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Abstract A spherically symmetric wormhole family of
solutions, with null red-shift, in the context of f (R)-gravity
is presented. The model depends on two parameters: m and
β and meets all requirements to be an asymptotically and
traversable wormhole. To solve the field equations, an EoS
is imposed: p⊥ = −ρ. It is found that for m = 1 the solu-
tion satisfies the null energy condition, although F(R) < 0
everywhere. For m = 0, the model satisfies the null energy
condition away from the throat, where the function F(R) is
everywhere positive and together with dF(R)/dR vanish at
the throat of the wormhole. This fact is beyond the scope of
the non-existence theorem. Furthermore, the cosmological
viability of the model, to address the late – time accelerated
epoch, is analyzed on the background of a flat FLRW space-
time. The model satisfies consistency of local gravity tests,
stability under cosmological perturbations, ghosts free and
stability of the de Sitter point.

1 Introduction

The Einstein–Rosen bridge was developed in order to explain
the particle problem in General Relativity, more precisely to
try to explain fundamental particles such as electrons in terms
of space-time tunnels threaded by electric lines of force [1].
However, a major problem is the instability of the geometric
structure present in this kind of solutions within the arena
of General Relativity. This means that the bridge is not able
to remain open long enough for an object to pass through
it (not even a photon). As far as this is concerned, Wheeler
[2] tried to explain Einstein–Rosen bridge (today known as
wormholes) in terms of topological entities called geons and,
incidentally, provided the first (now familiar) diagram of a
wormhole as a tunnel connecting two openings in different
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regions of space-time. Basically, the geometry of a worm-
hole is formed by two mouths joined by a throat connecting
two parallel Universes or two far away regions of the space-
time. Following Morris and Thorne pioneering work [3,4]
the wormhole exists only if the wormhole throat is supported
by the so-called exotic matter field. By exotic matter Morris
and Thorne mean negative radial pressure pr , which entails
the violation of null energy condition due to |pr | > |ρ| in the
throat of the wormhole. What is more if an observer crosses
the tunnel it will see a negative energy density ρ. Regarding
this, many works available in the literature have addressed the
energy violation problem at the wormhole throat, for exam-
ple working out dynamical wormholes [5,6]. Moreover, the-
ories containing high derivative terms in the gravitational
sector through functions of the scalar curvature, enable to
construct thin-shell structures driven by normal matter dis-
tributions [7,8]. Other interesting works concerning the study
and analysis of wormholes in gravity theories include scalar–
tensor gravity, such as Brans–Dicke theory, non-linear elec-
trodynamics such as Born–Infield theory or higher dimen-
sional theories like Kaluza–Klein, Einstein-Gauss–Bonnet
or Einstein–Cartan theories [9–22].

Besides, modified gravity theories such as f (R) and
f (R, T ) gravity are promised scenarios to investigate worm-
hole regions satisfying energy conditions. These theories
attempt to explain the most recent data about the acceler-
ated expansion of the Universe. This phenomenon has not
been explained from the point of view of General Relativity
and it is confirmed and supported by numerous observational
data from Supernova type Ia [23], high Planck data [24] and
large scale structure [25–36]. On the other hand, a possible
explanation of this phenomenon is the so-called dark energy
[37] a mysterious cosmic fluid, which has uniform density
distribution and negative pressure.

So, as stated before, modified gravity theories are an alter-
native way to explain the above issue. f (R)-gravity [38]
was the first modified gravity theory employed to explain
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the singularities introduced by the isotropic homogeneous
cosmological model. After its presentation in the early 80’s,
Starobinsky [39] used this theory to face questions related
to cosmic inflationary models. The main point of this the-
ory is to introduce a function f (R) of the Ricci scalar R. Its
consequence is the presence of high derivative terms, which
could in principle explain the accelerated expansion and the
existence of dark energy or dark matter without the addi-
tion of extra matter fields. Besides f (R, T ) gravity theory
[40] can be seen as a generalization of f (R)-gravity. Par-
ticularly, f (R, T ) theory also modifies the material sector
by including the trace T of the energy-momentum tensor,
which breaks down the minimal-coupling matter principle
between the gravitational sector and the material one. The
study of wormhole solutions satisfying energy conditions in
the arena of f (R, T ) theory was considered in [22,41–44].
However, the study of wormhole geometries is more robust in
the context of f (R)-gravity than it is performed in f (R, T )

theory. For example, it was found in [45–47] that high deriva-
tive terms coming from the f (R) function regularize energy
conditions. In [48,49] the study of static wormhole solutions
using power-law models Rn was performed. Cosmological
evolution and non-commutative techniques were treated in
[50–53]. More recently the matching condition formalism to
build thin-shell was done in [54–56] and the study of new
wormhole solutions was performed in [57].

In a broader cosmological context, f (R)-gravity is a
viable theory to address at the same footing the early-time
inflation with the late-time acceleration process [58–62]. To
face the ultra accelerated expansion or inflationary age of
the Universe, the seminal work by Starobinsky [39] is con-
sidered as the building block in this direction. On the other
hand, the present accelerated era of the Universe represents
nowadays a great challenge to the astrophysical and cosmo-
logical community. Several works available in the literature
have attempted to tackle this problem by proposing different
f (R)-gravity models [63–76]. To be a viable models with a
physical meaning, all these proposal should fulfill some gen-
eral requirements [77]. What is more if the scalar curvature
is convariantly constant ı.e, R ≡ R0 where R0 is represent-
ing the scalar curvature at the present epoch, the model con-
tains a special kind of solutions: vacuum solutions, including
the vacuum de Sitter space-time with cosmological constant
(General Relativity solution) [78].

Motivated by these prior studies, we investigate the exis-
tence of wormhole solutions in the arena of f (R)-gravity.
In order to achieve it we propose a new ansatz for the shape
function b(r) depending on two parameters m and β, and
also impose an equation of state relating the components
of the energy–momentum tensor threading the throat of the
wormhole, specifically ρ⊥ = −ρ. These components allow
us to solve a first order differential equation for F(R(r)) and
also find an explicit expression for the null energy condi-

tion (NEC). To facilitate the mathematical treatment of the
field equations we have set the red-shift function to be null.
The resulting model satisfies all the basic requirements to be
an asymptotically and traversable wormhole. Moreover, it is
found that the matter content threading the throat satisfies the
NEC in one case while in the second case this condition is
partially violated near the throat, although it is satisfied away
from it. To complete the study we emphasize that the main
result on this scenario is the non-existence theorem proved
in [79] and extended in [80,81]. It was proved in the Ein-
stein frame in [79] and extended to scalar tensor theories
and f (R)-gravity by performing a conformal map from the
Jordan frame to the Einstein one [80,81]. The main point
is that the wormhole topology together with the asymptot-
ically flat spaces on both sides of the throat are preserved
on the conformal map together with the NEC. In this con-
cern, the feasibility of the existence of wormhole solutions
in f (R) theory without ghost fields is subject to the viola-
tion of NEC at least on the throat of the wormhole. In this
context one class of solutions we are going to present satis-
fies the null energy condition away from the throat, where
the function F(R) is everywhere positive and together with
dF(R)/dR vanish at the throat of the wormhole. This fact
is beyond the scope of the nonexistence theorem, since the
conformal map from the Jordan frame to the Einstein frame
is not well defined at the throat. In this concern, the incom-
patibility between both frames was previously noted in the
cosmological scenario, in the treatment of f (R) singularities
(see [82] for a recent and detailed discussion about the corre-
spondence of f (R)-gravity singularities in Jordan and Ein-
stein frames in the cosmological context) and then translated
into the wormhole studies. On the other hand, to check the
feasibility of our model, we have explored the cosmological
properties of the obtained f (R) models to address the late-
time cosmic acceleration of the Universe (issue related with
the dark energy problem). In this regard, the resulting f (R)

Lagrangian satisfies the general requirements to face this
point [77], such as: (i) ghost free consistency, (ii) consistency
with local gravity and stability under cosmological perturba-
tions, (iii) stability at late-time de Sitter point. On the other
hand, we have extended our model to include the inflationary
phase, adding a two step model [62], although it represents
a toy inflationary-accelerated unification model to describe
the early and late time epochs of our Universe. However, it
shows the possibility of a natural extension of our model to
address this problem. Furthermore, we have solved the field
equations in the cosmological scenario to obtain the Hubble
rate H(t) and scale factor a(t). To do it, we have imposed a
flat Friedmann–Lemaitre–Robertson–Walker (FLRW) met-
ric accompanied with an isotropic perfect fluid distribution.
It is worth mentioning that f (R)-gravity offers in the cosmo-
logical framework a natural scenario to address the existence
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of an effective dark energy, without the need to introduce a
negative pressure ideal fluid [59,83].

