u)2
if 0 ≤ u ≤ 1,

whilst f(u) = 0 if u < 0 and f(u) = 1 if u > 1. Here, M > 0 is a fixed constant. The
function f(u) is shown in Figure 1.

Equation (1.1), with the given flux function f , arises in two-phase flow in porous
media, and problem (BL) models oil recovery by water-drive in one-dimensional hor-
izontal flow. In this context, u : Q → [0, 1] denotes water saturation, f the water
fractional flow function, and M the water/oil viscosity ratio. In petroleum engineer-
ing, (1.1) is known as the Buckley–Leverett (BL) equation [5]. It is a prototype for
first order conservation laws with convex-concave flux functions.

It is well known that first order equations such as (1.1) may have solutions with
discontinuities, or shocks. The value (u�) to the left of the shock, the value (ur) to
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Fig. 1. Nonlinear flux function for Buckley–Leverett (M = 2).

the right, and the speed s of the shock with trace x = x(t) are related through the
Rankine–Hugoniot condition,

(1.3) (RH)
dx

dt
= s =

f(u�) − f(ur)

u� − ur
.

We will denote shocks by their values to the left and to the right: {u�, ur}.
If a function u is such that (1.1) is satisfied away from the shock curve, and the

Rankine–Hugoniot condition is satisfied across the curve, then u satisfies the identity

(1.4)

∫
Q

{
u
∂ϕ

∂t
+ f(u)

∂ϕ

∂x

}
= 0 for all ϕ ∈ C∞

0 (Q).

Functions u ∈ L∞(Q) which satisfy (1.4) are called weak solutions of (1.1). Clearly,
for any uB ∈ [0, 1], a weak solution of problem (BL) is given by the shock wave

(1.5) u(x, t) = S(x, t)
def
=

{
uB for x < st

0 for x > st
where s =

f(uB)

uB
.

Experiments of two-phase flow in porous media reveal complex infiltration profiles,
which may involve overshoot; i.e., profiles may not be monotone [13]. Our main
objective is to understand the shape of these profiles and to determine how the shape
depends on the boundary value uB and the flux function f(u).

Equation (1.1) usually arises as the limit of a family of extended equations of the
form

(1.6)
∂u

∂t
+

∂f(u)

∂x
= Aε(u), ε > 0,

in which Aε(u) is a singular regularization term involving higher order derivatives.
It is often referred to as a viscosity term. Weak solutions of problem (BL) are called
admissible when they can be constructed as limits, as ε → 0, of solutions uε of (1.6),
i.e., for which Aε(uε) → 0 as ε → 0 in some weak sense. We return to this limit in
section 6. This raises the question of which of the shock waves S(x, t) defined in (1.5)
are admissible. We shall see that this depends on the operator Aε. To obtain criteria
for admissibility we shall use families of traveling wave solutions.

A classical viscosity term is

Aε(u) = ε
∂2u

∂x2
,
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and with this term, (1.6) becomes

(1.7)
∂u

∂t
+

∂f(u)

∂x
= ε

∂2u

∂x2
.

Seeking a traveling wave solution, we put

(1.8) u = u(η) with η =
x− st

ε
,

and we find that u(η) satisfies the following two-point boundary value problem:

(1.9a)

(1.9b)

{
−su′ +

(
f(u)

)′
= u′′ in R,

u(−∞) = u�, u(∞) = ur,

where primes denote differentiation with respect to η. An elementary analysis shows
that problem (1.9) has a solution if and only if f and the limiting values u� and ur

satisfy (i) the Rankine–Hugoniot condition (1.3), and (ii) the Oleinik entropy condi-
tion [29]:

(1.10) (E)
f(u�) − f(u)

u� − u
≥ f(u�) − f(ur)

u� − ur
for u between u� and ur.

Shocks {u�, ur} which satisfy (E) are called classical shocks.
Note that in the limit as ε → 0+, traveling waves converge to the shock {u�, ur}.
Applying (RH) and (E) to the flux function (1.2) we find that the function S(x, t)

defined in (1.5) is an admissible shock wave if and only if

(1.11) s =
f(uB)

uB
(RH) and uB ≤ α (E),

where α is the unique root of

f ′(u) =
f(u)

u
.

It is found to be given by

α =

√
M

M + 1
∈ (0, 1).

If uB > α, then the weak solution is composed of a rarefaction wave in the region
where u > α and a shock which spans the range 0 < u < α. Thus, for any uB ∈ (0, 1]
the weak solution u(x, t) is, at any given time t, a nonincreasing function of x, in
contrast to the experimental data for infiltration in porous media.

For gaining a better understanding of the data, it is natural to go back to the
origins of (1.1). With Si (i = o, w) being the saturations of the two phases, oil and
water, conservation of mass yields

(1.12) φ
∂Si

∂t
+

∂qi
∂x

= 0, i = o, w,

where qi denotes the specific discharge of oil/water and φ the porosity of the medium.
By Darcy’s law, qi is proportional to the gradient of the phase pressure Pi:

(1.13) qi = −k
kri(Si)

μi

∂Pi

∂x
,
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where k denotes the absolute permeability and kri and μi the relative permeability
and the viscosity of water, respectively, oil. The capillary pressure Pc expresses the
difference in the pressures of the two phases:

(1.14) Pc = Po − Pw.

This quantity is commonly found to depend on one phase saturation, say Sw. In
addition to this, studies like [28] and [30] show that Pc does not only depend on Sw,
but also involves hysteretic and dynamic effects. Hassanizadeh and Gray [19, 20] have
defined the dynamic capillary pressure as

(1.15) Pc = pc(Sw) − φτ
∂Sw

∂t
,

where pc(Sw) is the static capillary pressure and τ a positive constant. Assuming that
the medium is completely saturated,

Sw + So = 1,

and we obtain, upon combining (1.12)–(1.15), the single equation for the water satu-
ration u = Sw:

(1.16)
∂u

∂t
+

∂f(u)

∂x
= − ∂

∂x

{
H(u)

∂

∂x

(
J(u) − τ

∂u

∂t

)}
,

in which the functions f , H, and J are related to kri and pc. Other noneqilibrium
models are considered in [3]. Restricting, for simplicity, to linear terms on the right-
hand side of (1.16), we obtain, after a suitable scaling, the pseudoparabolic equation

(1.17)
∂u

∂t
+

∂f(u)

∂x
= ε

∂2u

∂x2
+ ε2τ

∂3u

∂x2∂t
.

Thus, in addition to the classical second order term εuxx, we find a third order term
ε2τuxxt, its relative importance being determined by the parameter τ . We show that
the value of τ is critical in determining the type of profile the solution of problem (BL)
will have.

The right-hand side of (1.17) resembles the regularization Aε(u) = εuxx+ε2δuxxx,
which has received considerable attention (cf. [23] and the monograph [26] and the
references cited therein). We mention in particular the seminal paper [24] in which
f(u) = u3. There, for δ > 0 an explicit function ϕ(u; δ) is derived such that the shock
{u�, ur} is admissible if and only if ur = ϕ(u�; δ). Properties of this kinetic function
ϕ, such as monotonicity with respect to u�, have been studied in a series of papers
(see [6] and the references cited there).

Other regularizations have been studied in [7] and [8] where a fourth order vis-
cosity term was introduced motivated by thin film flow (Aε(u) = −(u3uxxx)x, and
the flux function is f(u) = u2 − u3) and in [18], where fourth order regularizations
are used, motivated by problems in image processing. Traveling waves for dynamic
capillarity models, but for a convex flux function, are investigated in [11].

