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Abstract The flux reconstruction approach to high-order methods is robust, efficient, sim-

ple to implement, and allows various high-order schemes, such as the nodal discontinu-

ous Galerkin method and the spectral difference method, to be cast within a single uni-

fying framework. Utilizing a flux reconstruction formulation, it has been proved (for one-

dimensional linear advection) that the spectral difference method is stable for all orders of

accuracy in a norm of Sobolev type, provided that the interior flux collocation points are

located at zeros of the corresponding Legendre polynomials. In this article the aforemen-

tioned result is extended in order to develop a new class of one-dimensional energy stable

flux reconstruction schemes. The energy stable schemes are parameterized by a single scalar

quantity, which if chosen judiciously leads to the recovery of various well known high-order

methods (including a particular nodal discontinuous Galerkin method and a particular spec-

tral difference method). The analysis offers significant insight into why certain flux recon-

struction schemes are stable, whereas others are not. Also, from a practical standpoint, the

analysis provides a simple prescription for implementing an infinite range of energy stable

high-order methods via the intuitive flux reconstruction approach.

Keywords High-order methods · Flux reconstruction · Nodal discontinuous Galerkin

method · Spectral difference method · Stability

1 Introduction

High-order numerical methods potentially offer better accuracy than low-order schemes for

a comparable computational cost. However, existing high-order methods are generally less

robust and more complex to implement than their low-order counterparts. These issues,

combined with difficulties generating high-order meshes, have prevented the wide-spread

adoption of high-order techniques in either academia (where the use of low-order schemes

remains widespread) or in industry (where the use of low-order schemes is ubiquitous).
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The most mature and widely used high-order methods (at least for unstructured grids)

are based on a class of schemes developed in 1973 by Reed and Hill [1] to solve the neu-

tron transport equation. Such schemes have become known as discontinuous Galerkin (DG)

methods, and numerous variants have been developed for solving the weak form of both

hyperbolic [2] and elliptic systems [3]. The basic principle of DG schemes is to decompose

the approximate numerical solution both spatially, by tessellating a given computational

domain with separate elements, and also spectrally, via a summation of piecewise discon-

tinuous polynomial basis functions within each element. A particularly simple and efficient

range of DG schemes utilize high-order Lagrange polynomial basis functions inside each

element, defined by solution values at a set of distinct nodal points. Such schemes have

become known as nodal DG methods, an exposition of which can be found in the recent

textbook by Hesthaven and Warburton [4], as well as in various articles by the same authors

[5, 6]. Similar to nodal DG methods are spectral difference (SD) methods, (although unlike

nodal DG methods, SD methods are based on the governing system in its differential form).

The foundation for such schemes was first put forward by Kopriva and Kolias [7] in 1996 un-

der the name of “staggered grid Chebyshev multidomain” methods. However, several years

later in 2006 Liu, Wang and Vinokular [8] presented a more general formulation for both

triangular and quadrilateral elements, which they termed the SD method (a name which has

been retained to the present). In recent years a range of studies have successfully employed

SD methods to solve a variety of problems [9–11].

The intimate relationship between nodal DG and SD schemes has been clearly high-

lighted by Huynh, who in 2007 presented the flux reconstruction (FR) approach to high-

order methods [12]. Such an approach allows several high-order schemes, including a par-

ticular nodal DG method and (for a linear flux function) various SD methods to be cast

within a single unifying framework. Furthermore, the FR approach allowed Huynh to cre-

ate a variety of new high-order schemes with various stability and accuracy properties [12].

In the present article a new class of one-dimensional (1D) energy stable FR schemes is

identified. The methodology for developing such schemes is an extension of the approach

adopted by Jameson [13], who recently utilized a FR formulation to prove that (for 1D lin-

ear advection) the SD method is stable in a norm of Sobolev type, provided that the interior

flux collocation points are placed at zeros of the corresponding Legendre polynomials. It is

found that all the energy stable FR schemes are parameterized by a single scalar quantity,

which if chosen judiciously leads to the recovery of several well known numerical methods

(including a particular nodal DG method and a particular SD method), as well as one other

FR scheme that was previously found by Huynh to be stable [12].

The article begins with a brief review of the FR approach. Following this review a new

class of energy stable FR schemes is identified, and the ability to recover existing schemes

(from this class) is demonstrated. Numerical experiments are then performed in order to

elucidate various properties of the energy stable schemes. Finally, the extension of such

schemes to multiple dimensions is briefly discussed, and conclusions are presented.

2 The Flux Reconstruction Approach to High-Order Methods

2.1 Preliminaries

Consider solving the 1D scalar conservation law

∂u

∂t
+

∂f

∂x
= 0 (2.1)
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within an arbitrary domain �, where x is a spatial coordinate, t is time, u = u(x, t) is a

conserved scalar quantity and f = f (u) is the flux of u in the x direction. Further, consider

partitioning � into N distinct elements each denoted �n = {x|xn < x < xn+1} such that

� =

N−1
⋃

n=0

�n,

N−1
⋂

n=0

�n = ∅. (2.2)

Finally, having partitioned � into separate elements, consider representing the exact so-

lution u within each �n by a polynomial of degree k denoted uδ
n = uδ

n(x, t) (which is in

general piecewise discontinuous between elements), and the exact flux f within each �n by

a polynomial of degree k+1 denoted f δ
n = f δ

n (x, t) (which is piecewise continuous between

elements), such that a total approximate solution uδ = uδ(x, t) and a total approximate flux

f δ = f δ(x, t) can be defined within � as

uδ =

N−1
⊕

n=0

uδ
n ≈ u, f δ =

N−1
⊕

n=0

f δ
n ≈ f. (2.3)