The article is organized as follows: Sect. 2 presents the
wormhole anatomy. Section 3 develops the f (R) formalism,
presenting the geometry and field equations. In Sect. 4 the
field equations are solved and the model is studied in details.
In Sect. 5 the main features of the models are discussed and in
Sect. 6 some cosmological properties related with the accel-
erated expansion at late time of the Universe (dark energy)
are discussed, and the Hubble rate and scale factor satisfying
the field equations in the flat FLRW regime with an isotropic
fluid are shown. Furthermore, the connection with the infla-
tionary stage is also addressed. Finally Sect. 7 provides some
conclusions.

2 A quick review: WormHoles (WH) generalities

In curvature coordinates, the static and spherically symmetric
line element describing a WH region is given by

ds2 = −e2�dt2 + e�dr2 + r2d�2, (1)

where d�2 ≡ sin2θdφ2 + dθ2. In Eq. (1) the metric func-
tions depend only on the radial coordinate ı.e, � = �(r)
and � = �(r). The function � is referred as the red-shift
function while e� is related with the so called shape function
b(r), explicitly

e�(r) = 1

1 − b(r)
r

. (2)

To be a traversable and asymptotically flat space-time we
assume the WH geometry must satisfy the following general
requirements [3,84]

1. The radius of the WH throat is defined as

r0 = min{r (l)}.

It is assumed that there is only one global minimum.
Furthermore, the proper distant l is related with radial
coordinate r by

l(r) = ±
∫ r

r0

dx√
1 − b±(x)/x

,

where l ∈ (−∞,+∞). The ± refer to both mouths of
the WH.

2. For comparison with Schwarzschild solution the mass of
the WH as seen for spatial infinity is given by b± →
2GM±.

3. There are two coordinate patches covering the range
r ∈ [r0,+∞). Each patch covers an asymptotically flat
region, and both match at r0, the throat of the WH.

4. The red-shift function � must be finite everywhere, for
r ≥ r0, in order to avoid an event horizon, so e� > 0 for
all r > r0. Moreover,

lim
r→∞ �(r) = �0,

where �0 a finite real number.
5. The shape function b(r) must fulfill b(r0) = r0, where

the throat r0 of the WH defines the spherical surface r =
r0.

6. For all r > r0 ⇒ b(r) < r and b′(r0) < 1 or equivalently
b′(r) < b(r)/r . This condition is known as the flare-out
condition. Here b′(r) means db(r)/dr .

In the next section we discuss the explicit form of the field
equations and the matter content surrounding the WH throat.

3 The f (R) formalism

In this section we present the f (R)-gravity formalism. The
starting point is the modified Einstein-Hilbert action mini-
mally coupled to a generic matter field given by

S = 1

2κ

∫
d4x

√−g f (R) +
∫

d4x
√−gLm

(
gμν,�

)
, (3)

where f (R) is an arbitrary smooth function of the Ricci’s
scalar R, g is the determinant of the metric tensor gμν (gμν

its inverse), Lm is the matter Lagrangian density, � encodes
the matter fields and κ = 8πG/c41. So, by taking variations
with respect to gμν in the action (3) we arrive at the following
general field equations

FRμν − 1

2
f gμν − ∇μ∇νF + gμν�F = T (m)

μν , (4)

where as always F ≡ d f/dR. Moreover, the right hand side
of Eq. (4) represents the usual matter content. Considering
the trace of the Eq. (4) we obtain

FR − 2 f + 3�F = T (m), (5)

where � is the D’alembertian differential operator defined
by

� ≡ ∇μ∇μ = 1√−g
∂μ

(√−ggμν∂ν

)
. (6)

1 From now on we shall employ units where κ = 1.

123



580 Page 4 of 18 Eur. Phys. J. C (2020) 80 :580

The Eq. (5) shows that F(R) has a dynamical role in the
theory ı.e, it is a fully dynamical degree of freedom. Further-
more, we have denoted the trace of the energy–momentum
tensor by T (m) = Tμ(m)

μ .
In the following we shall consider that the matter con-

tent threading the wormhole throat is taken to be an imper-
fect fluid distribution described by the following energy–
momentum tensor

T (m)
μν = (ρ + p⊥) uμuν + gμν p⊥ + (pr − p⊥) χμχν, (7)

withρ the energy density, pr and p⊥ being the pressure waves
in the principal directions ı.e, the radial and tangential ones
respectively. The four-velocity of the above fluid distribution
is characterized by the time-like vector uν . Moreover χν is
a unit space-like vector in the radial direction (orthogonal to
uν) that is, χν = √

1 − b/rδν
r . Besides, throughout the study

we shall assume a constant red-shift function, specifically
� = 0. This assumption implies that the gravitational red-
shift z is totally vanishing, of course

z = 1√
gtt

− 1, with gtt = e2� = 1 (for � = 0). (8)

Furthermore, from the mathematical point of view a van-
ishing red-shift function reduces the complexity of the field
equations to be solved. So, taking into account the above
considerations Eqs. (4) and (7) yield to the following field
equations

ρ = 1

2
f − �F, (9)

pr =
(
rb′ − b

)
r3 F + 2 (r − b)

r2 F ′ − 1

2
f, (10)

p⊥ =
(
rb′ + b

)
2r3 F − (r − b)

r2 F ′ − f

2
+ �F, (11)

where �F using Eqs. (1) and (6) is given by

�F =
[
r − b

r

] [
F ′′ + F ′

(
4r − 3b − rb′

2r (r − b)

)]
, (12)

where primes denote differentiation with respect to the radial
coordinate r . There are many ways to tackle the system (9)-
(11). One possibility is to impose an adequate f (R) model
supplemented by a suitable shape-function b(r) or supple-
ment the system with an equation of state relating the ther-
modynamic variables and impose a suitable shape function.
In this regard we follow the second approach. Nevertheless,
among all the equations of state or possible equivalent rela-
tionships, only some are mathematically treatable, because
the resulting expressions are highly complex to solve (at least
analytically). So, following [47] we established p⊥ = −ρ as
a supplementary equation of state.

4 The Model

As was discussed in the previous section, in order to solve
the f (R)-gravity system of equations (9)-(11), we impose
the following shape function b(r),

b(r) = α + β
r0

rm+1 , with m + 1 > 0 (13)

where m, α and β are constant parameters. The parameter
α and β have units of [length] and [length]1+m respectively.
To ensure the fulfillment of b(r0) = r0 and b′(r0) < 1 at the
throat of the WH one has

b(r0) = α + βr−m
0 = r0 ⇒ α = r0

(
1 − β

rm+1
0

)
, (14)

then

b(r) = r0

(
1 − β

rm+1
0

)
+ β

r0

rm+1 . (15)

Furthermore, from the flare-out condition one obtains a
bound on the constant parameter β as follows

b′(r0) < 1 ⇒ β > − rm+1
0

m + 1
. (16)

Besides, in to order to satisfy the condition b(r) < r for all
r > r0 we have for m �= 0

r0

[
1 + β

(
1

rm+1 − 1

rm+1
0

)]
< r. (17)

It follows that for all β > 0, Eq. (17) is always satisfied.
We shall then restrict β to be strictly positive. Then the line
element (1) representing the WH geometry is given by

ds2 = −dt2 + dr2

1 − r0
r

(
1 − β

rm+1
0

)
+ βr0

rm+2

+ r2d�2. (18)

The above geometry reproduces the Minkowski space-
time geometry when r → ∞. Furthermore, it represents a
family of WH depending on the choice of them parameter. In
this respect, power law shape functions have been considered
by several authors in the arena of WH solutions.

Next, by using Eq. (15) and the equation of state p⊥ = −ρ

into the set of Eqs. (9)–(11) one arrives at the following first
order differential equation for F(R(r)),

F ′
(

1 − b

r

)
− F

2r2

[
b + b′r

] = 0. (19)
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The general solution of (19) is given by

F(R(r)) = F0Exp

[
−1

2

∫

r0
(−βmrm0 + rm0 rm + βrm0 − βr

)
r
(
r1+m

0 rm − rm0 r1+m + βr1+m
0 − βr0rm

)dr
⎤
⎦ ,

(20)

being F0 an integration constant. Now we examined the out-
put expressions obtained from Eq. (20) by taking different
values for the running constant parametersm and β satisfying
the mentioned requirements.