In this paper we focus on the relation between u� and the parameter τ . With β
being defined in Proposition 1.1 (see also Figure 2) we establish the existence of a
function τ(u�) defined for α < u� < β such that (1.17) has a traveling wave solution
with ur = 0, if and only if τ = τ(u�). We shall show that this function is monotone,
continuous, and has limits

τ(u�) → τ∗ > 0 as u� ↘ α and τ(u�) → ∞ as u� ↗ β.
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Fig. 2. Critical values of u when M = 2: α ≈ 0.816 and β ≈ 1.147.

Thus τ serves as a bifurcation parameter: for 0 < τ ≤ τ∗ the situation will be much
like in the classical case (E), but for τ > τ∗ the situation changes abruptly and new
types of shock waves become admissible. Note that in the framework of [26] we have
0 = ϕ(u�; τ(u�)).

The properties of the function τ(u�) will be based on three existence, uniqueness,
and nonexistence theorems, Theorems 1.1, 1.2, and 1.3, for traveling waves of (1.17).
Substituting (1.8) into (1.17) we obtain

−su′ +
(
f(u)

)′
= u′′ − sτu′′′ in R.

When we integrate this equation over (η,∞), we obtain the second order boundary
value problem

(1.18a)

(1.18b)
(TW)

{
−s(u− ur) + {f(u) − f(ur)} = u′ − sτu′′ in R,

u(−∞) = u�, u(∞) = ur,

where s = s(u�, ur) is given by the Rankine–Hugoniot condition (1.3).
We consider two cases:

(I) ur = 0, u� > 0 and (II) ur > u� > 0.

Case I. ur = 0. We first establish an upper bound for u�.
Proposition 1.1. Let u be a solution of problem (TW) such that ur = 0. Then,

u� < β, where β is the value of u for which the equal area rule holds:

(1.19)

∫ β

0

{
f(u) − f(β)

β
u

}
du = 0.

In Figure 2 we indicate the different critical values of u in a graph of f(u) when
M = 2.

Proof. When we put ur = 0 into (1.18a), multiply by u′, and integrate over R,
we obtain the inequality∫ u�

0

{
f(u) − f(u�)

u�
u

}
du = −

∫
R

(u′)2(η) dη < 0,
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from which it readily follows that u� < β.
Next, we turn to the questions of existence and uniqueness. Note that if u� ∈

(α, β), then

s = s(u�, 0) =
f(u�)

u�
> f ′(u�) ≥ f ′(0) for u� > α,

and traveling waves, if they exist, lead to an admissibility condition for fast under-
compressive waves. For convenience we write s(u�, 0) = s(u�).

In the theorems below we first show that for each τ > 0, there exists a unique
value of u� ≥ α, denoted by u(τ), for which there exists a solution of problem (TW)
such that ur = 0.

Theorem 1.1. Let M > 0 be given. Then there exists a constant τ∗ > 0 such
that the following hold:

(a) For every 0 ≤ τ ≤ τ∗, problem (TW) has a unique solution with u� = α and
ur = 0.

(b) For each τ > τ∗ there exists a unique constant u�(τ) ∈ (α, β) such that
problem (TW) has a unique solution with u� = u�(τ) and ur = 0.

(c) The function u : [0,∞) → [α, β) defined by

(1.20) u(τ) =

{
α for 0 ≤ τ ≤ τ∗,

u�(τ) for τ > τ∗

is continuous, strictly increasing for τ ≥ τ∗, and u(∞) = β.
The solutions in parts (a) and (b) are strictly decreasing.
We shall refer to u = u(τ) as the plateau value of u. In what follows, we shall

often denote the speed s(u) of the shock {u, 0} by s.
Next, suppose that u� 	= u(τ). To deal with this case we need to introduce another

critical value of u, which we denote by u(τ).
• For τ ∈ [0, τ∗] we put u(τ) = α.
• For τ > τ∗ we define u(τ) as the unique zero in the interval (0, u(τ)) of

f(r) − f(u)

u
r = 0, 0 < r < u.

Plainly, if τ > τ∗, then

0 < u(τ) < α < u(τ) < β for τ > τ∗.

In Figure 3, we show graphs of the functions u(τ) and u(τ). They are computed
numerically for M = 2 by means of a shooting technique that is explained in section 3.
In this case we found

τ∗ ≈ 0.61.

The following theorem states that if ur = 0 and u� ∈ (0, u), then traveling waves
exist if and only if u� < u(τ).

Theorem 1.2. Let M > 0 and τ > 0 be given, and let u = u(τ) and u = u(τ).
(a) For any u� ∈ (0, u), there exists a unique solution of problem (TW) such that

ur = 0. We have s(u�) < s.
(b) Let τ > τ∗. Then for any u� ∈ (u, u), there exists no solution of prob-

lem (TW) such that ur = 0.
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Fig. 3. The functions u(τ) and u(τ) computed for M = 2.

The solution in part (a) may exhibit a damped oscillation as it tends to u�.
Case II. ur > 0. The results of Case I raise the question as to how to deal with

solutions of problem (BL) when uB ∈ (u, u), and by Theorem 1.2 there is no traveling
wave solution with ur = 0. In this situation we use two traveling waves in succession:
one from uB to the plateau value u, and one from u down to u = 0. The existence of
the latter has been established in Theorem 1.1. In the next theorem we deal with the
former, in which ur = u.

Theorem 1.3. Let M > 0 and τ > τ∗ be given, and let u = u(τ) and u = u(τ).
(a) For any u� ∈ (u, u), there exists a unique solution of problem (TW) such that

ur = u. We have s(u�, u) < s.
(b) For any u� ∈ (0, u), there exists no solution of problem (TW) such that

ur = u.
The solution in part (a) may exhibit a damped oscillation as it tends to u�.
In section 2 we show how these theorems can be used to construct weak solutions

of problem (BL), i.e., weak solutions, which are admissible within the context of the
regularization proposed in (1.17), and which involve shocks which may be either clas-
sical or nonclassical. In section 3 we solve the Cauchy problem for (1.17) numerically,
starting from a smoothed step function, i.e., u(x, 0) = uBH̃(−x), where H̃(x) is a
regularized Heaviside function and M = 2. We find that for different values of the
parameters uB , τ , and ε the solution converges to solutions constructed in section 2
as t → ∞. In sections 4 and 5 we prove Theorems 1.1, 1.2, and 1.3. The proofs rely on
phase plane arguments. We conclude this paper with a discussion of the dissipation
of the entropy function u2/2 when u is the solution of the Cauchy problem for (1.17)
(cf. section 6).

In this paper we have seen that nonmonotone traveling waves such as those ob-
served in [13] may be explained by a regularization that takes into account properties
of two-phase flow. It will be interesting to determine to what extent such results as
derived in this paper for the simplified equation (1.17), continue to hold for the full
equation (1.16) when realistic functions H(u) and J(u) are used. Such equations may
be degenerate at u = 0 as well as at u = 1, and singular behavior, as in the porous
media equation [2, 4, 27] may be expected. In this connection it is interesting to men-
tion a numerical study of traveling waves of the original, fully nonlinear equations of
this model in [14, 15].
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2. Entropy solutions of problem (BL). In this section we give a classification
of admissible solutions of problem (BL) based on the “extended viscosity model”
(1.17), using the results about traveling wave solutions formulated in Theorems 1.1,
1.2, and 1.3. Before doing that we make a few preliminary observations, and we recall
the construction based on the classical model (1.7).

Because (1.1) is a first order partial differential equation and uB is a constant,
any solution of problem (BL) depends only on the combination x/t, with shocks, con-
stant states, and rarefaction waves as building blocks [29]. The latter are continuous
solutions of the form

(2.1) u(x, t) = r(ζ) with ζ =
x

t
.

After substitution into (1.1) this yields

(2.2)
dr

dζ

(
−ζ +

df

du

(
r(ζ)

))
= 0.