2.2 Implementation

From an implementation perspective, it is advantageous to consider transforming each �n

to a standard element �S = {r|−1 ≤ r ≤ 1} via the mapping

r = Ŵn(x) = 2

(

x − xn

xn+1 − xn

)

− 1, (2.4)

which has the inverse

x = Ŵ−1
n (r) =

(

1 − r

2

)

xn +

(

1 + r

2

)

xn+1. (2.5)

Having performed such a transformation, the evolution of uδ
n within any individual �n (and

thus the evolution of uδ within �) can be determined by solving the following transformed

equation within the standard element �S

∂ûδ

∂t
+

∂f̂ δ

∂r
= 0, (2.6)

where

ûδ = ûδ(r, t) = uδ
n(Ŵ

−1
n (r), t) (2.7)

is a polynomial of degree k,

f̂ δ = f̂ δ(r, t) =
f δ

n (Ŵ−1
n (r), t)

Jn

(2.8)

is a polynomial of degree k + 1, and Jn = (xn+1 − xn)/2.

The FR approach to solving (2.6) within the standard element �S consists of five stages.

The first stage is to define a specific form for ûδ . To this end, it is assumed that values of ûδ
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are known at a set of k + 1 solution points inside �S , with each point located at a distinct

position ri (i = 0 to k). Lagrange polynomials li = li(r) defined as

li =

k
∏

j=0,j �=i

(

r − rj

ri − rj

)

(2.9)

can then be used to construct the following expression for ûδ

ûδ =

k
∑

i=0

ûδ
i li, (2.10)

where ûδ
i = ûδ

i (t) are the known values of ûδ at the solution points ri .

The second stage of the FR process involves constructing a degree k polynomial f̂ δD =

f̂ δD(r, t), defined as the approximate transformed discontinuous flux within �S . An expres-

sion for f̂ δD can be written as

f̂ δD =

k
∑

i=0

f̂ δD
i li, (2.11)

where the coefficients f̂ δD
i = f̂ δD

i (t) are simply values of the transformed flux at each so-

lution point ri evaluated directly from the approximate solution. The flux f̂ δD is termed

discontinuous since it is calculated directly from the approximate solution, which is in gen-

eral piecewise discontinuous between elements.

The third stage of the FR process involves calculating transformed numerical fluxes at

either end of the standard element �S (at r = ±1). In order to calculate such fluxes, one

must first obtain values for the approximate solution at either end of the standard element

via (2.10). Once obtained, these values can be used in conjunction with analogous informa-

tion from adjoining elements to calculate transformed numerical interface fluxes. The exact

methodology for calculating such numerical fluxes will depend on the nature of the equa-

tions being solved. For example, when solving the Euler equations one may use a Roe type

approximate Riemann solver [14], or any other two-point flux formula that provides for an

upwind bias. In what follows the numerical interface fluxes associated with the left and right

hand ends of �S (and transformed appropriately for use in �S ) will be denoted f̂ δI
L and f̂ δI

R

respectively.

The penultimate stage of the FR process involves adding a degree k + 1 transformed

correction flux f̂ δC = f̂ δC(r, t) to the approximate transformed discontinuous flux f̂ δD ,

such that their sum equals the transformed numerical interface flux at r = ±1, yet follows

(in some sense) the approximate discontinuous flux within the interior of �S . In order to

define f̂ δC such that it satisfies the above requirements, consider first defining degree k + 1

correction functions gL = gL(r) and gR = gR(r) that approximate zero (in some sense)

within �S , as well as satisfying

gL(−1) = 1, gL(1) = 0, (2.12)

gR(−1) = 0, gR(1) = 1, (2.13)

and based on symmetry considerations

gL(r) = gR(−r). (2.14)
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A suitable expression for f̂ δC can now be written in terms of gL and gR as

f̂ δC = (f̂ δI
L − f̂ δD

L )gL + (f̂ δI
R − f̂ δD

R )gR, (2.15)

where f̂ δD
L = f̂ δD(−1, t) and f̂ δD

R = f̂ δD(1, t). Using this expression, a degree k + 1 ap-

proximate total transformed flux f̂ δ = f̂ δ(r, t) within �S can be constructed from the dis-

continuous and correction fluxes as follows

f̂ δ = f̂ δD + f̂ δC . (2.16)

The final stage of the FR process involves calculating the divergence of f̂ δ at each solu-

tion point ri using the expression

∂f̂ δ

∂r
(ri) =

k
∑

j=0

f̂ δD
j

dlj

dr
(ri) + (f̂ δI

L − f̂ δD
L )

dgL

dr
(ri) + (f̂ δI

R − f̂ δD
R )

dgR

dr
(ri). (2.17)

These values can then be used to advance the approximate transformed solution ûδ in time

via a suitable temporal discretization of the following semi-discrete expression

∂ûδ
i

∂t
= −

∂f̂ δ

∂r
(ri). (2.18)

2.3 Comments

The nature of a particular FR scheme depends solely on three factors, namely the location

of the solution collocation points ri , the methodology for calculating the transformed nu-

merical interface fluxes f̂ δI
L and f̂ δI

R , and finally the form of the flux correction functions gL

(and thus gR). It has been shown previously that a particular nodal DG scheme is recovered

in 1D if the corrections functions gL and gR are the right and left Radau polynomials re-

spectively [12]. Specifically, the type of nodal DG scheme recovered involves a collocation

projection of the flux onto a polynomial space of degree k; using flux values at the k + 1 so-

lution points. This aspect of the recovered nodal DG scheme is significant when considering

non-linear stability, as will be discussed later. Also, it has been shown that SD type methods

can be recovered (at least for a linear flux function) if the corrections gL and gR are set to

zero at a set of k points within �S (located symmetrically about the origin) [12]. Several

additional forms of gL (and thus gR) have also been suggested, leading to the development

of new schemes, with various stability and accuracy properties. For further details of these

new schemes see the article by Huynh [12].