4.1 Solution #1: m = 1

The election m = 1 yields from Eq. (20) to

F(R(r)) = F0
√
r (r − r0)

A
(
r0r

2 + βr + βr0

)B

Exp

[
−

2arctan

(
2r0r+β√
4βr2

0 −β2

)
β

(
β − r2

0

)

(
2β + r2

0

) √
4βr2

0 − β2

]
, (21)

where A and B are defined by

A ≡ r2
0 − 2β

2
(
r2

0 + 2β
) , B ≡ − r2

0

2
(
r2

0 + 2β
) . (22)

As it is observed from Eq. (21) the sign of the F(R(r)) func-
tion depends on the sign of the integration constant F0. If the
sign of the F(R(r)) function is positive or negative is a very
important issue regarding the existence of WH solutions in
the arena of f (R)-gravity theory. As we will see later this fact
is related with the fulfillment of energy conditions and ghost
fields existence in the model. It should be noted that in order
to have a dimensionless F(R(r)) function the dimensionality
of the integration constant F0 depends on the factors A and
B.

4.2 Solution #2: m = 0

This simple choice provides from Eq. (15)

b(r) = r0

(
1 − β

r0

)
+ β

r0

r
. (23)

In this case, in order to satisfy the flare-out condition one can
express β = γ r0, where γ is a constant parameter. To satisfy
b′(r0) < 1, γ must be restricted to be γ > −1. Furthermore,

from b(r) < r we get

r2 − r0 (1 − γ ) r − γ r2
0 > 0. (24)

The roots of the above inequality are r+ = r0 and r− =
−γ r0. It is clear that r+ > r−, then to cover the range
[r0,+∞) is enough to take γ > −1. So, F(R(r)) function
is given by

F(R(r)) = F0

(
r + β

r − r0

)C

, (25)

beingC ≡ (β−r0)/2(β+r0). Again, the sign of the F(R(r))
function depends on the integration constant F0, however
this time F0 is dimensionless. It should be noted that the
point r = r0 makes the expressions (21) and (25) singular or
null. This depends on the relation between r0 and β which
determine the sign of A, B and C .

Next, the f (R(r)) function can be obtained from

F = d f

dR
= d f/dr

dR/dr
⇒ f (R(r)) =

∫
F(R(r))

dR(r)

dr
dr,

(26)

where the general expression for the Ricci scalar correspond-
ing to the line element (18) is given by

R(r) = 2b′(r)
r2 ⇒ R(r) = −2βr0 (m + 1)

rm+4 . (27)

To reduce the mathematical complications in the case m = 1
we shall assume β = r2

0 . In this way the expression (21)
becomes

F(R(r)) = F0

[
r3

(r − r0)(r0r2 + r2
0r + r3

0 )

]1/6

, (28)

where the above choice leads to A = B = −1/6 and the
resulting scalar curvature is

R(r) = −4r3
0

r5
. (29)

So, combining Eqs. (26), (28) and (29) one gets

f (R(r)) = −40

81

F0

r3
0r

5

[
r3

r3r0 − r4
0

]1/6 [
9r6

0 + 3r3
0r

3

−12r6 + 8r6

(
1 − r3

r3
0

)1/6

2F1

(
1

6
; 1

2
; 3

2
; r

3

r3
0

) ]
+ f0, (30)
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Fig. 1 The trend of the dimensionless f (R(r))/ f (R(r0)) function and
Ricci’s scalar R(r) against the dimensionless radial coordinate r/r0 for
m = 1, β = r2

0 = 1, F0 = −1 and f0 = 10 (red curves) and m = 0,

β = −r0/2, r0 = 1, F0 = −1 and f0 = 20 (blue curves). It is worth
mentioning that from now on throughout the analysis the numerical
value assigned to the throat of the WH will be r0 = 1

being f0 an integration constant with units of length−2. For
the casem = 0 we shall assume γ = −1/2, then β = −r0/2.
So, from Eqs. (25) and (27) the following F(R(r)) function
and Ricci scalar are obtained

F(R(r)) =
(

r − r0

2r − r0

)3/2

F0, (31)

R(r) = r2
0

r4 . (32)

Thus, putting together Eqs. (26), (31) and (32) one arrives to

f (R(r)) = r2
0 F0

r4 AppellF1

(
4;−3

2
; 3

2
; 5; r0

r
; r0

2r

)
+ f0.

(33)

The trend of the f (R(r)) function and the Ricci scalar R(r)
are depicted in Fig. 1. It is appreciated that R vanishes when
r tends to infinity as expected (flat space-time).

5 Results and discussions

In this section, we discuss the behavior of the shape function
b(r), energy conditions and the presence of ghost fields of
the WH models we have obtained.

5.1 Shape function behavior

As was pointed out in Sect. 2 the shape function b(r) must
respect some basic requirements in order to have an asymp-
totically and traversable WH space-time. So, taking into
account these rules, the proposed ansatz given by (15) fulfills
all the formalities. Furthermore, the above requirements are
ensured only in the range m + 1 > 0 ⇒ m > −1. This is
so because, if m is taken to be less than −1, then the shape
function will not be finite when r goes to infinity. Moreover,
the limit of b/r when r tends to infinity will be divergent.
Besides, we discard the condition m + 1 = 0 ⇒ m = −1
because it does not lead to the Minkowski space-time in the
mentioned limit, because the coefficient in front of dr2 term
in the line element will not be 1. In that case one needs to
redefine the radial coordinate r but the solid angle is altered.
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Fig. 2 These plots show the trend of the shape function (blue line), its first derivative (green line) and the curve b(r) − r defining the WH throat
(red line), for m = 1 and β = r2

0 = 1 (left panel) and m = 0 and β = −r0/2 (right panel)

As shown Fig. 2 for the chosen m the shape function b(r)
(blue line) remains finite everywhere. Moreover, the flare-
out condition is also satisfied, it is depicted by the green
line, where b′(r) is always less than the straight line r = 1
at the neighborhood of the throat r0, and the blue line is
representing the WH throat, as can be seen this curve cuts
the radial axis just at r = 1 the throat of the WH geometry.

5.2 Thermodynamic variables and energy conditions

It is well known that the matter distribution surrounding the
space-time can be composed of a large number of mate-
rial fields. While one has an idea of how the matter content
described by the energy–momentum tensor behaves, obtain-
ing an exact description of it can be a very complex task.
As far as this is concerned, the so-called energy conditions
constitute a way of testing the positivity of energy density ρ,
as is required by a real and well behaved matter content.

Despite energy conditions are not part of fundamental
physics, they are useful to characterize the type of fluid distri-
bution one deals with [84]. As it is well known in the frame-
work of General Relativity, the so called null energy condi-
tion (NEC): ρ + pr ≥ 0 and ρ + p⊥ ≥ 0 (for anisotropic
matter distributions) is violated in order to have a spherically
and static traversable WH space-time. Since, in that case the
radial pressure pr is negative and greater in magnitude than
the energy density ρ. It may also occur that the energy den-
sity ρ becomes not strictly positive at all points. Besides, in
General Relativity the energy conditions establish that grav-
ity should be attractive and they can be derived from the
Raychaudhuri equation which is given by

dθ

dτ
= −θ2

3
− σμνσμν + ωμνωμν − Rμνu

μuμ (34)

where θ , σμν , ωμν are respectively the expansion, shear
and rotation associated with the congruence of time-like
geodesics specified by the vector field uν . So, the Raychaud-
huri equation for the congruence of null geodesics (defined
by the null vector kμ) is as follows

dθ

dτ
= −θ2

2
− σμνσμν + ωμνωμν − Rμνk

μkμ. (35)

So, to satisfy the attractive gravitational force condition one
needs Rμνuμuν ≥ 0 and Rμνkμkν ≥ 0 [85]. It should
be noted that the Raychaudhari equations are purely geo-
metric description. Since Einstein fields equations relate the
geometry of the space-time Rμν with the matter content Tμν ,
Raychaudhuri equations can be combined with the General
Relativity ones to impose certain conditions on the energy–
momentum tensor for its physical viability. Hence, in Ein-
stein theory one requires Rμνkμkν ≥ 0, which implies
Tμνkμkν ≥ 0 (NEC). Nevertheless, in the arena of modi-
fied gravity theories, such constraints are not straightforward.
Specifically, in f (R) gravity the geometric sector is too com-
plicated due to the introduction of high power terms of the
Ricci scalar R. Therefore, to deal with energy conditions in
this case one takes the total or effective thermodynamic quan-
tities, that is those formed by the combination of the normal
matter sector described by Tm

μν and the curvature energy–
momentum tensor T c

μν .
It should be noted that violations of the energy conditions

have sometimes been presented as only being produced by
nonphysical stress energy tensors. Nevertheless, they can be
violated in many cases, for example the minimally coupled
scalar field and curvature-coupled scalar field theories. As
was discussed in [81] the possibilities to obtain WH solu-
tions in f (R)-gravity theory can be analyzed by performing
a conformal map from the Jordan frame to the Einstein one
and apply there the known results given in [79]. Nevertheless,
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there are possibilities of getting geometries connecting two
far away flat or infinity regions that is, wormholes, driven by
normal matter that is, matter satisfying the NEC [57]. How-
ever, the price to pay is the presence of ghost fields [80,81].