Hence, the function r(ζ) satisfies

either r = constant or
df

du

(
r(ζ)

)
= ζ.

When solving problem (BL), we will combine solutions of (2.2) with admissible shocks,
i.e., shocks {u�, ur} in which u� and ur are such that (1.6), with the a priori selected
and physically relevant viscous extension Aε, has a traveling wave solution u(η) such
that u(η) → u� as η → −∞ and u(η) → ur as η → +∞. Although in the physical
context in which the viscous extension employed in (1.17) was derived, 0 ≤ uB ≤ 1,
we shall drop this restriction. It will be convenient to first assume that 0 ≤ uB ≤ β.
At the end of this section we discuss the case that uB > β.

All solution graphs shown in this section and the next are numerically obtained
solutions of (1.17). They are expressed in terms of the independent variable ζ and t,
i.e.,

u(x, t) = w(ζ, t),

and considered for fixed ε > 0 (= 1) and for large times t. We return to the compu-
tational aspects in section 3.

Before discussing the implications of the viscous extension in (1.17), we recall the
construction of classical entropy solutions of problem (BL). It uses (RH) and the
entropy condition (E), which was derived for the diffusive viscous extension used in
(1.8). We distinguish two cases:

(a) 0 ≤ uB ≤ α and (b) α < uB ≤ β.

Case (a). 0 ≤ uB ≤ α. This case was discussed in the introduction, where we
found that the entropy solution is given by the shock {uB , 0}.

Case (b). α < uB ≤ β. In the introduction we saw that in this case, the shock
{uB , 0} is no longer a classical entropy solution. Instead, in this case the entropy
solution is a composition of three functions:

(2.3) u(x, t) = v(ζ) =

⎧⎪⎨
⎪⎩

uB for 0 ≤ ζ ≤ ζB ,

r(ζ) for ζB ≤ ζ ≤ ζ∗,

0 for ζ∗ ≤ ζ < ∞,
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where ζB and ζ∗ are determined by

ζB =
df

du
(uB) and ζ∗ =

df

du
(α) =

f(α)

α
= s(α),

and r : [ζB , ζ∗] → [α, uB ] by the relation

(2.4)
df

du

(
r(ζ)

)
= ζ for ζB ≤ ζ ≤ ζ∗.

Since f ′′(u) < 0 for u ∈ [α, uB ], (2.4) has a unique solution, and hence r(ζ) is well
defined. Note that if uB ≥ 1, then ζB = 0, because f ′(u) = 0 if u ≥ 1.

Solutions corresponding to Case (b) are shown in Figure 4.

Fig. 4. Case (b). Solution graph (left) and flux function with transitions from uB to α and
from α to 0 (right).

We now turn to the pseudoparabolic equation (1.17) that arises in the context
of the two-phase flow model of Hassanizadeh and Gray [19, 20]. For this problem,
we define a class of nonclassical entropy solutions in which shocks are admissible if
problem (TW) has a traveling wave solution with the required limit conditions.

For given M > 0 and τ > 0, the relative values of uB and u(τ) and u(τ) are now
important for the type of solution we are going to get. It is easiest to represent them
in the (uB , τ)-plane. Specifically, we distinguish three regions in this plane:

A = {(uB , τ) : τ > 0, u(τ) ≤ uB < β},
B = {(uB , τ) : τ > τ∗, u(τ) < uB < u(τ)},
C = {(uB , τ) : τ > 0, 0 < uB < u(τ)}.

These three regions are shown in Figure 5.
Case I. (uB , τ) ∈ A. If 0 ≤ τ ≤ τ∗, i.e., (uB , τ) ∈ A1, the construction is as in the

classical case described above. After a plateau, where u = uB and 0 ≤ ζ = x/t ≤ ζB ,
we find a rarefaction wave r(ζ) from uB down to α followed by a classical shock
connecting α to the initial state u = 0.

If τ > τ∗, i.e., (uB , τ) ∈ A2, the solution starts out as before, with a plateau
where u = uB and 0 ≤ ζ ≤ ζB and a rarefaction wave r(ζ) which now takes u down
from uB to u > α. This takes place over the interval ζB ≤ ζ ≤ ζ. By (2.2),

ζ =
df

du

(
u(τ)

)
.
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Fig. 5. The regions A, B, and C in the (uB , τ)-plane.

Fig. 6. Case I. Solution graph (left) and flux function (right), with transitions from uB = 1
to u(τ) and from u(τ) to 0.

Subsequently, u drops down to the initial state u = 0 through a shock, {u, 0}, which
is admissible by Theorem 1.1. By (RH) the shock moves with speed

s = s =
f(u)

u
>

df

du

(
u
)

= ζ,

because f is concave on (α,∞). Therefore, the shock outruns the rarefaction wave
and a second plateau develops between the rarefaction wave and the shock in which
u = u. Summarizing, we find that the (nonclassical) entropy solution has the form

(2.5) u(x, t) = v(ζ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uB for 0 ≤ ζ ≤ ζB ,

r(ζ) for ζB ≤ ζ ≤ ζ,

u(τ) for ζ ≤ ζ ≤ s,

0 for s ≤ ζ < ∞.

A graph of v(ζ) is given in Figure 6.
Note that if uB ≥ 1, then ζB = 0. At this point v shocks to the maximum of u(τ)

and 1. If u(τ) ≥ 1, then the rarefaction wave disappears and for ζ > 0 the solution is
continued by the shock {u(τ), 0}.
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Case II. (uB , τ) ∈ B. It follows from Theorem 1.2 that there are no traveling
wave solutions with u� = uB and ur = 0, so that the shock {uB , 0} is now not
admissible. However, in Theorem 1.3 we have shown that there does exist a traveling
wave solution, and hence an admissible shock, with u� = uB and ur = u(τ), and speed
s = s(uB , u(τ)). This shock is then followed by a second shock from u = u(τ) down
to u = 0, which is admissible because by Theorem 1.1 there does exist a traveling
wave solution which connects u and u = 0 with speed s > s(uB , u(τ)). Thus

(2.6) u(x, t) = v(ζ) =

⎧⎪⎨
⎪⎩

uB for 0 ≤ ζ ≤ s(uB , u),

u(τ) for s(uB , u) ≤ ζ ≤ s,

0 for s ≤ ζ < ∞.

An example of this type of solution is shown in Figure 7. The undershoot in the
solution graph is due to oscillations which are also present in the traveling waves.

Fig. 7. Case II. Solution graph (left) and flux function (right), with transitions from uB = 0.75
to u(τ) and from u(τ) to 0.

Remark 2.1. It is readily seen that

s(uB , u(τ)) ↗ s as uB ↘ u,

while the plateau level u remains the same. Thus, in this limit, the plateau{(
u,

x

t

)
: u = u(τ), s(uB , u(τ)) <

x

t
< s

}
becomes thinner and thinner and eventually disappears when uB = u.

Remark 2.2. If uB = 1 and u(τ) > 1, then the first shock degenerates in the
sense that

s(uB , u(τ)) = 0 and u(x, t) = u(τ) for all 0 <
x

t
< s.

Case III. (uB , τ) ∈ C. We have seen in Theorem 1.2 that in this case there
exists a traveling wave solution with u� = uB and ur = 0. It may exhibit oscillatory
behavior near u = u�, and it leads to the classical entropy shock solution {uB , 0}. An
example of such a solution is shown in Figure 8. Note the overshoot in the solution
graph, reflecting oscillations also present in the traveling waves.

We conclude with a remark about the case when uB > β. It is readily verified that
for such values of uB the situation is completely analogous to the one for (uB , τ) ∈ A.
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Fig. 8. Case III. Solution graph (left) and flux function (right), with transition from uB = 0.55
to 0.