3 Identification of Energy Stable Flux Reconstruction Schemes

3.1 Overview

In this section a class of energy stable FR schemes is identified (for 1D linear advection).

To begin, various manipulations of the FR formulation are presented, via which criteria are

derived that (if satisfied) imply energy stability. This preliminary analysis is based on the

recent study of Jameson [13], in which it was proved (for 1D linear advection) that the

SD method is stable for all orders of accuracy in a norm of Sobolev type provided that
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the interior flux collocation points are placed at the zeros of the corresponding Legendre

polynomials. Following identification of the aforementioned stability criteria, a range of

flux correction functions (gL and gR) are found that lead to energy stable schemes. Finally,

the recovery of existing methods from the new class of schemes is demonstrated, and special

cases are discussed.

3.2 Preliminaries

Assume that the flux function f (u) introduced in Sect. 2.1 is linear (i.e. assume that f (u) =

au, where a is a constant scalar). Under such an assumption (2.18) can be written as

dûδ
i

dt
= −â

k
∑

j=0

ûδ
j

dlj

dr
(ri) − (f̂ δI

L − âûδ
L)

dgL

dr
(ri) − (f̂ δI

R − âûδ
R)

dgR

dr
(ri), (3.1)

where â = a/Jn, ûδ
L = ûδ(−1, t) and ûδ

R = ûδ(1, t). On multiplying (3.1) by a Lagrange

polynomial li and summing over i (from i = 0 to i = k) one obtains

k
∑

i=0

dûδ
i

dt
li = −â

k
∑

i=0

k
∑

j=0

ûδ
j

dlj

dr
(ri)li

− (f̂ δI
L − âûδ

L)

k
∑

i=0

dgL

dr
(ri)li − (f̂ δI

R − âûδ
R)

k
∑

i=0

dgR

dr
(ri)li, (3.2)

and thus

∂ûδ

∂t
= −â

∂ûδ

∂r
− (f̂ δI

L − âûδ
L)

dgL

dr
− (f̂ δI

R − âûδ
R)

dgR

dr
. (3.3)

On differentiating (3.3) k times (in space) one obtains

∂

∂t

(

∂kûδ

∂rk

)

= −â
∂k+1ûδ

∂rk+1
− (f̂ δI

L − âûδ
L)

dk+1gL

drk+1
− (f̂ δI

R − âûδ
R)

dk+1gR

drk+1
, (3.4)

where it can be noted that since ûδ is a polynomial of degree k

∂k+1ûδ

∂rk+1
= 0, (3.5)

and thus

∂

∂t

(

∂kûδ

∂rk

)

= −(f̂ δI
L − âûδ

L)
dk+1gL

drk+1
− (f̂ δI

R − âûδ
R)

dk+1gR

drk+1
. (3.6)

On multiplying (3.3) by the approximate transformed solution ûδ and integrating over �S

one obtains

∫ 1

−1

ûδ ∂ûδ

∂t
dr = −â

∫ 1

−1

ûδ ∂ûδ

∂r
dr − (f̂ δI

L − âûδ
L)

∫ 1

−1

ûδ dgL

dr
dr

− (f̂ δI
R − âûδ

R)

∫ 1

−1

ûδ dgR

dr
dr, (3.7)
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and thus by parts

d

dt

∫ 1

−1

(ûδ)2dr = −â[(ûδ
R)2 − (ûδ

L)2]

− 2(f̂ δI
L − âûδ

L)

(

−ûδ
L −

∫ 1

−1

gL

∂ûδ

∂r
dr

)

− 2(f̂ δI
R − âûδ

R)

(

ûδ
R −

∫ 1

−1

gR

∂ûδ

∂r
dr

)

. (3.8)

On multiplying (3.6) by the kth derivative of the approximate transformed solution ûδ and

integrating over �S one obtains

∫ 1

−1

(

∂kûδ

∂rk

)

∂

∂t

(

∂kûδ

∂rk

)

dr = −(f̂ δI
L − âûδ

L)

∫ 1

−1

(

∂kûδ

∂rk

)(

dlk+1gL

drk+1

)

dr

− (f̂ δI
R − âûδ

R)

∫ 1

−1

(

∂kûδ

∂rk

)(

dk+1gR

drk+1

)

dr, (3.9)

and thus since ûδ is a polynomial of degree k, and gL and gR are polynomials of degree

k + 1

1

2

d

dt

∫ 1

−1

(

∂kûδ

∂rk

)2

dr = −2(f̂ δI
L − âûδ

L)

(

∂kûδ

∂rk

)(

dk+1gL

drk+1

)

− 2(f̂ δI
R − âûδ

R)

(

∂kûδ

∂rk

)(

dk+1gR

drk+1

)

. (3.10)

On multiplying (3.10) by an as yet undefined scalar quantity c, and summing with (3.8), one

obtains

d

dt

∫ 1

−1

(ûδ)2 +
c

2

(

∂kûδ

∂rk

)2

dr

= −â[(ûδ
R)2 − (ûδ

L)2] − 2(f̂ δI
L − âûδ

L)