So, to check the energy conditions it is necessary to know
the behavior of the principal thermodynamic variables that
characterize the fluid distribution, namely the density ρ, the
radial pr and tangential p⊥ pressures. These physical quan-
tities are given by Eqs. (9)–(11), where the f (R(r)) function
for each model are expressed by Eqs. (30) and (33).

For m = 1 we have

ρ(r) = 20

81

F0

r3
0r

5

[
r3

r3r0 − r4
0

]1/6

[
9r6

0 + 3r3
0r

3 − 12r6 + 8r6

(
1 − r3

r3
0

)1/6

2F1

(
1

6
; 1

2
; 3

2
; r

3

r3
0

) ]

+ f0 −
(
r3r0 − r4

0

r3

)5/6
rr2

0(
r3

0 − r3
)2 F0, (36)

pr (r) = 20

81

F0

r3
0r

5

[
r3

r3r0 − r4
0

]1/6

[
9r6

0 + 3r3
0r

3 − 12r6 + 8r6

(
1 − r3

r3
0

)1/6

2F1

(
1

6
; 1

2
; 3

2
; r

3

r3
0

) ]

− f0 − 4r3
0

r5

(
r3

r3r0 − r4
0

)1/6

F0, (37)

and for m = 0 one arrives to

ρ(r) = r2
0 F0

2r4 AppellF1

(
4;−3

2
; 3

2
; 5; r0

r
; r0

2r

)

+ f0 + 3r3
0

4 (r0 − r) (2r − r0) r3

(
r − r0

2r − r0

)3/2

F0,

(38)

pr (r) = −r2
0 F0

2r4 AppellF1

(
4;−3

2
; 3

2
; 5; r0

r
; r0

2r

)

+ f0 + r2
0

r4

(
r − r0

2r − r0

)3/2

F0. (39)

In both cases the tangential pressure is determined by the
condition p⊥ = −ρ. As can be seen the behavior of the
principal thermodynamic variables depends on the integra-
tion constants F0 and f0. The Fig. 3 displays the behavior of
the main physical quantities for both models. As can be seen
in the upper left panel for m = 0 the density ρ is positive

defined everywhere for all r ∈ [r0,+∞), while the upper
right panel shows the trend of the radial pr and tangential
p⊥ pressures, being both quantities negative everywhere. As
it is well known a negative radial pressure causes a repulsive
gravitational force maintaining the throat of the WH open.
In comparing the density and radial pressure in magnitude
it is observed that the former is greater than the second one,
namely |ρ| > |pr |. This fact as we will see soon ensure the
satisfaction of the null and weak energy conditions at least
at the throat of the WH and its neighborhood. On the other
hand for the case m = 1 the situation concerning the density
is similar to the previous case, that is, positive defined every-
where. However, the radial pressure is positive at the throat
but takes negative values away of it.

Now, we proceed to analyze the behavior of the NEC and
WEC. So, combining Eqs. (5) and (9) we get

FR − 1

2
f = pr . (40)

Next, adding Eqs. (9) and (40) we obtain

ρ + pr = FR − �F. (41)

The above equation is just the NEC. As can be seen this
expression is independent of f (R(r)). For the present models
the respective NEC expressions are given by

m = 1

ρ + pr = F0

(
4r5

0 − 5r3r2
0

)
(
r4 − rr3

0

)2

(
r3r0 − r4

0

r3

)5/6

, (42)

m = 0

ρ + pr = F0
r0β (r0 − β)

(
5rr0 − 4r2 + 4βr0 − 5rβ

)
2 (r0 − r) (r + β) r3

(
r − r0

r + β

) 3r0+β

2(r0+β)
(43)

It is clear from the previous expressions (42) and (43) that ρ+
pr > 0 for F0 < 0. In this case to contrast the implications
of having a WH solution that satisfies NEC and another that
violates it, we consider F0 = −1 for both cases ı.e,m = 1 and
m = 0. It is worth mentioning that to satisfy the positiveness
of ρ+ pr in the casem = 0 there are several more restrictions
than just considering F0 < 0. Due to the r > r0 for all r ∈
[r0,+∞) the denominator of Eq. (43) is always negative, but
this negative sign is cancel out by the global factor β taking
into account that β < 0. Nevertheless, on the numerator
appears the term (r0 − β), thus to assure a positive ρ + pr
quantity r0 must be greater than β in modulus. Therefore, our
choice β = −r0/2 satisfies the above requirement. Finally,
the term −4r2 dominates over the rest part, then the previous
choice on F0 is necessary to satisfy the mentioned condition.
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Fig. 3 Upper row: (m = 0) The dimensionless density and radial and tangential pressure against the ratio r/r0. Lower row: (m = 1) The trend of
the dimensionless thermodynamic variables versus the dimensionless radial coordinate r/r0

Fig. 4 The dimensionless null energy condition against the dimensionless radial coordinate r/r0 for m = 1 (left panel) and m = 0 (right panel)

Figure 4 shows the trend of the NEC for both cases. The left
panel corresponds tom = 1, as illustrated the NEC is positive
for all r belonging to [r0,+∞). Moreover, at large distance
the NEC is saturated ı.e, ρ + pr = 0. On the other hand
the right panel displays a different situation for the m = 0
case. In this opportunity the NEC is satisfied at the throat of
the WH (see Eq. (43)) and its neighborhood, after that takes
negative values, this means violation of the NEC. However,

far away from the throat is saturated. Furthermore, as was
pointed out earlier, in both cases ρ > 0, hence the WEC
(ρ ≥ 0 & ρ + pr ≥ 0) is also satisfied everywhere for
m = 1 and partially for m = 0, because the NEC is violated
in some regions. The fulfilment of NEC and WEC in the
model m = 1 implies that the dominant energy condition
(DEC) is also satisfied, that is, ρ ≥ |pr |. In considering
the NEC, WEC and DEC in the tangential direction all are
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satisfied for m = 1 and m = 0, while the strong energy
condition (SEC) ı.e, ρ + pr + 2p⊥ ≥ 0 is violated for each
model due to the condition p⊥ = −ρ.

5.3 Ghost fields

The existence of WH regions, at least from the theoretical
point of view in the context of f (R)-gravity theory should
be supplemented with an additional analysis. As was pointed
out by Bronnikov and Starobinsky [80,81] a WH space-time
with matter fields satisfying the NEC cannot exist if

F(R) ≡ d f (R)

dR
> 0 and

d2 f (R)

dR2 = dF(R)

dR
�= 0. (44)

This implies that the existence of such solutions violates
the NEC (like in General Relativity). The first statement of
(44) assures that ghost fields (gravitons with negative kinetic
energy) are absent in the solution. Hence, if F(R) < 0 then
the theory propagates ghost fields (for a detailed discussion
about this subject in modify gravity theories see [58] and
Appendix A). The second statement of (44) is refereed to the
stability of the WH throat.2

So, to have a better understanding of how (44) works we
will re-express Eqs. (21) and (25) as functions of the Ricci
scalar and its value at the throat. So, from the expressions
(29) and (32) we get

m = 1

r(R) = √−4

(
1

RR3/2
0

)1/5

and r0(R0) =
(−4

R0

)1/2

,

(45)

where in order to avoid complex numbers R0 < 0. Form = 0
we have

r(R) =
(

1

RR0

)1/4

and r0(R0) =
(

1

R0

)1/2

. (46)

So, using Eqs. (28), (30), (31), (33), (45) and (46) one
arrives to

f (R) = −5F0

162
RR3

0

⎡
⎣ 1

√−4
(
R−1/2

0 − R3/5R−11/10
0

)
⎤
⎦

1/6

[
9

(−4

R0

)3

+ 192

R3/5R12/5
0

+768

(
1

RR3/2
0

)6/5

− 512

(
1

RR3/2
0

)6/5

2 This refers to quantum stability. However the present work only con-
cerns a classical study, so we will not analyze this point here.