3. Numerical experiments for large times. In this section we report on the
computations carried out for obtaining the numerical results presented in this paper.
All computations are done for M = 2. We start with the calculation of the diagram
in Figure 3. For determining the graphs of u and u as functions of τ we fix ur = 0.
Then, given a τ > 0 and a left state u� ≥ 0, we look for a strictly decreasing solution
u(η) of the problem (1.18a) and (1.18b). If such a solution exists, we can invert the
function u(η) and define the new dependent variable z(u) = −u′(η(u)), which satisfies

sτzz′ + z = su− f(u)

on the open interval (0, u�). Moreover, we have z > 0 on (0, u�), and z(0) = z(u�) = 0.
Following Theorem 1.1, an τ∗ > 0 exists so that solutions z to the given first order

equation and boundary conditions are possible for any τ ≤ τ∗, and with u� = α. To
compute τ∗ we fix u� = α and solve the equation in z with z(0) = 0. We start with
a sufficiently small τ > 0 and increase its value until z(u�) becomes strictly positive.
This gives

τ∗ ≈ 0.61.

Further, for τ > τ∗ there is a unique u� = u(τ) ∈ (α, β) yielding a solution z with
the required properties. Moreover, u is strictly increasing in τ . For finding the cor-
responding u� we solve numerically the equation in z with the initial value z(0) = 0.
We repeat this procedure for different values of τ , starting close to τ∗ and increasing
gradually the difference between two successive values of τ as the corresponding u�

approaches β. Accurate computations with different ODE solvers have led to negli-
gible differences in the resulting diagrams. Finally, the function u(τ) follows from a
simple construction involving f(u).

Nonstandard shock solutions of a hyperbolic conservation are computed numer-
ically in [21] and [22]. The schemes considered there are applied to the hyperbolic
problem, but they actually solve more accurately a regularized problem involving a
∂xxx term. This term vanishes as the discretization parameters are approaching 0.

Here we consider the regularized initial value problem for (1.17) in the domain
S = R × R+:

(3.1a)

(3.1b)

⎧⎨
⎩

∂u

∂t
+

∂f(u)

∂x
= ε

∂2u

∂x2
+ ε2τ

∂3u

∂x2∂t
in S,

u(x, 0) = uBH̃(−x) for x ∈ R.
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Here H̃(x) is a smooth monotone approximation of the Heaviside function H. We
use H̃ instead of H because discontinuities in the initial conditions will persist for
all t > 0, as shown in [12]. This would require an adapted and more complicated
numerical approach for ensuring the continuity in flux and pressure (see, for example,
[10], or [9, Chapter 3]). By the above choice we avoid this unnecessary complication.

Important parameters in this problem are M , ε, τ > 0, and uB ∈ (0, 1]. The
scaling

(3.2) x → x

ε
, t → t

ε

removes the parameter ε from (3.1a). Therefore, we fix ε = 1 and show how for
different values of τ and uB the solution u(x, t) of problem (3.1) converges as t → ∞
to qualitatively different final profiles.

For solving (3.1) numerically we consider a first order time stepping, combined
with the finite difference discretization of the terms involving ∂xx. To deal with the
first order term we apply a minmod slope limiter method that is based on first order
upwinding and Richtmyer’s scheme. Specifically, with k > 0 and h > 0 being the
discretization parameters, we define xi = ih (i ∈ Z) and tn = nk (n ∈ N), and let un

i

stand for the numerical
approximation of u(xi, tn). With

Δh,i(u) :=
1

h2

(
ui+1 − 2ui + ui−1

)
,

the fully discrete counterpart of (3.1a) in (xi, tk) reads

un+1
i − un

i +
k

h

(
Fn
i+ 1

2
− Fn

i− 1
2

)
= kεΔh,i(u

n+1) + ε2τΔh,i(u
n+1 − un),

where Fn
i+ 1

2

is the numerical flux at xi+ 1
2

= xi +
h
2 and tn. As mentioned above, Fn

i+ 1
2

is a convex combination of the first order upwind flux and the second order Richtmyer
flux:

Fn
i+ 1

2
= (1 − Θn

i )Fn,low

i+ 1
2

+ Θn
i F

n,high

i+ 1
2

,

where

Fn,low

i+ 1
2

= f(un
i ),

Fn,high

i+ 1
2

= f(wn
i ), for wn

i =
un
i +un

i+1

2 − k
2h (f(un

i+1) − f(un
i )),

and

Θn
i = max(0,min(1, θni )), for θni =

{
0 if un

i = un
i+1,

un
i −un

i−1

un
i+1−un

i
otherwise.

To compute the numerical solution, we restrict (3.1) to the sufficiently large spatial
interval (−1000, 5000), and define the artificial boundary conditions u(−1000, t) = uB

and u(5000, t) = 0.0. The computations are performed for large times (t > 2000), as
long as the results are not affected by the presence of the boundaries. We apply the
discretization scheme mentioned above, yielding a linear tridiagonal system that is
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solved at each time step. A convergence proof for the numerical scheme is beyond the
scope of the present work. Similar numerical schemes for problems of pseudoparabolic
type are considered, for example, in [1] and [16], where also the convergence is proven.

In the figures below, we show graphs of solutions at various times t, appropriately
scaled in space. Specifically, we show graphs of the function

(3.3) w(ζ, t) = u(x, t), where ζ =
x

t
,

so that a front with speed s will be located at ζ = s.
We recall that the numerical results are obtained for M = 2. In this case τ∗ ≈ 0.61

(see also Figures 3 and 5). We begin with a simulation where (uB , τ) = (1, 0.2) ∈ A1.
In Figure 9 we show the resulting solution w(ζ, t) at time t = 1000. It is evident that
w converges to the classical entropy solution constructed in section 2.

Fig. 9. Graph of w(ζ, t) at t = 1000 when (uB , τ) = (1, 0.2) ∈ A1. In this case u(τ) = α ≈ 0.816
and s ≈ 1.11.

In the simulations that we present in the remainder of this section we take τ to be
fixed above τ∗: τ = 5. Correspondingly, by the ODE method involved in computing
the diagram in Figure 3 we obtained u(τ = 5) ≈ 0.98 and u(τ = 5) ≈ 0.68. In the
first of these experiments, in which we keep uB = 1, we see that for large time the
graph consists of three pieces: one in which w gradually decreases from w = uB = 1
to the “plateau” value w = u, one in which w is constant and equal to u, and one in
which it drops down to u = 0; see Figure 10(a). It is clear from the graph that u > α.
The plateau value u ≈ 0.98 computed here is in excellent agreement with the value
obtained by the ODE method; see also Figures 3 and 5.

In the next experiment we decrease uB to uB = 0.9. We are then in the region
B. For large times the solution w(ζ, t) develops two shocks, one where it jumps up
from uB to the plateau at u ≈ 0.98 (the same value as in the previous experiment),
and one where it jumps down from u to w = 0; see Figure 10(b).

In the next experiments we decrease the value of uB to values around the value
u ≈ 0.68. The results are shown in Figure 11, where we have zoomed into the front.
We see that, as uB decreases and approaches the boundary between the regions B
and C2 in Figure 5, the part of the graph where w ≈ uB grows at the expense of the
part where w ≈ u.

Finally, in Figure 12 we show the graph of w(ζ, t) when τ = 5 and uB is further
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(a) (uB , τ) = (1, 5) ∈ A2 (b) (uB , τ) = (0.9, 5) ∈ B

Fig. 10. Graphs of w(ζ, t) at t = 1000 when (uB , τ) = (1, 5) ∈ A2 (left) and (uB , τ) = (0.9, 5) ∈
B (right). Here u(τ) ≈ 0.98 and s ≈ 1.02, while ζ� ≈ 0.08 (left) and sB ≈ 0.28 (right).