[

−ûδ
L −

∫ 1

−1

gL

∂ûδ

∂r
dr + c

(

∂kûδ

∂rk

)(

dk+1gL

drk+1

)]

− 2(f̂ δI
R − âûδ

R)

[

ûδ
R −

∫ 1

−1

gR

∂ûδ

∂r
dr + c

(

∂kûδ

∂rk

)(

dk+1gR

drk+1

)]

. (3.11)

If it is required that

∫ 1

−1

gL

∂ûδ

∂r
dr − c

(

∂kûδ

∂rk

)(

dk+1gL

drk+1

)

= 0, (3.12)

and

∫ 1

−1

gR

∂ûδ

∂r
dr − c

(

∂kûδ

∂rk

)(

dk+1gR

drk+1

)

= 0, (3.13)
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(exactly how such requirements can be satisfied will be discussed shortly), then (3.11) can

be written as

d

dt

∫ 1

−1

(ûδ)2 +
c

2

(

∂kûδ

∂rk

)2

dr

= (2f̂ δI
L − âûδ

L)ûδ
L − (2f̂ δI

R − âûδ
R)ûδ

R. (3.14)

Finally, on transforming (3.14) back to the physical space element �n one obtains

d

dt

∫ xn+1

xn

(uδ
n)

2 +
c

2
(Jn)

2k

(

∂kuδ
n

∂xk

)2

dx

= [2f δI
n − auδ

n(xn)]u
δ
n(xn) − [2f δI

n+1 − auδ
n(xn+1)]u

δ
n(xn+1), (3.15)

where f δI
n and f δI

n+1 are numerical interface fluxes in physical space evaluated at xn and xn+1

respectively. If the numerical flux at each internal interface xn (1 ≤ n ≤ N − 1) is defined to

have the form

f δI
n = a

[

uδ
n(xn) + uδ

n−1(xn)

2

]

− |a|(1 − κ)

[

uδ
n(xn) − uδ

n−1(xn)

2

]

, (3.16)

where 0 ≤ κ ≤ 1 (with κ = 0 recovering a fully upwind scheme, and κ = 1 recovering a

central scheme), and if for simplicity the domain � is assumed to be periodic such that

f δI
0 = f δI

N = a

[

uδ
0(x0) + uδ

N−1(xN )

2

]

− |a|(1 − κ)

[

uδ
0(x0) − uδ

N−1(xN )

2

]

, (3.17)

then summing (3.15) over all elements one obtains

d

dt
‖uδ‖2

k,2 = −

N−2
∑

n=0

|a|(1 − κ)[uδ
n+1(xn+1) − uδ

n(xn+1)]
2

− |a|(1 − κ)[uδ
0(x0) − uδ

N−1(xN )]2, (3.18)

where

‖uδ‖k,2 =

[

N−1
∑

n=0

∫ xn+1

xn

(uδ
n)

2 +
c

2
(Jn)

2k

(

∂kuδ
n

∂xk

)2

dx

]1/2

. (3.19)

Therefore, since 0 ≤ κ ≤ 1, it can be concluded that

d

dt
‖uδ‖2

k,2 ≤ 0, (3.20)

where equality with zero is achieved if a central flux is chosen (κ = 1). It can be noted that

‖uδ‖k,2 has the form of a broken Sobolev norm.

3.3 Criteria for Stability

Equation (3.20) implies energy stability provided that one can guarantee ‖uδ‖k,2 is indeed

a norm. Specifically, this amounts to ensuring that 0 < ‖uδ‖2
k,2 < ∞ when uδ is finite. For
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Table 1 Values of c−(k) for

2 ≤ k ≤ 5 k c−(k)

2 −2/45

3 −2/1575

4 −2/99225

5 −2/9823275

such a condition to be satisfied, one must be able to guarantee that

0 <

∫ xn+1

xn

(uδ
n)

2 +
c

2
(Jn)

2k

(

∂kuδ
n

∂xk

)2

dx < ∞ (3.21)

within each element �n, and thus

0 <

∫ 1

−1

(ûδ)2 +
c

2

(

∂kûδ

∂rk

)2

dr < ∞ (3.22)

within the standard element �S . To understand how (3.22) can be satisfied, consider expand-

ing ûδ in terms of Legendre polynomials Li as follows

ûδ =

k
∑

i=0

φiLi, (3.23)

where φi = φi(t) are expansion coefficients. On substituting (3.23) into (3.22) one obtains

0 <

k
∑

i=0

(

2

2i + 1

)

φ2
i + c(akk!)2φ2

k < ∞, (3.24)

where ak is the coefficient of the leading monomial term in the Legendre polynomial Lk ,

defined as

ak =
(2k)!

2k(k!)2
. (3.25)

Manipulation of (3.24) leads to

0 <

k−1
∑

i=0

(

2

2i + 1

)

φ2
i +

[(

2

2k + 1

)

+ c(akk!)2

]

φ2
k < ∞, (3.26)

which is guaranteed to be satisfied for finite uδ provided

c−(k) < c < ∞, (3.27)

where

c−(k) =
−2

(2k + 1)(akk!)2
. (3.28)

Values of c−(k) for 2 ≤ k ≤ 5 are listed in Table 1.

Having identified a range for c such that ‖uδ‖k,2 is indeed a norm, we can now state

clearly all requirements that must be satisfied to ensure stability. Specifically:
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• Equations (3.12) and (3.13) must be satisfied to ensure (3.20) is valid.

• The parameter c must lie within the range defined by (3.27). This ensures that ‖uδ‖k,2 is a

indeed norm, which is necessary if one is to infer from (3.20) that the solution is bounded

in ‖uδ‖k,2 (and thus in any norm due to equivalence of norms in a finite dimensional

space).