(
1 − R3/5

0

R3/5

)1/6

2F1

(
1

6
; 1

2
; 3

2
; R3/5

0

R3/5

) ]
+ f0, (47)

F(R) =

⎡
⎢⎢⎣

1
R3/5R9/10

0(
(−4)1/2

R1/5R3/10
0

− (−4)1/2

R1/2
0

) (
1

R2/5R11/10
0

+ 1
R1/5R13/10

0

+ 1
R3/2

0

)
⎤
⎥⎥⎦

1/6

F0,

(48)

for m = 1 and

f (R) = AppellF1

(
4;−3

2
; 3

2
; 5;

R1/4

R1/4
0

; R1/4

2R1/4
0

)
RF0 + f0. (49)

F(R) =
⎡
⎢⎣

(
1

RR0

)1/4 −
(

1
R0

)1/2

2
(

1
RR0

)1/4 −
(

1
R0

)1/2

⎤
⎥⎦

3/2

F0, (50)

for m = 0. As it is depicted in Fig. 5 (right upper panel)
in the m = 1 case F(R) is negative for all R. This means
that the first statement of (44) is not met. A negative F(R)

implies the present of ghost fields in the solution. However,
as was stated in [80,81] it is not possible to obtain a free ghost
field WH solution satisfying NEC. Of, course as pointed out
earlier, the case m = 1 satisfies the NEC but contains states
with negative kinetic energy. The second requirement of (44)
is satisfied for this model as shows the left panel of Fig.
6. The case m = 0 entails a more interesting situation. As
it is appreciated from expression (50) the F(R) function is
everywhere positive and zero at R = R0 = 1 (or equivalently
at r = r0, since there is a one to one relation between r and R).
This implies that at the throat the gravitational forces become
infinite. Moreover, from the right panel in Fig. 6 is evident
that dF/dR = 0 at R = R0 = 1. This particular model is
not within the scope of the analysis given in [80,81], because
in these works only the case F(R) = 0 and dF/dR �= 0 is
studied. In general, for the case m = 0 the expression of
dF/dR reads

dF(R)

dR
= −3

8

×

[(
1

RR0

)1/4 −
(

1
R0

)1/2
]1/2 (

1
R0

)1/2

[
2

(
1

RR0

)1/4 −
(

1
R0

)1/2
]5/2 (

1
RR0

)3/4
R2R0

F0, (51)

as can be seen the numerator of the above expression vanishes
for every R = R0. Besides, this solution constrains ghost
fields as Fig. 5 illustrates (right panel in the lower row) and
partially violates the NEC as can be seen from the left panel
in Fig. 4. In this case, ghosts appear because the NEC is
satisfied in some regions. At this point, it is worth mentioning
that the general solution of (20) with m = 0 and without any
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Fig. 5 Upper row: the trend of the dimensionless f (R) function (left panel) and its first derivative F(R) (right panel) against the dimensionless
quantity R/R0 for m = 1. Lower row: the behavior of the quantities f (R)/ f (R0) and F(R) versus R/R0 for m = 0
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Fig. 6 The trend of dF/dR versus R/R0 for m = 1 (left panel) and m = 0 (right panel)

specification about the values of γ and r0 is given by

F(R(r)) =
[
r − r0

β + r

] r0−β

2(r0+β)
F0, (52)

so regardless of which values are chosen for the parameters
γ and r0 this particular model always leads to F(R(r)) = 0
at the throat, or using (50) in terms of the scalar curvature R,
one obtains at R0: F(R) = 0 and dF(R)/dR = 0.

6 Cosmological properties

In this section we discuss some cosmological aspects associ-
ated to f (R)-gravity. As it is well known this modify gravity
theory emerges as an alternative for a unified description
of the early-time inflation with late-time cosmic accelera-
tion, without adding unknown forms of dark components ı.e,
dark energy and dark matter [59]. Although several models
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of gravity f (R) have been proposed to unify the aforemen-
tioned problems [60–62], there are models that only address
either early or late stage of the Universe. Considering, the
latter a wide range of works available in the literature have
faced the accelerated expansion of the Universe to give an
explanation to the existence of dark energy from the perspec-
tive of f (R)-gravity [63–76].

6.1 Early and late time phases

To tackle the dark energy issue from the arena of f (R)-
gravity there some general requirement that any viable f (R)

model should satisfy [77]

1. F(R) > 0 for R ≥ R̃ (R̃ > 0), where R̃ is the Ricci
scalar at the present epoch.

2. dF(R)
dR > 0 for R ≥ R̃. This is required for consistency

with local gravity tests, for the presence of the matter-
dominated epoch and for the stability of cosmological
perturbations.

3. f (R) → R for R >> R̃. This is required for consistency
with local gravity tests and for the presence of the matter-
dominated epoch.

4. 0 < R
F(R)

dF(R)
dR (� = −2) < 1 at � ≡ − RF(R)

f (R)
= −2.

This is required for the stability of the late-time de Sitter
point.

To check the feasibility and viability of our model, we have
analyzed in details the above criteria for the case given by
m = 0 (the case m = 1 is not analyzed due to the gen-
eral F(R) function without any specification about β and r0

cannot be integrated to obtain the f (R) function). So, from
expression (52) one has

F(R) =
⎡
⎢⎣

(−2cβ
R

)1/4 − c
(−2cβ

R

)1/4 + β

⎤
⎥⎦

c−β
2(c+β)

F0, (53)

where c is a constant parameter replacing r0. Integration of
(53) with respect to R leads to

f (R) = F0AppellF1

×
(

4; − c − β

2 (c+β)
; c−β

2 (c+β)
; 5; cR1/4

(−2βc)1/4 ; − βR1/4

(−2βc)1/4

)
R + f0.

(54)

Next, from (53) the condition 1 is fulfilled if for all R ≥ R̃ >

0 iff F0 > 0 and cβ < 0 where β > 0 and c < 0, thus
F(R) > 0. To check the second condition from Eq. (53) one
gets

dF(R)

dR

= (β − c)

4R

(
2β − 2c + 2

(−2cβ
R

)1/4 + R
(−2cβ

R

)3/4
) F(R).

(55)

As before, this condition is satisfied for all β > 0 and c < 0.
Next, when R >> R̃ the special function tends to a real
positive number, namely K . Then from (54) we have

f (R) ∼ F0K R + f0. (56)

Now choosing F0K = 1, Eq. (56) becomes

f (R) ∼ R, (57)

where at large scalar curvature R the constants f0 can be
neglected, or it can be interpreted as f0 = −2�, thus one
ends with Einstein theory including the cosmological con-
stant term. Then condition 3 is satisfied. As can be seen from
(57) in the limit R >> R̃ Einstein’s gravity is recovered as
expected for viable and realistic f (R) models going from a
matter-dominated epoch to a dark energy Universe [86]. The
last condition entails a special kind of solutions within the
f (R)-gravity background, those are the so-called de Sitter
point class of solutions. This class of solutions satisfy the
following constraint obtained from the trace of the equations
of motion (5), which is trivial in the Einstein theory but gives
precious dynamical information in the modified gravitational
models [62]. So, this condition reads

F(R̃)R̃ − 2 f (R̃) = 0. (58)

This constraint reveals the existence of maximally symmet-
ric vacuum solutions in the theory [78]. So, if a covariantly
constant scalar curvature R ≡ R̃ = constant satisfies (58)
given any f (R)-gravity model, then the theory contains the
General Relativity de Sitter solution with constant curvature
R̃. Therefore, by replacing in Eq. (58) one arrives to

−2F0AppellF1

(
4;− c − β

2 (c + β)
; c − β

2 (c + β)
;

5; cR̃1/4

(−2βc)1/4 ;− β R̃1/4

(−2βc)1/4

)
R̃

+R̃

⎡
⎢⎣

(−2cβ
R̃

)1/4 − c
(−2cβ

R̃

)1/4 + β

⎤
⎥⎦

c−β
2(c+β)

F0 − 2 f0 = 0. (59)

It is obvious that the previous equation has always a solution
which depends on three parameters, namely {c, β, R̃}. Next,
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the stability condition 4: 0 < R
F

dF
dR < 1 is always satisfied.

In the present case this condition reads

R

F(R)

dF(R)

dR
= (β − c)

4

(
2β − 2c + 2

(−2cβ
R

)1/4 + R
(−2cβ

R

)3/4
) .