Fig. 11. Graphs of w(ζ, t) with τ = 5 at t = 1000 (dashed) and t = 2000 (solid); zoomed view:
0.9 ≤ ζ ≤ 1.05. Here u(τ) ≈ 0.68 and uB approaches u(τ) from above through 0.70 (left), 0.69 (mid-
dle), and 0.68 (right). Then sB increases from 0.95 (left) to 0.98 (middle) up to 1.02 (right). The
other values are u(τ) ≈ 0.98 and s ≈ 1.02.

Fig. 12. Graphs of w(ζ, t) at t = 1000 (dashed) and t = 2000 (solid) when (uB , τ) = (0.55, 5) ∈
C2; zoomed view: 0.75 ≤ ζ ≤ 0.8. Then s ≈ 0.78.

reduced to 0.55, so that we are now in C2. We find that the solution no longer jumps
up to a higher plateau, but instead jumps right down after a small oscillation.

Note that the oscillations in Figures 11 and 12 contract around the shock as time
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progresses. This is due to the scaling, since we have plotted w(ζ, t) versus ζ = x/t for
different values of time t.

We conclude from these simulations that the entropy solutions constructed in
section 2 emerge as limiting solutions of the Cauchy problem (3.1). This suggests
that these entropy solutions enjoy certain stability properties. It would be interesting
to see whether these same entropy solutions would emerge if the initial value were
chosen differently. We leave this question to a future study.

4. Proof of Theorem 1.1. In Theorem 1.1 we considered traveling wave so-
lutions u(η) of (1.17) in which the limiting conditions had been chosen so that
u(−∞) = u� ≥ α and u(∞) = ur = 0. Putting ur = 0 in (1.18a) and (1.18b)
we find that they are solutions of the problem

(4.1a)

(4.1b)
(TW0)

{
sτu′′ − u′ − su + f(u) = 0 for −∞ < η < ∞,

u(−∞) = u�, u(+∞) = 0,

in which the speed s is a priori determined by u� through

(4.2) s = s(u�)
def
=

f(u�)

u�
.

The proof proceeds in a series of steps.
Step 1. We choose u� ∈ (α, β) and prove that there exists a unique τ > 0 for

which problem (TW0) has a solution, which is also unique. This defines a function
τ = τ(u�) on (α, β). We then show that τ(u�) is increasing, continuous, and that

τ(u) → ∞ if u → β.

Finally, we write

τ∗
def
= lim

u→α+
τ(u).

Step 2. We show that for any τ ∈ (0, τ∗], problem (TW0) has a solution with
u� = α.

The proof is concluded by defining the function u�(τ) on (τ∗,∞) as the inverse
of the function τ(u�) on the interval (α, β). The resulting function u(τ), defined by
(1.17) on R+, then has all the properties required in Theorem 1.1.

4.1. The function τ (u). As a first result we prove that τ(u) is well defined on
the interval (α, β).

Lemma 4.1. For each u� ∈ (α, β) there exists a unique value of τ such that there
exists a solution of problem (TW0). This solution is unique and decreasing.

Proof. It is convenient to write (4.1a) in a more conventional form, and introduce
the variables

ξ = −η/
√
sτ and ũ(ξ) = u(η).

In terms of these variables, problem (TW0) becomes

(4.3a)

(4.3b)

{
u′′ + cu′ − g(u) = 0 in −∞ < ξ < ∞,

u(−∞) = 0, u(+∞) = u�,
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where

(4.4) c =
1√
sτ

and g(u) = su− f(u),

and the tildes have been omitted. Graphs of g(u) for M = 2 and different values of s
are shown in Figure 13.

Fig. 13. The function for g(u) for M = 2, and s = 0.95 (left) and s = s(α) = 1.113 (right).

We study problem (4.3) in the phase plane and write (4.3a) as the first order
system

(4.5a)

(4.5b)
P(c, s)

{
u′ = v,

v′ = −cv + g(u).

For u� ∈ (α, β) the function g(u) has three distinct zeros, which we denote by ui,
i = 0, 1, and 2, where

u0 = 0 and u1 < α < u2 = u�.

Plainly the points (u, v) = (ui, 0), i = 0, 1, 2, are the equilibrium points of (4.5) with
associated eigenvalues

(4.6) λ± = − c

2
± 1

2

√
c2 + 4g′(ui).

Since

g′(u0) > 0, g′(u1) < 0, and g′(u2) > 0,

the outer points, (u0, 0) and (u2, 0), are saddles and (u1, 0) is either a stable node or
a stable spiral.

Since we are interested in a traveling wave with u(−∞) = 0 and u(+∞) = u�, we
need to investigate orbits which connect the points (0, 0) and (u�, 0). The existence
of a unique wave speed c for which there exists such a solution of the system P(c, s),
which is unique and decreasing, has been established in [25]; see also [17]. This allows
us to define the function c = c(u�) for α < u� < β.

By definition, c(u�) only takes on positive values. This is consistent with the
identity, obtained by multiplying (4.3a) by u′ and integrating the result over R:

(4.7) c

∫
R

{u′(ξ)}2 dξ =

∫
R

g(u(ξ))u′(ξ) dξ =

∫ u�

0

g(t) dt
def
= G(u�),
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because G(u�) > 0 when 0 < u� < β.
Finally, by (4.2) and (4.4), we find that τ is uniquely determined by u� through

the relation

(4.8) τ(u�) =
1

s(u�)c2(u�)
.

This completes the proof of Lemma 4.1.
Lemma 4.1 allows us to define a function τ(u) on (α, β), such that if u� ∈ (α, β),

then problem (TW0) has a unique solution u(η) if and only if τ = τ(u�). In the next
lemma we show that the function τ(u) is strictly increasing on (α, β).

Lemma 4.2. Let u�,i = γi for i = 1, 2, where γ1 ∈ (α, β), and let τ(γi) = τi.
Then

γ1 < γ2 =⇒ τ1 < τ2.

Proof. For i = 1, 2 we write

si =
f(γi)

γi
and gi(u) = siu− f(u).

Since

d

du

(
f(u)

u

)
=

1

u

(
f ′(u) − f(u)

u

)
< 0 for α ≤ u < β,

it follows that

(4.9) γ1 < γ2 =⇒ s1 > s2 and g1(u) > g2(u) for u > 0.

To prove Lemma 4.2 we return to the formulation used in the proof of Lemma 4.1.
Traveling waves correspond to heteroclinic orbits in the (u, v)-plane. Those associated
with γ1 and γ2 we denote by Γ1 and Γ2. They connect the origin to (γ1, 0) and (γ2, 0),
respectively.

We shall show that

(4.10) γ1 < γ2 =⇒ c1 = c(γ1) > c(γ2) = c2.

We can then conclude from (4.4) that

τ2s2 > τ1s1 =⇒ τ2 >
s1

s2
τ1 > τ1,

as asserted.
Thus, suppose to the contrary that c1 ≤ c2. We claim that this implies that near

the origin the orbit Γ1 lies below Γ2. Orbits of the system P(c, s) leave the origin
along the unstable manifold under the angle θ given by

(4.11) θ = θ(c, s)
def
=

1

2

{√
c2 + 4s− c

}
.

An elementary computation shows that

(4.12)
∂θ

∂c
< 0 and

∂θ

∂s
> 0.
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Hence, since s1 > s2 and we assume that c1 ≤ c2, it follows that

θ1 = θ(c1, s1) > θ(c2, s2) = θ2,

and hence that the orbit Γ1 starts out above Γ2.