Any correction functions gL and gR which satisfy (3.12) and (3.13) for a value of c within

the range defined by (3.27) can be used to construct energy stable FR schemes.

3.4 Identification of Suitable Flux Correction Functions gL and gR

The objective of the following analysis is to identify correction functions gL and gR (in

terms of the parameter c) such that (3.12) and (3.13) are satisfied. Such functions will lead

to energy stable FR schemes provided c lies within the range defined by (3.27).

To begin, consider substituting (2.10) into (3.12) and (3.13), thus obtaining

k
∑

i=0

ûδ
i

[∫ 1

−1

gL

dli

dr
dr − c

(

dkli

drk

)(

dk+1gL

drk+1

)]

= 0, (3.29)

and

k
∑

i=0

ûδ
i

[∫ 1

−1

gR

dli

dr
dr − c

(

dkli

drk

)(

dk+1gR

drk+1

)]

= 0, (3.30)

which can be satisfied independently of the transformed solution (defined by the coefficients

ûδ
i ) provided

∫ 1

−1

gL

dli

dr
dr − c

(

dkli

drk

)(

dk+1gL

drk+1

)

= 0 ∀i, (3.31)

and

∫ 1

−1

gR

dli

dr
dr − c

(

dkli

drk

)(

dk+1gR

drk+1

)

= 0 ∀i. (3.32)

It has previously been stated that gL(r) = gR(−r) (due to symmetry considerations). If this

condition is combined with the assumption that the solution points ri , used to define the

nodal basis functions li , are symmetric about r = 0, then (3.31) and (3.32) collapse to the

single requirement that

∫ 1

−1

gL

dli

dr
dr − c

(

dkli

drk

)(

dk+1gL

drk+1

)

= 0 ∀i, (3.33)

with gR obtained via gL(r) = gr(−r).

In order to elucidate exactly how (3.33) can be satisfied, consider expanding each La-

grange polynomial li in terms of a monomial basis as follows

li =

k
∑

j=0

ζij r
j , (3.34)
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where ζij are expansion coefficients. On substituting (3.34) into (3.33) one obtains

k
∑

j=0

jζij

∫ 1

−1

rj−1gLdr − ck!ζik

(

dk+1gL

drk+1

)

= 0 ∀i, (3.35)

and thus

⎡

⎣

k−1
∑

j=0

j

(

ζij

ζik

)∫ 1

−1

rj−1gLdr

⎤

⎦ + k

∫ 1

−1

rk−1gL dr − ck!

(

dk+1gL

drk+1

)

= 0 ∀i, (3.36)

which is satisfied independently of the solution basis if it is required that

∫ 1

−1

rjgL dr =

⎧

⎨

⎩

0 0 ≤ j ≤ k − 2

ck!

k

(

dk+1gL

drk+1

)

j = k − 1.
(3.37)

In order to find solutions to (3.37), consider expanding gL in terms of Legendre polynomials

Ll as follows

gL =

k+1
∑

l=0

ψlLl, (3.38)

where ψl are expansion coefficients. On substituting (3.38) into (3.37), and using the or-

thogonality property of Legendre polynomials, one finds that ψl = 0 for 0 ≤ l ≤ k − 2, and

ψk−1 =
ck!(k + 1)!ak+1ψk+1

k
∫ 1

−1
rk−1Lk−1dr

, (3.39)

which using

∫ 1

−1

rk−1Lk−1dr =
1

ak−1

∫ 1

−1

Lk−1Lk−1dr =
2

(2k − 1)ak−1

=
2

kak

(3.40)

can be written as

ψk−1 =

(

ck!(k + 1)!ak+1ak

2

)

ψk+1 =

(

c(2k + 1)(akk!)2

2

)

ψk+1. (3.41)

At this stage of the analysis k −1 of the coefficients used to define gL are known (specifi-

cally ψl = 0 for 0 ≤ l ≤ k − 2), and one expression is available to define the remaining three

coefficients (ψk−1, ψk and ψk+1). Clearly two more expressions are required in order to fully

define gL. These can be obtained from the end point conditions defined by (2.12). Specifi-

cally, consider substituting (3.38) into (2.12). Using the fact that ψl = 0 for 0 ≤ l ≤ k − 2,

one obtains

ψk−1 − ψk + ψk+1 = (−1)k+1, (3.42)

and

ψk−1 + ψk + ψk+1 = 0. (3.43)
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Equations (3.41), (3.42) and (3.43) can now be solved to obtain

ψk−1 =
ηk(−1)k+1

2(1 + ηk)
, ψk =

(−1)k

2
, ψk+1 =

(−1)k+1

2(1 + ηk)
, (3.44)

where

ηk =
c(2k + 1)(akk!)2

2
. (3.45)

Therefore gL can be written as

gL =
(−1)k

2

[

Lk −

(

ηkLk−1 + Lk+1

1 + ηk

)]

, (3.46)

and by symmetry gR can be written as

gR =
1

2

[

Lk +

(

ηkLk−1 + Lk+1

1 + ηk

)]

, (3.47)

where k is the order of the solution polynomial within each element.

Use of correction functions defined by (3.46) and (3.47) will result in energy stable FR

schemes provided c lies within the range defined by (3.27). It can be noted that other than

the requirement of symmetric solution points, energy stability of the schemes is independent

of the solution basis.