(60)

Indeed, from (60) the denominator is always greater than the
numerator, hence the expression is always positive and less
than 1 for every c and β.
It is clear from (54) that the model reproduces the domi-
nated matter epoch expressed by (57). As it is well-known,
this stage corresponds to early times or equivalently large
curvature [86]. On the other hand, the late time stage (small
curvature) described by (54) can be stated as follows3

f (R) ∼ F0R

[
1 + 2 (β − c)

5 (−2βc)1/4 R
1/4 + O

(
R1/2

)]
+ f0.

(61)

As can be seen at late times the asymptotic behavior of the
present model leads to a model with positive powers of cur-
vature [86].

At this point, it is worth mentioning that the present model
does not unify the inflationary stage with the accelerated
expansion. Notwithstanding, without loss of generality Eq.
(53) can be generalized as follows

F(R) =
⎡
⎢⎣

(−2cβ
R

)1/4 − c
(−2cβ

R

)1/4 + β

⎤
⎥⎦

c−β
2(c+β)

F0 − 2�0δ (R − R0) − 2�I δ(R − RI ), (62)

being δ the delta Dirac function and R0 and RI (RI >>

R0) are representing transition scalar curvatures (for further
details see [62]). The above extension is completely plausi-
ble, since the functional given by (62) is valid for all R �= R0

and R �= RI , being δ(R − R0) and δ(R − RI ) vanishing.
So, integrating the above expression one gets

f (R) = F0AppellF1

(
4;− c − β

2 (c + β)
; c − β

2 (c + β)
;

5; cR1/4

(−2βc)1/4 ;− βR1/4

(−2βc)1/4

)
R

−2�0�(R − R0) − 2�I�(R − RI ) + f0, (63)

where � is the Heaviside step function. As stated in [59,
62] any viable f (R) model unifying inflationary phase with
accelerated stage must satisfy the following requirements

3 For further details see the Appendix B

f (0) = 0 and lim
R→R̂

f (R) = −2 (�0 + �I ) , (64)

with R̂ >> RI >> R0. Of course when R = 0 the special
function tends to 1 and (63) provides f (0) = 0, ensuring the
disappearance of the cosmological constant in the limit of
flat space-time [62]. On the other hand, in the limit R → R̂
Eq. (63) yields to −2 (�0 + �I ), where �I is the inflation
cosmological constant and R̂ being the corresponding transi-
tion large scalar curvature. Despite the coupling between our
model and the two step model provides a well posed scenario
to unify the early and late time stages of the Universe, the
introduction of Heaviside and Dirac distributions makes it a
simply toy model [62]. However it shows a natural way to
extend our model to address this point.

6.2 Late time accelerated phase in the flat FLRW
space-time

To explore the late time accelerated phase of our Universe,
we shall consider that the geometric background is described
by a flat Friedmann–Lemaitre–Robertson–Walker (FLRW)
metric [59,83], with line element given by,

ds2 = −dt2 + a(t)2
∑

i=1,2,3

(
dxi

)2
, (65)

with a(t) denoting as usual the scale factor. Next, taking into
account a perfect fluid matter distribution

Tμ(m)
ν = diag [−ρ(t), p(t), p(t), p(t)] , (66)

the field equation (4) adopt the following form

− f

2
+ 3

(
H2 + Ḣ

)
F

−18
(

4H2 Ḣ + H Ḧ
) dF

dR
+ ρ = 0 (67)

f

2
−

(
Ḣ + 3H2

)
F

+6
(

8H2 Ḣ + 4Ḣ2 + 6H Ḧ + ...
H

) dF

dR

+36
(
4H Ḣ + Ḧ

)2 d2F

dR2 + p = 0, (68)

where dots represent differentiation with respect to the cos-
mic time t and being H the Hubble rate defined as H(t) ≡
ȧ(t)/a(t). As usual we shall assume that ρ and p are related
by the following equation of state

p = ωρ, (69)
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Fig. 7 The evolution of the density ρ(t) versus the cosmic time variable t (left panel) and the scale factor a(t) (right panel)

being ω a constant parameter, namely the equation of state
parameter. So, plugging the model expressed by (61)4 with
the previous ingredients into the field equation (67) one gets

−1

2

(
F0R + DR5/4

)
+ 3

(
H2 + Ḣ

) (
F0 + 5D

4
R1/4

)

−45D

8

(
4H2 Ḣ + H Ḧ

)
R−3/4

+ρ0a
−3(1+ω) = 0, (70)

where D ≡ 2F0 (β − c) /5 (−2βc)1/4. Besides, for the sake
of simplicity we have fixed f0 = 0. The FLRW line element
given by (65) leads to

R = 12H2 + 6Ḣ . (71)

So, Eq. (70) can be written as

−1

2

[
F0

(
12H2 + 6Ḣ

)
+ D

(
12H2 + 6Ḣ

)5/4
]

+3
[
H2 + Ḣ

] [
F0 + 5D

4

(
12H2 + 6Ḣ

)1/4
]

−45D

8

[
4H2 Ḣ + H Ḧ

] [
12H2 + 6Ḣ

]−3/4

+ρ0a
−3(1+ω) = 0. (72)

The above equation admits the following solution in inverse
powers of t for the Hubble rate H(t) as follows

H(t) = I

t
+ J

t3/2 , (73)

where I and J are given by

I = 2

3 (1 + ω)
, J = − 1

10

(β − c)

(−2βc)1/4

[
4 (1 − 3ω)

3 (1 + ω)2

]1/4

4 It must be remembered that (61) is valid for the late time accelerated
epoch, which is equivalent to saying small curvature R

×
[

11 + 87ω

36 (1 + ω)

]
, (74)

then the scale factor a(t) is

a(t) = a0t
2/3(1+ω)Exp

[
− 2J

t1/2

]
, (75)

being

a0 =
[

4F0

3ρ0 (1 + ω)2

]− 1
3(1+ω)

. (76)

It should be noted that the first terms of (73) and (75) yield to
the well-known results provided by General Relativity [87],
hence next terms can be seen as corrections introduced by
f (R)-gravity. Now, from the field equations given above
(67)–(68) the acceleration equation reads

ä

a
= −1

6
(ρeff + 3peff) , (77)

being ρeff ≡ ρ + ρR and peff ≡ p + pR , where

ρR = 1

F

[
1

2
( f − RF) − 3H Ṙ

dF

dR

]
, (78)

and

pR = 1

F

[
2H Ṙ

dF

dR
+ R̈

dF

dR
+ Ṙ2 d

2F

dR2 − 1

2
( f − RF)

]
.

(79)

From Eqs. (77)–(79), the acceleration condition, for a dust
dominated model (p = 0 ⇒ ω = 0 ), leads to [88]

ωeff = −1 − 2Ḣ

3H2 < −1

3
, (80)
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Fig. 8 The trend of the effective equation of state parameter ωeff

where we have defined ωeff as

ωeff ≡ peff

ρeff
. (81)

the above condition can be cast in terms of the curvature
contributions as follows

ωR ≡ pR
ρR

< − ρeff

3ρR
. (82)

In Fig. 7 are displayed the evolution of the density ρ(t) (left
panel) against the cosmic time t and the trend of the scale
factor a(t) (right panel). On the other hand Fig. 8 shows the
behavior of the effective equation of state parameter ωeff. As
can be seen the condition (80) is satisfied. Then the model
describe a Universe in an accelerated phase as desired [88].

7 Concluding remarks

In this work a spherically and static wormhole family with
vanishing red-shift function was studied in the arena of f (R)-
gravity theory. The field equations were solved by impos-
ing a suitable shape function satisfying all the requirements
to describe a traversable wormhole and asymptotically flat
space-time at infinity and an equation of state, specifically
p⊥ = −ρ. The imposition of this relation leads to a first
order differential equation for F(R(r)) function. Once the
F(R(r)) function is obtained it can be expressed in the form
F(R) by inverting the radial coordinate r from the Ricci
scalar expression.

As it is well known in the context of General Relativity
a wormhole space-time is only possible if the NEC is not
satisfied at the throat and its neighborhood [79]. The same
argument is translated into the f (R)-gravity theory in the
absence of ghost fields. Moreover, under some special con-

ditions wormhole geometries respecting NEC are possible
in the background of f (R)-gravity. Regarding the present
study we can summarize the main results for each model as
follows:

m = 0

1. For the considered space parameter, that is {r0, β, F0} =
{1,− 1

2 ,−1}, it can be seen from Fig. 3 (upper panels) that
the density ρ is positive defined everywhere, contrarily
to what happens with the radial pressure pr which is
negative for all r ∈ [r0,+∞), so the WH geometry is
supported by a repulsive gravitational force introduced
by this negative radial pressure. However, it should be
noted that there are some points where |pr | > |ρ|, then
the NEC and WEC are locally violated as it is illustrated
in Fig. 4 (left panel).