Since (γ2, 0) lies to the right of the point (γ1, 0) we conclude that Γ1 and Γ2 must
intersect. Let us denote the first point of intersection by P = (u0, v0). Then at P the
slope of Γ1 cannot exceed the slope of Γ2. The slopes at P are given by

dv

du

∣∣∣
Γi

= −ci +
gi(u0)

v0
, i = 1, 2.

Because g1(u) > g2(u) for u > 0 by (4.9), it follows that

dv

du

∣∣∣
Γ1

>
dv

du

∣∣∣
Γ2

at P,

so that, at P , the slope of Γ1 exceeds the slope of Γ2, a contradiction. Therefore we
find that c1 > c2, as asserted.

In the next lemma we show that the function τ(u) is continuous.

Lemma 4.3. The function τ : (α, β) → R+ is continuous.

Proof. Because the function s(γ) = γ−1f(γ) is continuous, it suffices to show that
the function c(γ) is continuous. Since we have shown in the proof of Lemma 4.1 that
c(γ) is decreasing (cf. (4.10)), we only need to show that it cannot have any jumps.

Suppose to the contrary that it has a jump at γ0, and let us write

lim inf
γ↘γ+

0

c(γ) = c+ and lim sup
γ↗γ−

0

c(γ) = c−.

Then, since c(γ) is decreasing, we may assume that c− > c+.

Thus, there exist sequences {γ−
n } and {γ+

n } with corresponding heteroclinic orbits
(u±

n , v
±
n ) and wave speeds c±n , such that

c+n ↘ c+ and c−n ↗ c− as n → ∞.

Since the unstable manifold at (0, 0) and the stable manifold at (γ, 0) depend con-
tinuously on c, it follows that the corresponding orbits also converge, i.e., that there
exist orbits (u+, v+) and (u−, v−) such that

(u±
n , v

±
n )(ξ) → (u±, v±)(ξ) as n → ∞,

uniformly on R. This argument yields two heteroclinic orbits, one with speed c+

and one with speed c−, which both connect the origin to the point (γ0, 0). Since by
Lemma 4.1 there exists only one such orbit, we have a contradiction.

It follows that c− = c+, and continuity of the function c(γ), and hence of τ(γ),
has been established.

In the following lemma we prove the final assertion made in Step 1, which involves
the behavior of τ(u) as u → β.

Lemma 4.4. We have

τ(γ) → ∞ as γ → β−.
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Proof. In view of the definition (4.7) of τ , it suffices to show that c(γ) → 0 as
γ → β. Proceeding as in the proof of Lemma 4.3, we find that c(γ) and the orbit
Γ(c(γ)) converge to c0 and Γ(c0) = {(u0, v0)(t) : t ∈ R} as γ → β. Note that

c(γ)

∫
R

v2(ξ; γ) dξ =

∫ γ

0

g(t; γ) dt,

where g(t; γ) = s(γ)t− f(t). If we let γ → β in this identity, we obtain

(4.13) c0

∫
R

v2
0(ξ) dξ =

∫ β

0

g(t;β) dt = 0.

Because at the origin the unstable manifold points into the first quadrant when γ = β
(cf. (4.9)), it follows that v0 > 0 on R. Therefore, (4.13) implies that c0 = 0, as
asserted.

4.2. Traveling waves with u� = α. In Lemmas 4.1 and 4.2 we have shown
that τ(u) is an increasing function on (α, β). Since τ(u) > 0 for all u ∈ (α, β), the
limit

τ∗
def
= lim

u→α+
τ(u)

exists. In the following lemmas we show that τ∗ > 0 and that for all τ ∈ (0, τ∗],
problem (TW0) has a unique solution with u� = α.

Let S ∈ R+ denote the set of values of τ for which problem (TW0) has a unique
solution with u� = α.

Lemma 4.5. There exists a constant τ0 > 0 such that (0, τ0) ⊂ S.
Proof. We shall show that there exists a wave speed c0 > 0 such that if c > c0,

then problem (4.5) has a heteroclinic orbit connecting the origin to the point (α, 0).
This then yields Lemma 4.5 when we put

τ0 =
1

c20s(α)
.

In (4.6) we saw that the origin is a saddle and that the slope of the unstable
manifold is given by

θ(c) =
1

2

{√
c2 + 4s− c

}
.

Note that

θ(c) <
1

c
g′(0) =

s

c
.

Hence, near the origin the orbit lies below the isocline Iv = {(u, v) : v = c−1g(u),
u ∈ R}.

Since u′ > 0 and v′ > 0 in the lens shaped region

L = {(u, v) : 0 < u < α, 0 < v < c−1g(u), u ∈ R},

the orbit will leave L again. To see what happens next, we consider the triangular
region Ωm bounded by the positive u- and v-axis and the line

�m
def
= {(u, v) : v = m(α− u)}, m > 0.
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On the axes the vector field points into Ωm, and on the line �m it points inwards if

(4.14)
dv

du

∣∣∣
�m

= −c +
g(u)

m(α− u)
< −m.

Let

m0 = inf {m > 0 : g(u) < m(α− u) on (0, α)} .

Then

−c +
g(u)

m(α− u)
< −c +

m0

m
,

and (4.14) will hold for values of c and m which satisfy the inequality

−c +
m0

m
< −m

or

c > m +
m0

m
.

To obtain the largest range of values of c for which the vector field points into Ωm we
choose m so that the right-hand side of this inequality becomes smallest; i.e., we put
m =

√
m0. We thus find that for

c > c0
def
= 2

√
m0

the region Ω√
m0

is invariant, and hence, that the orbit must tend to the point (α, 0).
This completes the proof of Lemma 4.5.

The next lemma gives the structure of the set S.
Lemma 4.6. If τ0 ∈ S, then (0, τ0] ⊂ S.
Proof. As in earlier lemmas we prove a related result for problem (4.5). Let S∗

be the set of values of c for which there exists a heteroclinic orbit of problem (4.5)
from (0, 0) to (α, 0). We show that if c0 ∈ S∗, then [c0,∞) ⊂ S∗. Plainly this implies
Lemma 4.6 with τ0 = 1/(c0s

2).
As before, we denote the orbit emanating from the origin by Γ(c). Suppose that

c > c0. Then, since θ′(c) < 0 it follows that θ(c0) > θ(c), so that near the origin
Γ(c0) lies above Γ(c). We claim that Γ(c0) and Γ(c) will not intersect for u ∈ (0, α).
Accepting this claim for the moment, we conclude that since Γ(c0) tends to (α, 0),
the orbit Γ(c) must converge to (α, 0) as well.

It remains to prove the claim. Suppose that Γ(c0) and Γ(c) do intersect at some
u ∈ (0, α), and let (u0, v0) be the first point of intersection. Then

(4.15)
dv

du

∣∣∣
Γ(c)

≥ dv

du

∣∣∣
Γ(c0)

at (u0, v0).

But, from the differential equations we deduce that

dv

du

∣∣∣
Γ(c)

= −c +
g(u0)

v0
< −c0 +

g(u0)

v0
=

dv

du

∣∣∣
Γ(c0)

at (u0, v0),

which contradicts (4.15). This proves the claim and so completes the proof of Lemma
4.6.
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We conclude this section by showing that τ∗ ∈ S, and hence that S = (0, τ∗].
Lemma 4.7. We have S = (0, τ∗].
Proof. It follows from Lemmas 4.1 and 4.2 that for every ε ∈ (0, β − α), there

exists a τε = τ(α + ε) > 0 such that problem (TW0) has a unique traveling wave
uε(η) with speed sε = s(α + ε), such that

uε(−∞) = α + ε and uε(∞) = 0.

This wave corresponds to a heteroclinic orbit Γε = {(uε(ξ), vε(ξ)) : ξ ∈ R} of the
system P(cε, sε), where cε = 1/

√
sετε, which connects the points (0, 0) and (α+ ε, 0).