3.5 Recovery of Existing Schemes

3.5.1 Nodal Discontinuous Galerkin Scheme

If c = 0, then ηk = 0 which implies

gL =
(−1)k

2
(Lk − Lk+1), (3.48)

and

gR =
1

2
(Lk + Lk+1). (3.49)

These can be recognized as expressions for the right and left Radau polynomials respec-

tively. Thus, following the analysis of Huynh [12], a particular nodal DG scheme is re-

covered. As has been mentioned previously, the recovered scheme involves a collocation

projection of the flux onto a polynomial space of degree k; using flux values at the k + 1

solution points. This aspect of the recovered scheme is significant when considering non-

linear stability, as will be discussed later. Plots of gL associated with c = 0 are shown in

Fig. 1 for 2 ≤ k ≤ 5.

3.5.2 Spectral Difference Scheme

In order to reproduce a SD scheme (at least for a linear flux function) one must be able

to guarantee that the total correction flux f̂ δC is zero at a set of k points internal to the

standard element �S [12]. To satisfy such a requirement it is necessary that the left and right

correction functions (gL and gR respectively) have coincident zeros; which is equivalent to
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Fig. 1 Plots of the correction function gL when k = 2 (a), k = 3 (b), k = 4 (c), and k = 5 (d), for various

values of c

requiring symmetrically located zeros (about r = 0), since it has previously been stated that

gL(r) = gR(−r). The only way in which such a requirement can be satisfied is if c = cSD(k)

where

cSD(k) =
2k

(2k + 1)(k + 1)(akk!)2
. (3.50)

This leads to

ηk =
k

k + 1
, (3.51)

which implies

gL =
(−1)k

2

[

Lk −

(

kLk−1 + (k + 1)Lk+1

2k + 1

)]

=
(−1)k

2
(1 − x)Lk, (3.52)
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Table 2 Values of cSD(k) for

2 ≤ k ≤ 5 k cSD(k)

2 4/135

3 1/1050

4 8/496125

5 1/5893965

and

gR =
1

2

[

Lk +

(

kLk−1 + (k + 1)Lk+1

2k + 1

)]

=
1

2
(1 + x)Lk, (3.53)

both of which have k symmetrically located (and hence coincident) zeros internal to �S .

Values of cSD(k) for 2 ≤ k ≤ 5 are listed in Table 2, and plots of gL associated with c =

cSD(k) for 2 ≤ k ≤ 5 are shown in Fig. 1.

It can be noted that the recovered SD method is identical to the scheme that Jameson [13]

proved to be stable (the interior flux collocation points are at zeros of the Legendre polyno-

mial of degree k). It can also be noted that the recovered SD method is identical to the only

SD type scheme that Huynh found to be devoid of weak instabilities [12].

3.5.3 Huynh Type Scheme

In the original presentation of the FR approach by Huynh [12] a range of methods were

investigated (in addition to DG and SD type schemes). One of these additional methods,

which Huynh denoted the g2 method, proved to be particularly stable. It is found that such

a scheme can be recovered if one sets c = cHU (k) where

cHU (k) =
2(k + 1)

(2k + 1)k(akk!)2
. (3.54)

This leads to

ηk =
k + 1

k
, (3.55)

which implies

gL =
(−1)k

2

[

Lk −

(

(k + 1)Lk−1 + kLk+1

2k + 1

)]

, (3.56)

and

gR =
1

2

[

Lk +

(

(k + 1)Lk−1 + kLk+1

2k + 1

)]

. (3.57)

These expressions are consistent with those derived by Huynh for the g2 method. Values of

cHU (k) for 2 ≤ k ≤ 5 are listed in Table 3, and plots of gL associated with c = cHU (k) for

2 ≤ k ≤ 5 are shown in Fig. 1.

3.6 Special Cases

As well as recovering known methods, it is also useful to highlight the behavior of gL and

gR as c approaches the bounds defined by (3.27). The first case to consider is the behavior
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Table 3 Values of cHU (k) for

2 ≤ k ≤ 5 k cHU (k)

2 1/15

3 8/4725

4 1/39690

5 12/49116375

of gL and gR in the limit c → c−(k). This leads to ηk → −1, which implies gL and gR both

tend to infinity. Clearly constructing schemes in the limit c → c−(k) is not viable.

The second case to consider is the behavior of gL and gR in the limit c → ∞. This leads

to ηk → ∞, which implies

gL =
(−1)k−1

2
(Lk−1 − Lk), (3.58)

and

gR =
1

2
(Lk−1 + Lk). (3.59)

There are three points of note regarding these expressions for gL and gR . The first is simply

that they exist, and thus c → ∞ results in a viable scheme. The second is that (3.58) and

(3.59) can be recognized as expressions for the right and left Radau polynomials (respec-

tively) of one degree less than those which recover a DG scheme. The final point is that in

the limit c → ∞, gL and gR (and thus the total approximate transformed flux f̂ δ) become

polynomials of degree k (the same degree as the approximate transformed solution ûδ). To

gain insight into the implications of this behavior, consider expanding ûδ within �S in terms

of a monomial basis as

ûδ =

k
∑

i=0

βir
i, (3.60)

where βi = βi(t) are expansion coefficients. Also (in the limit c → ∞) consider expanding

f̂ δ within �S in terms of a monomial basis as

f̂ δ =

k
∑

i=0

χir
i, (3.61)

where χi = χi(t) are expansion coefficients, and it is noted that since c → ∞, f̂ δ is of

degree k. Substitution of (3.60) and (3.61) into (2.6) (the general governing equation for the

transformed approximate solution within �S ) leads to

k
∑

i=0

(

∂βi

∂t
r i + iχir

i−1

)

= 0. (3.62)

On multiplication of (3.62) by a Legendre polynomial Lj and integration over �S one ob-

tains

k
∑

i=0

(

∂βi

∂t

∫ 1

−1

r iLj dr + iχi

∫ 1

−1

r i−1Lj dr

)

= 0, (3.63)
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which for j in the range 0 ≤ j ≤ k leads (in general) to

∂βj

∂t
=

{

�= 0 0 ≤ j ≤ k − 1

= 0 j = k.
(3.64)

This suggests that in the limit c → ∞, the energy of the highest order term in the expansion

of the approximate transformed solution ûδ will remain constant; fixed at its initial value.