2. As Fig. 5 shows (right panel in the lower row ) F(R)

is strictly negative everywhere. One should take into
account that as stated in [80,81] in the framework of
f (R)-gravity theory it is not possible to obtain a worm-
hole solution respecting energy conditions (not supported
by exotic matter) without the presence of ghost fields.

m = 1

1. In this case the space parameter was fixed to {r0, β, F0} =
{1, 1,−1} and in distinction with the previous case the
the WEC and NEC are satisfied everywhere. This is so
because the density ρ is positive defined at all points
r ∈ [r0,+∞) and greater in magnitude than the radial
pressure pr , which is negative everywhere. The fact of
fulfilling the energy conditions (WEC and NEC) makes
the f (R)-gravity arena an interesting and promising field
to study the main properties of wormhole structures with-
out any exotic matter distribution as occurs in General
Relativity.

2. Although this case satisfies the WEC and NEC every-
where, as stated before then the theory can not have
absence of ghosts. In fact, if the wormhole structure
is threading at its throat by normal matter distribution
respecting the mentioned energy conditions, then the
solution must have ghost fields. The main problem with
the ghost fields is that the f (R)-gravity model associated
with the wormhole geometry can not describe or explain
cosmological issues, since this requires a positive defined
energy.

To close the wormhole scenario, we remark that it
is possible to build viable wormholes space-time in the
f (R)-gravity context respecting all the general requirements
to be a traversable region connecting two asymptotically
Minkowskian or infinite spaces, either violating or satisfying
NEC. However, in the latter case, the conformal map [80,81]
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must be ill defined at some points since in the Einstein frame
there are not wormholes satisfying NEC [79].

An important property of one of our models is the cosmo-
logical viability to address the late-time accelerated epoch of
our Universe. This point was analyzed by checking that the
f (R)-gravity models satisfy the general requirements given
in [77]. It is worth mentioning that to study the cosmological
implications described by the resulting models with m = 0
and m = 1, the space parameter {r0, β, F0} should be reset,
because the previous assignation was to describe an asymp-
totically and traversable wormhole geometry satisfying the
energy conditions (partially or totally). For the case m = 1 it
is not possible in general to analyze its cosmological viability,
because the general expression given by (21) is not tractable
mathematically. in distinction, the case m = 0, as was shown
in Sect. 6 has good properties to address the late-time acceler-
ation era of the Universe. In this concern, we have checked the
general criteria [77] to confirm these good properties. Among
these features, the model f (R) corresponding to m = 0
respects: (i) consistency with local gravity tests, (ii) stability
under cosmological perturbations, (iii) ghosts free and (iv)
stability of the de Sitter point. In considering the last point,
it is remarkably that this model contains vacuum solutions
ı.e, solutions with constant curvature R0 and null energy–
momentum tensor Tμν = 0, which also include the de Sitter’s
solution to the vacuum Einstein field equations with cosmo-
logical constant [78]. Furthermore, to check the accelerated
phase of our Universe at late time for the present model, we
have explored the behaviour of the scale factor a(t) and effec-
tive equation of state parameter ωeff on the background of a
flat Friedmann–Lemaitre–Robertson–Walker space-time. As
it is corroborated in Fig. 8 the equation of state parameter
satisfies the condition ωeff < −1/3 as desired for an accel-
erated expanding Universe [88]. At this point it should be
noted that the present model is in accordance with some well-
known recognize models previously reported [59,62,86] in
the arena of f (R)-gravity theory to deal with cosmological
open issues, facing both: the early and late time epochs of our
evolving Universe. In considering the former, our model does
not include early time phase (inflationary phase), since the
model is not capable to produces the minimal ingredients to
describe this stage of the Universe [59]. Nevertheless, as was
discussed in Sect. 6, the model can be consistently coupled
with a two step model [62] to unify both stages, although the
output is only a toy model it shows a natural way to extend our
model to address this point. For these reasons we only explore
in some details the late time accelerated phase, which in the
limit of high curvature reproduces Einstein gravity theory.
Finally, we want to highlight that the model obtained in this
work is able to describe for certain values of the parameters
{m, β, r0, F0} a wormhole structure without ghost, partially
satisfying the NEC, while for other values of aforementioned
parameters, describes a consistent and viable cosmological

model to explain late stages of the cosmic evolution of the
Universe in a flat FRLW background.
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Appendix A: ghost fields in f (R)-gravity theory

It is well known that f (R)-gravity is defined by the action

S(g) = 1

2κ

∫
d4x

√−g f (R), (A1)

where f (R) is an apriori given real function of the scalar
curvature R. An equivalent formalism can be given by the
introducing a scalar field �. Several ways of introducing it
have been given in the literature. The original old one [89]
starts with the action

S(�, g) =
∫

d4x
√−g

{
1

2κ
[�R − V (�)] + Lm

}
, (A2)

where V (�) is the Lebesgue transform of f (R): � = F(R)

and R = dV (φ)/d�, assuming dF(R)/dR �= 0. The elim-
ination of � from the field equations of (A2) yields the field
equations of f (R) gravity, obtained from (A1). The advan-
tages of the formulation (A2) is that the field equations are of
second order, in distinction to the field equations from (A1)
which are of fourth order.

The state of negative energy (ghost elds), becomes mani-
fest by performing a change of metric

g̃μν = |�|gμν. (A3)

Notice that one must have the absolute value of � in order to
preserve the signature of the metric. The Lagrangian in the
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new metric, in the Einstein frame, is

2LE = Sgn(�)
[
R̃ + g̃μν∂μϕ∂νϕ

]
+ W (ϕ), (A4)

where

dϕ

d�
=

√
3/2

�
and W (ϕ) = V (�)

|�|2 . (A5)

The condition of absence of ghosts is

� = F(R) > 0. (A6)

If F(R) < 0 the graviton is a ghost field. There is no way
to avoid this behavior. Besides, scalar–tensor theories even
when the graviton has positive energy may have ghosts on
the scalar sector. In [58,59] a procedure to avoid them has
been presented.

8 Appendix B: Series representation of Appell functions

The AppellF1 series is defined for |x | < 1 and |y| < 1 by
the double series

AppellF1 (a; b; c; d; x; y) =
+∞∑
i=0

+∞∑
j=0

(a)i+ j (b)i (c) j
(d)i+ j

x i y j

i ! j ! ,

(B1)

where (q)i is the Pochhammer’s symbol. So, when x → 0
and y → 0 the series expansion is given by

AppellF1 (a; b; c; d; x; y) ∼ 1 + a

d
(bx + cy)

+a (a + 1) bc

d (d + 1)
xy

+a (a + 1) b (b + 1)

2d (d + 1)
x2

+a (a + 1) c (c + 1)

2d (d + 1)
y2 + . . . (B2)

References

1. A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)
2. J.A. Wheeler, Phys. Rev. 97, 511 (1955)
3. M.S. Morris, K.S. Thorne, Phys. Rev. Lett. 61, 1446 (1988)
4. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)
5. M. Cataldo, P. Meza, P. Minning, Phys. Rev. D 83, 044050 (2011)
6. S.H. Mazharimousavi, M. Halilsoy, Z. Amirabi, Phys. Rev. D 81,

104002 (2010)
7. M.R. Mehdizadeh, M.K. Zangeneh, F.S.N. Lobo, Phys. Rev. D 92,

044022 (2015)
8. S.H. Mazharimousavi, M. Halilsoy, Z. Amirabi, Class. Quantum

Gravity 28, 025004 (2011)

9. A.G. Agnese, M. La Camera, Phys. Rev. D 51, 2011 (1995)
10. K.K. Nandi, A. Islam, J. Evans, Phys. Rev. D 55, 2497 (1997)
11. F.S.N. Lobo, M.A. Oliveira, Phys. Rev. D 81, 067501 (2010)
12. S.V. Sushkov, S.M. Kozyrev, Phys. Rev. D 84, 124026 (2011)
13. E.F. Eiroa, G.F. Aguirre, Eur. Phys. J. C 72, 2240 (2012)
14. M. Richarte, C. Simeone, Phys. Rev. D 80, 104033 (2009)
15. M.R. Mehdizadeh, M.K. Zangeneh, F.S.N. Lobo, Phys. Rev. D 91,