It leaves the origin along the stable manifold under an angle θε = θ(cε, sε) and enters
the point (α + ε, 0) along the stable manifold under the angle

ψε = ψ(cε, sε) =
1

2

{
−cε −

√
c2ε + 4g′(α + ε)

}
→ −c0 = − 1√

s(α)τ∗
as ε → 0.

Reversing time, i.e., replacing ξ by −ξ, we can view Γε as the unique orbit em-
anating from the point (α + ε, 0) into the first quadrant and entering the origin as
ξ → ∞. In the limit, as ε → 0, we find that

uε(ξ) → u0(ξ) and vε(ξ) → v0(ξ) as ε → 0 for −∞ < ξ ≤ ξ0,

where ξ0 is any finite number. We claim that

u0(ξ) → 0 and v0(ξ) → 0 as ξ → ∞;

i.e., Γ0
def
= {(u0(ξ), v0(ξ)) : ξ ∈ R} is a heteroclinic orbit, which connects (α, 0) and

the origin (0, 0).
Suppose to the contrary that Γ0 does not enter the origin as ξ → ∞ and possibly

does not even exist for all ξ ∈ R. Then, since

dv

du
= −c0 +

g(u)

v
> −c0 if 0 < u < α, v > 0,

Γ0 must leave the first quadrant in finite time, either through the u-axis or through
the v-axis. This means by continuity that for ε small enough Γε must also leave the
first quadrant in finite time. Since Γε is known to enter the origin for every ε > 0,
and hence never to leave the first quadrant, we have a contradiction. This proves the
claim that Γ0 is a heteroclinic orbit, which connects (α, 0) and (0, 0).

Remark 4.1. It is evident from Lemmas 4.6 and 4.7 that

(4.16) τ∗ ≥ τ0 =
1

4m0s(α)
,

where m0 was defined in (4.15). For M = 2, we find that s(α) ≈ 1.11, m0 ≈ 0.70 and
hence τ0 ≈ 0.32. Numerically, we find that τ∗ ≈ 0.61.

5. Proof of Theorems 1.2 and 1.3. For the proofs of Theorems 1.2 and 1.3
we turn to the system P(c, s) defined in section 4. For convenience we restate it here,

(5.1a)

(5.1b)
P(c, s)

{
u′ = v,

v′ = −cv + gs(u),
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where

c =
1√
sτ

and gs(u) = su− f(u).

Part (a) of Theorem 1.2 is readily seen to be a consequence of the following lemma.
Lemma 5.1. Let τ > τ∗ be given. Then for every u� ∈ (0, u), there exists a

unique heteroclinic orbit of the system P(c, s) in which

s = s� =
f(u�)

u�
and c = c� =

1
√
s�τ

,

which connects (0, 0) and (u�, 0).
Proof. Let Γ� and Γ denote the orbits of P(c�, s�) and P(c, s), where c = c(u)

and s = s(u), which enter the first quadrant from the origin. They do this under the
angles θ(c�, s�) and θ(c, s), respectively. Since c� > c and s� < s, it follows from (4.12)
that

θ(c�, s�) < θ(c, s).

Hence, near the origin, Γ� lies below Γ. Thus, Γ� enters the region Ω enclosed between
Γ and the u-axis. Since

dv

du

∣∣∣
Γ�

= −c� +
s�u− f(u)

v
< −c +

su− f(u)

v
=

dv

du

∣∣∣
Γ
,

it follows that Γ� cannot leave Ω though its “top” Γ. We define the following subsets
of the bottom of Ω:

S1 = {(u, v) : 0 < u < u�, v = 0},
S2 = {(u, v) : u = u�, v = 0},
S3 = {(u, v) : u� < u < u, v = 0}.

Inspection of the vector field show that orbits can only leave Ω through S3. Note that
the set S2 consists of an equilibrium point.

There are two possibilities: either Γ� never leaves Ω, or Γ� leaves Ω, necessarily
through the set S3. In the first case Γ� is a heteroclinic orbit from (0, 0) to (u�, 0),
and the proof is complete.

Thus, let us assume that Γ� leaves Ω at some point (u, v) = (u0, 0). Consider the
energy function

H(u, v) =
1

2
v2 −Gs�(u),

where Gs� is the primitive of gs� as defined in (4.7), and write H(ξ) = H(u(ξ), v(ξ)),
when (u(ξ), v(ξ)) is an orbit. Then differentiation shows that

H ′(ξ) = −c�v
2(ξ) < 0.

Since H(0, 0) = 0, it follows that

H(u0, 0) = −Gs�(u0) < 0
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and that

H(u(ξ), v(ξ)) =
1

2
v2 −Gs�(u) < −Gs�(u0) for ξ > ξ0.

This means that

Gs�(u) > Gs�(u0) > 0 for ξ > ξ0.

Let

u1 = inf{s ∈ R : Gs�(s) > Gs�(u0) on (s, u0)}.

Since Gs�(u0) > 0 it follows that u1 ∈ (0, u�). Therefore

0 < u1 < u(x) < u0

v2(x) < 2{Gs�(u�) −Gs�(u0)}

}
for x > x0.

From a simple energy argument we conclude that (u(x), v(x)) → (u�, 0) as x → ∞.
This completes the proof of Lemma 5.1.

Part (b) follows from the following result.
Lemma 5.2. Let τ > τ∗ be given. For any u� ∈ (u(τ), u(τ)) there exists no

solution of the system P(c�, s�), with

s� =
f(u�)

u�
and c� =

1
√
s�τ

,

which connects (0, 0) and (u�, 0).
Proof. Let Γ denote the orbit corresponding to c and s, which connects (0, 0) and

the point (u, 0), and let Γ� denote the orbit which corresponds to c� and s�. Observe
that

s� > s and c� < c,

and hence

θ(c�, s�) > θ(c, s).

Therefore, near the origin, Γ� lies above Γ. Hence, to reach the point (u�, 0), the orbit
Γ� has to cross Γ somewhere, and at the first point of crossing we must have

dv

du

∣∣∣
Γ
≥ dv

du

∣∣∣
Γ�

.

However, by the equations, we have

dv

du

∣∣∣
Γ

= −c +
gs(u)

u
< −c� +

gs�(u)

u
=

dv

du

∣∣∣
Γ�

,

so that we have a contradiction.
This completes the proof of Theorem 1.2.
The proof of Theorem 1.3 is entirely analogous to that of Theorem 1.2, and we

omit it.
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6. Entropy dissipation. In this section we study the Cauchy problem

(6.1a)

(6.1b)
(CP)

{
ut + (f(u))x = Aε(u) in S = R × R+,

u(·, 0) = u0(·) on R,

where

(6.2) Aε(u) = εuxx + ε2τuxxt (ε > 0).

With this choice (6.1a) becomes the regularized BL equation (1.17) for which we
obtained traveling wave solutions in the previous sections. In (6.1a) and (6.2) we
introduce subscripts to denote partial derivatives. Without further justification we
assume that problem (CP) has a smooth, nonnegative, and bounded solution uε for
each ε > 0, and that there exists a limit function u : S → [0,∞) such that for each
(x, t) ∈ S,

uε(x, t) → u(x, t) as ε → 0.

In addition we assume the following structural properties:
(i) ‖uε‖∞ < C for some constant C > 0, and for each fixed t > 0,

uε(x, t) → u� ∈ R+ as x → −∞,

uε(x, t) → ur ∈ R+ as x → +∞.