Plots of gL associated with c = c−(k)/2 and c → ∞ are shown in Fig. 1 for 2 ≤ k ≤ 5.

4 Numerical Experiments

4.1 Linear Flux

4.1.1 Overview

A range of numerical experiments were undertaken in which (2.1) was solved with the fol-

lowing linear flux function

f (x, t) = u(x, t). (4.1)

For all experiments the computational domain was defined to be � = [−1,1]. Cases in

which a fully upwind flux was prescribed between adjoining elements were considered,

as well as cases in which a central flux was prescribed between adjoining elements. In

all cases � was subdivided into ten elements of equal size, and the solution within each

element was represented by a third order polynomial, defined by solution values at four

Gauss-Lobatto points. Periodic boundary conditions were applied at the ends of �, and the

following Gaussian profile was prescribed within � at t = 0

u(x,0) = e−20x2

. (4.2)

Time integration was performed using an explicit five-stage low storage fourth-order Runge-

Kutta scheme [15].

4.1.2 Results (Fully Upwind Flux)

Plots of the solution at time t = 20 (for the case of a fully upwind interface flux) are pre-

sented in Fig. 2 for various values of c. The most accurate result is achieved when c = 0

(recovering a nodal DG scheme). When c = c−(3)/2 oscillations are observed to form pre-

dominantly downwind of the Gaussian profile, and when c = cSD(3) and c = cHU (3) os-

cillations are observed to form predominantly upwind of the Gaussian profile. In the limit

c → ∞ a significant loss of accuracy is observed.

Plots illustrating how the L2 energy of the solution varies with time (for the case of a

fully upwind interface flux) are presented in Fig. 3 for various values of c. As c is increased,

the degree of numerical dissipation also appears to increase. Of interest is the fact that when

c = c−(3)/2 the L2 energy remains approximately constant, implying that negative values

of c are able to counteract numerical dissipation of L2 energy due to the upwind flux.

Finally, a plot of the solution at time t = 1 (for the case of a fully upwind interface flux)

is presented in Fig. 4 for a scheme with c → ∞. It can be seen that the Gaussian initial

condition ‘leaves behind’ high order components as it is advected to the right (in line with

the discussions presented in Sect. 3.6). This is clearly an undesirable property, resulting in a

significant loss of accuracy as illustrated in Fig. 2(e).
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Fig. 2 Plots of solution to the linear advection equation at time t = 20 (solid lines) for schemes with

c = c−(3)/2 (a), c = 0 (b), c = cSD(3) (c), c = cHU (3) (d) and c → ∞ (e). The Gaussian initial condi-

tion is shown as a dashed line in each plot. In all cases a fully upwind flux was prescribed between adjoining

elements
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Fig. 3 Plots of L2 energy

against time for solutions of the

linear advection equation.

Various values of c are

considered. In all cases a fully

upwind flux was prescribed

between adjoining elements

Fig. 4 Plot of the solution to the

linear advection equation at time

t = 1 (solid line) for a scheme

with c → ∞. The Gaussian

initial condition is shown as a

dashed line. A fully upwind flux

was prescribed between

adjoining elements

4.1.3 Results (Central Flux)

Plots of the solution at time t = 20 (for the case of a central interface flux) are presented

in Fig. 5 for various values of c. As for the case of a fully upwind interface flux, the most

accurate result is achieved when c = 0 (recovering a nodal DG scheme). When c = c−(3)/2

oscillations are observed to form predominantly downwind of the Gaussian profile, and

when c = cSD(3) and c = cHU (3) oscillations are observed to form both upwind and down-

wind of the Gaussian profile. In the limit c → ∞ (plot not shown) the Gaussian profile is

almost instantaneously destroyed as time begins to advance.

Plots illustrating how the L2 energy of the solution varies with time (for the case of a

central interface flux) are presented in Fig. 6 for various values of c. It can be seen that

L2 energy stays exactly constant when c = 0 (recovering a nodal DG scheme). When c =

c−(3)/2, c = cSD(3), and c = cHU (3) small amplitude oscillations of the L2 energy are

observed. For all cases (in which a central flux was prescribed between elements) it was

found that the broken Sobolev norm ‖uδ‖k,2 remained exactly constant as time advanced.

Such a result is in line with (3.18) for a central interface flux (κ = 1).
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Fig. 5 Plots of solution to the linear advection equation at time t = 20 (solid lines) for schemes with

c = c−(3)/2 (a), c = 0 (b), c = cSD(3) (c) and c = cHU (3) (d). The Gaussian initial condition is shown

as a dashed line in each plot. In all cases a central flux was prescribed between adjoining elements

4.2 Spatially Varying Flux

4.2.1 Overview

The stability analysis and numerical experiments presented thus far have been for cases

where the flux function is linear. To be practically useful, however, energy stable FR schemes

must also perform well when the flux is non-linear. One can gain insight into the non-linear

performance of energy stable FR schemes by considering properties of the nodal DG scheme

that is recovered when c = 0. As has been mentioned previously, the recovered scheme

involves a collocation projection of the flux onto a polynomial space of degree k; using flux

values at the k + 1 solution points. It can be shown that for a non-linear flux function such a

collocation based nodal DG scheme suffers from aliasing-driven instabilities if the solution

is under-resolved (for a detailed discussion see, for example, the textbook by Hesthaven

and Warburton [4]). It is therefore reasonable to propose that, in general, energy stable FR

schemes may suffer from aliasing driven instabilities when solving non-linear problems. In
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Fig. 6 Plots of L2 energy against time for solutions of the linear advection equation are shown in (a). The

same data within a reduced temporal range of 0 ≤ t ≤ 0.8 is shown in (b). Various values of c are considered.