084004 (2015)
16. M.K. Zangeneh, F.S.N. Lobo, M.H. Dehghani, Phys. Rev. D 92,

124049 (2015)
17. V.D. Dzhunushaliev, D. Singleton, Phys. Rev. D 59, 064018 (1999)
18. J.P. de Leon, J. Cosmol. Astropart. Phys. 11, 013 (2009)
19. R. Shaikh, S. Kar, Phys. Rev. D 94, 024011 (2016)
20. K.A. Bronnikov, A.M. Galiakhmetov, Gravit. Cosmol. 21, 283

(2015)
21. K.A. Bronnikov, A.M. Galiakhmetov, Phys. Rev. D 94, 124006

(2016)
22. M.R. Mehdizadeh, A.H. Ziaie, Phys. Rev. D 95, 064049 (2017)
23. S. Perlmutter et al., ApJ 517, 565 (1999)
24. C.L. Bennett et al., Astrophys. J. Suppl. 148, 1 (2003)
25. A.G. Riess et al., Astron. J. 116, 1009 (1998)
26. P.A.R. Ade et al., Phys. Rev. Lett. 112, 241101 (2014)
27. W.M. Wood-Vasey et al., Astrophys. J. 666, 694 (2007)
28. M. Kowalski et al., Astrophys. J. 686, 749 (2008)
29. E. Komatsu et al., Astrophys. J. Suppl. 180, 330 (2009)
30. M. Tegmark et al., Phys. Rev. D 69, 103501 (2004)
31. K. Abazajian et al., Astron. J. 129, 1755 (2005)
32. K. Abazajian et al., Astron. J. 128, 502 (2004)
33. K. Abazajian et al., Astron. J. 126, 2081 (2003)
34. E. Hawkins et al., Mon. Not. R. Astron. Soc. 346, 78 (2003)
35. L. Verde et al., Mon. Not. R. Astron. Soc. 335, 432 (2002)
36. D.N. Spergel et al., ApJS 148, 175 (2003)
37. J. Edmund et al., Int. J. Mod. Phys. D 15, 1753 (2006)
38. H.A. Buchdhal, Mon. Not. R. Astron. Soc. 150, 1 (1970)
39. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)
40. T. Harko, F.S.N. Lobo, S. Nojri, S.D. Odintsov, Phys. Rev. D 84,

024020 (2011)
41. M.R. Mehdizadeh, A.H. Ziaie, Phys. Rev. D 96, 124017 (2017)
42. M.R. Mehdizadeh et al., Phys. Rev. D 92, 044022 (2015)
43. P.K. Sahoo, P.H.R.S. Moraes, P. Sahoo, Eur. Phys. J. C 78, 46

(2018)
44. P.H.R.S. Moraes, P.K. Sahoo, Eur. Phys. J. C 79, 677 (2019)
45. T. Harko, F.S.N. Lobo, M.K. Mak, S.V. Sushkov, Phys. Rev. D 87,

067504 (2013)
46. F.S.N. Lobo, A.I.P. Conf, Proc. 1458, 447 (2011)
47. F.S.N. Lobo, M.A. Oliveira, Phys. Rev. D 80, 104012 (2009)
48. N. Furey, A. De Benedictis, Class. Quantum Gravity 22, 313 (2005)
49. A. De Benedictis, D. Horvat, Gen. Relativ. Gravit. 44, 2711 (2012)
50. F. Rahaman, A. Banerjee, M. Jamil, A.K. Yadav, H. Idris, Int. J.

Theor. Phys. 53, 1910 (2014)
51. M. Jamil, F. Rahaman, R. Myrzakulov, P.K.F. Kuhfittig, N. Ahmed,

U.F. Mondal, J. Korean Phys. Soc. 65, 917 (2014)
52. S. Bhattacharya, S. Chakraborty, Eur. Phys. J. C 77, 558 (2017)
53. S. Bahamonde, M. Jamil, P. Pavlovic, M. Sossich, Phys. Rev. D 94,

044041 (2016)
54. E.F. Eiroa, G.F. Aguirre, Eur. Phys. J. C 78, 54 (2018)
55. E.F. Eiroa, G.F. Aguirre, Eur. Phys. J. C 76, 132 (2016)
56. E.F. Eiroa, G.F. Aguirre, Phys. Rev. D 94, 044016 (2016)
57. H. Golchina, Mohammad R. Mehdizadehb, Eur. Phys. J. C 77, 777

(2019)
58. A. De Felice, S. Tsujikawa, Living Rev. Relativ. 13, 3 (2010)
59. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011)
60. S. Nojiri, S.D. Odintsov, Phys. Lett. B 657, 238 (2007)
61. S. Nojiri, S.D. Odintsov, Phys. Rev. D 77, 026007 (2008)
62. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S.

Zerbini, Phys. Rev. D 77, 046009 (2008)

123



580 Page 18 of 18 Eur. Phys. J. C (2020) 80 :580

63. G.J. Olmo, Phys. Rev. D 72, 083505 (2005)
64. V. Faraoni, Phys. Rev. D 74, 023529 (2006)
65. I. Navarro, K. Van Acoleyen, JCAP 0702, 022 (2007)
66. L. Amendola, R. Gannouji, D. Polarski, S. Tsujikawa, Phys. Rev.

D 75, 083504 (2007)
67. S.M. Carroll, I. Sawicki, A. Silvestri, M. Trodden, New J. Phys. 8,

323 (2006)
68. Y.S. Song, W. Hu, I. Sawicki, Phys. Rev. D 75, 044004 (2007)
69. R. Bean, D. Bernat, L. Pogosian, A. Silvestri, M. Trodden, Phys.

Rev. D 75, 064020 (2007)
70. T. Faulkner, M. Tegmark, E.F. Bunn, Y. Mao, Phys. Rev. D 76,

063505 (2007)
71. W. Hu, I. Sawicki, Rev. D 76, 064004 (2007)
72. A.A. Starobinsky, JETP Lett. 86, 157 (2007)
73. S.A. Appleby, R.A. Battye, Phys. Lett. B 654, 7 (2007)
74. S. Tsujikawa, Phys. Rev. D 77, 023507 (2008)
75. V. Muller, H.J. Schmidt, A.A. Starobinsky, Phys. Lett. B 202, 198

(1988)
76. V. Faraoni, Phys. Rev. D 70, 044037 (2004)
77. L. Amendola, S. Tsujikawa, Dark Energy: Theory and Observa-

tions (Cambridge University Press, Cambridge, 2013)
78. J.D. Barrow, A.C. Ottewill, J. Phys. A Math. Gen. 16, 2757 (1983)

79. D. Hochberg, M. Visser, Phys. Rev. D 56, 4745 (1997)
80. K.A. Bronnikov, A.A. Starobinsky, JETP Lett. 85, 1 (2007)
81. K.A. Bronnikov, M.V. Skvortsova, A.A. Starobinsky, Gravit. Cos-

mol. 16, 216 (2010)
82. S. Bahamonde, S.D. Odintsov, V.K. Oikonomou, M. Wright, Ann.

Phys. 373, 96 (2016)
83. S. Capozziello, S. Carloni, A. Troisi, Recent Res. Dev. Astron.

Astrophys. 1, 625 (2003)
84. M. Visser, Lorentzian Wormholes: from Einstein to Hawking, AIP

Series in Computational and Applied Mathematical Physics (AIP
Press, Woodbury, 1995)

85. J. Santos, J.S. Alcaniz, M.J. Reboucas, F.C. Carvalho, Phys. Rev.
D 76, 083513 (2007)

86. S. Nojiri, S.D. Odintsov, Phys. Rev. D 74, 086005 (2006)
87. A. Liddle, An Introduction to Modern Cosmology (John Wiley &

Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex
PO19 8SQ, England, 2003)

88. S. Capozziello, V.F. Cardone, A. Troisi, JCAP 08, 001 (2006)
89. J. O’Hanlon, Phys. Rev. Lett 29, 137 (1972)

123


	A new class of f(R)-gravity model with wormhole solutions  and cosmological properties
	Abstract 
	1 Introduction
	2 A quick review: WormHoles (WH) generalities
	3 The f(R) formalism
	4 The Model
	4.1 Solution #1: m=1
	4.2 Solution #2: m=0

	5 Results and discussions
	5.1 Shape function behavior
	5.2 Thermodynamic variables and energy conditions
	5.3 Ghost fields

	6 Cosmological properties
	6.1 Early and late time phases
	6.2 Late time accelerated phase in the flat FLRW space-time

	7 Concluding remarks
	Acknowledgements
	Appendix A: ghost fields in f(R)-gravity theory
	8 Appendix B: Series representation of Appell functions
	References