(ii) The partial derivatives of uε vanish as |x| → ∞.
(iii) Let U(s) = 1

2s
2 for s ≥ 0, U� = U(u�), and Ur = U(ur). Then there exists a

smooth function λε : [0,∞) → R which is uniformly bounded with respect to ε > 0
in any bounded interval (0, T ), such that∫

R

{U(uε(x, t)) −Gε(x, t)} dx = 0 for all t > 0,

where Gε is the step function

Gε(x, t) = U� + (Ur − U�)H(x− λε(t)), (x, t) ∈ S

in which H denotes the Heaviside function.
Note that the traveling waves constructed in this paper all have these properties.
Remark 6.1. The question as to which conditions on u0 would generate such a

solution is left open in this paper. Clearly we need that u0 : R → R satisfies (i)
and (ii), and U(u0) −G ∈ L1(R). Further we require that u′

0 ∈ L2(R).
The main purpose of this section is to show that U(uε) is an entropy for (6.1a).

In doing so we borrow arguments and ideas of LeFloch [26]. For completeness we
recall some definitions. We say that the term Aε(u) is conservative if

(6.3) lim
ε→0+

∫
S

Aε(u
ε)ϕ = 0 for all ϕ ∈ C∞

0 (S)

and we say that Aε(u) is entropy dissipative (for an entropy U) if

(6.4) lim sup
ε→0+

∫
S

Aε(u
ε)U ′(uε)ϕ ≤ 0 for all ϕ ∈ C∞

0 (S), ϕ ≥ 0.

We establish the following theorem.
Theorem 6.1. Let uε be the solution of problem (CP), and let uε satisfy (i), (ii),

and (iii). Then, the regularization Aε(u) defined in (6.2) has the following properties:
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(a) Aε(u) is conservative.
(b) Aε(u) is entropy dissipative for the entropy U(u) = 1

2u
2.

Proof. Part (a). For any ϕ ∈ C∞
0 (S) we obtain after partial integration with

respect to x and t,∫
S

Aε(u
ε)ϕ = ε

∫
S

uεϕxx − ε2τ

∫
S

uεϕxxt → 0 as ε → 0.

Part (b). To simplify notation, we drop the superscript ε from uε. When we
multiply (6.1a) by u we obtain

(6.5) ∂tU(u) + ∂xF (u) = uAε(u) = εuuxx + ε2τuuxxt,

where

(6.6) F (u) =

∫ u

0

U ′(s)f ′(s) ds =

∫ u

0

sf ′(s) ds = uf(u) −
∫ u

0

f(s) ds.

An elementary computation shows that

εuuxx = εUxx − εu2
x,

ε2τuuxxt = ε2τ

(
Uxxt −

1

2
(u2

x)t − (uxut)x

)
.

Hence ∫
S

Aε(u)uϕ = ε

∫
S

Uϕxx − ε

∫
S

u2
xϕ

− ε2τ

∫
S

Uϕxxt +
1

2
ε2τ

∫
S

u2
xϕt + ε2τ

∫
S

utuxϕx.

(6.7)

Plainly

ε

∫
S

Uϕxx → 0 and ε2τ

∫
S

Uϕxxt → 0 as ε → 0.

Since ϕ ≥ 0, it remains to estimate the last two terms on the right-hand side of (6.7).
For this purpose we establish the following two estimates.
Lemma 6.1. Let T > 0, and let ST = R × (0, T ]. Then there exists a constant

C > 0 such that for all ε > 0,

(6.8) ε

∫
ST

u2
x ≤ C

and

(6.9) ε

∫
ST

u2
t ≤ C.

Proof of (6.8). We write (6.5) as

(6.10) ∂tU(u) + ∂xF (u) = εUxx − εu2
x + ε2τ

{
Uxxt −

1

2
(u2

x)t − (utux)x

}
.
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Using properties (i)–(iii) and writing F� = F (u�), Fr = F (ur), we find that

d

dt

∫
R

{U(x, t) −Gε(x, t)} dx− dλε

dt
(Ur − U�)

+ (Fr − F�) + ε

∫
R

u2
x +

1

2
ε2τ

d

dt

∫
R

u2
x ≤ 0,

or, when we integrate over (0, T )

−{λε(t) − λε(0)}(Ur − U�) + (Fr − F�)t + ε

∫
ST

u2
x +

1

2
ε2τ

∫
R

u2
x(t) ≤ 1

2
ε2τ

∫
R

(u′
0)

2,

from which (6.8) immediately follows.
Proof of (6.9). We multiply (6.1) by ut. This yields

(6.11) u2
t + (f(u))xut = utAε(u) = εutuxx + ε2τutuxxt.

Using the identities

utuxx = (uxut)x − 1

2
(u2

x)t and utuxxt = (uxtut)x − (uxt)
2,

we find that

u2
t +

ε

2
(u2

x)t ≤ −f ′(u)utux + ε(uxut)x + ε2τ(uxtut)x.

When we integrate over R and use Schwarz’s inequality and properties (i) and (ii),
we obtain ∫

R

u2
t +

ε

2

d

dt

∫
R

u2
x ≤ 1

2

∫
R

u2
t +

K2

2

∫
R

u2
x,

where K = max{|f ′(s)| : s > 0}. Hence, when we integrate over (0, t),∫
St

u2
t ≤ ε

∫
R

(u′
0)

2 + K2

∫
St

u2
x.

In view of the first estimate this establishes (6.9) and completes the proof of Lemma
6.1.

We now return to the proof of Theorem 6.1(b). For each ϕ ∈ C∞
0 (S) we choose

T > 0 so that suppϕ ⊂ ST . Then (6.8) implies that

(6.12) ε2

∫
ST

u2
xϕt ≤ ε2K1

∫
ST

u2
x ≤ εK1C with K1 = sup |ϕt|,

and (6.8) and (6.9) together imply that

(6.13) ε2

∫
ST

utuxϕx ≤ ε2K2

∫
ST

|ut||ux| ≤ εK2C with K2 = sup |ϕx|.

Using (6.12) and (6.13) in (6.7) we conclude that, writing u = uε again,

lim sup
ε↘0

∫
S

Aε(u
ε)uεϕ ≤ 0,
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which is what was claimed in Theorem 6.1.

It now follows from (6.5) that in the limit as ε → 0,

(6.14) ∂tU(u) + ∂xF (u) ≤ 0

holds in a weak or distributional sense. This shows that (U,F ) is an entropy pair for
(1.1).

The inequality in (6.14) indicates entropy dissipation. Across shocks {u�, ur} it
can be computed explicitly. Let

u(x, t) =

{
u� for x < st,

ur for x > st.

Then (6.14) implies that

−s(Ur − U�) + (Fr − F�) ≤ 0.

Hence the entropy dissipation is given by

(6.15) E(u�, ur)
def
= −s(Ur − U�) + (Fr − F�).

We conclude by observing that if u = u(η) is a traveling wave satisfying prob-
lem (TW), then (6.15) can be written as

(6.16) E(u�, ur) =

∫
R

{−s(U(u))′ + (F (u))′} dη.

Applying (6.6) and the definition of U gives

(6.17) E(u�, ur) =

∫
R

u

(
−s +

df

du

)
u′ dη =

∫ ur

u�

u

(
−s +

df

du

)
du.

Rewriting further

−s +
df

du
=

d

du

(
−s(u− u�) + f(u) − f(u�)

)
,

integrating (6.17) by parts, and using the Rankine–Hugoniot condition yields

E(u�, ur) =

∫ u�

ur

{f(u) − f(u�) − s(u− u�)} du.

In the special case when ur = 0 we have s = f(u�)/u� and thus

E(u�, 0) =

∫ u�

0

{f(u) − su} du.

Returning to the proof of Proposition 1.1 we observe that the integral is negative
provided u� < β. Thus this condition acts as an entropy condition in the sense that
E(u�, 0) < 0 only if u� < β.
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