In all cases a central flux was prescribed between adjoining elements

order to investigate the aforestated proposition, numerical experiments were carried out in

which (2.1) was solved with the following flux function

f (x, t) =

[

(1 − x2)5 +
1

2

]

u(x, t). (4.3)

Although such a flux is in fact linear in u, it is spatially dependent, and has been used

previously (in the textbook of Hesthaven and Warburton, for example [4]) to investigate

aliasing driven instabilities.

For all experiments the computational domain was defined to be � = [−1,1]. Cases in

which a central flux was prescribed between adjoining elements were considered (� divided

into 40 elements of equal size), and cases in which a fully upwind flux was prescribed

between adjoining elements were also considered (� divided into 30 elements of equal size).

In all cases the solution was represented within each element by a third order polynomial,

defined by solution values at four Gauss-Lobatto points. Periodic boundary conditions were

applied at the ends of �, and the following initial condition was prescribed within � at t = 0

u(x,0) = sin(4πx). (4.4)

Time integration was performed using an explicit five-stage low storage fourth-order Runge-

Kutta scheme [15].

4.2.2 Results (Central Flux)

Plots of L2 energy against time t (for the case of a central interface flux) are shown in

Fig. 7 for various values of c. It can be seen that the nodal DG scheme (c = 0) is unstable.

This is in line with the results obtained by Hesthaven and Warburton [4], and occurs due to

aliasing-driven instabilities. In practice, such aliasing-driven instabilities are often remedied

by application of a filter, applied repeatedly (at a computational cost) as the solution is

advanced in time [4]. In contrast to the nodal DG method, it can be seen that the SD method,

obtained when c = cSD(3), and the Huynh type method, obtained when c = cHU (3), are
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Fig. 7 Plots of L2 energy

against time for cases where the

flux function is spatially varying;

defined by (4.3). Results for

various values of c are presented.

In all cases a central flux was

applied between adjoining

elements

Fig. 8 Plots of L2 energy

against time for cases where the

flux function is spatially varying;

defined by (4.3). Results for

various values of c are presented.

In all cases a fully upwind flux

was applied between adjoining

elements

both stable. It appears that schemes based on positive values of c are able to damp aliasing-

driven instabilities before they cause the solution to blow-up; without the need for any filter

to be applied. Such a result implies that the SD method and the Huynh type method can

be viewed as automatically ‘filtered’ nodal DG schemes. Finally, it can be noted that when

c = c−(3)/2 the resulting scheme is less stable than the nodal DG method (c = 0), blowing

up at an earlier time.

4.2.3 Results (Fully Upwind Flux)

Plots of L2 energy against time t (for the case of a fully upwind interface flux) are shown in

Fig. 8 for various values of c. It is evident that all cases remain stable i.e. the use of a fully

upwind interface flux damps the aliasing-driven instabilities present when a central flux is

employed. It is also evident that numerical dissipation increases as c is increased.

4.3 Summary

The findings of the numerical experiments presented in this study suggest that:

• The most accurate results are obtained when c = 0 (recovering a nodal DG scheme).

• Increasing c increases numerical dissipation.

• Increasing c increases stability.

• A significant loss of accuracy occurs in the limit c → ∞.

Additional more detailed studies are necessary in order to fully understand this behavior,

and quantify exactly how both accuracy and stability of energy stable FR schemes depend

on c.
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5 Extension to Multiple Dimensions

The 1D energy stable schemes identified in this study can be extended to quadrilateral

and hexahedral elements via the construction of tensor product bases as described by

Huynh [12]. However, in simplex elements the direct construction of a tensor product basis

is not possible, and one must use an alternative methodology to identify stable FR schemes.

We are currently attempting to develop such an alternative methodology (based on the 1D

approach presented in this study) in order to develop energy stable FR schemes on triangles.

6 Conclusions

A new class of high-order energy stable FR schemes has been identified. The schemes are

parameterized by a single scalar quantity c, which if chosen judiciously leads to the recovery

of several well known high-order methods (including a particular nodal DG method and a

particular SD method), as well as one other FR scheme that was previously found by Huynh

to be stable [12]. Preliminary numerical studies indicate that the most accurate results are

obtained when c = 0 (recovering a nodal DG scheme). It is also found that increasing c

leads to an increase in numerical dissipation, and thus additional stability. Of particular note

is the fact that schemes with positive values of c appear to damp aliasing-driven instabilities

which cause the nodal DG scheme (c = 0) to become unstable when the flux function varies

spatially.

The analysis offers significant insight into why certain flux reconstruction schemes are

stable, whereas others are not. Also, from a practical standpoint, the analysis provides a

simple prescription for implementing an infinite range of energy stable high-order methods

via the intuitive FR approach. Future studies should further investigate how both accuracy

and stability of energy stable FR schemes depend on c, as well as ascertaining whether the

1D methodology presented here can be extended to develop energy stable FR schemes for

simplex elements.
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