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Abstract

The LMS method for linear least squares problems differs from the steepest descent method

in that it processes data blocks one-by-one, with intermediate adjustment of the parameter vector

under optimization. This mode of operation often leads to faster convergence when far from the

eventual limit, and to slower (sublinear) convergence when close to the optimal solution. We

embed both LMS and steepest descent, as well as other intermediate methods, within a one-

parameter class of algorithms, and we propose a hybrid class of methods that combine the faster

early convergence rate of LMS with the faster ultimate linear convergence rate of steepest descent.

These methods are well-suited for neural network training problems with large data sets.
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1. Introduction

1. INTRODUCTION

We consider least squares problems of the form

minimize f(x)= 11g(x)112= 2= gi(x)()l1)
2 2=1 (1)

subject to x EC n ,

where JRn denotes the n-dimensional Euclidean space and g is a continuously differentiable func-

tion with component functions g, . . , gm, where gi: Rn -+ 3Rri . Here we write J[zl] for the usual

Euclidean norm of a vector z, that is, Iz[i = z'z, where prime denotes transposition. We also

write Vgi for the n x ri gradient matrix of gi, and Vg for the n x (r +. · · rm) gradient matrix

of g. Least squares problems often arise in contexts where the functions gi correspond to data

that we are trying to fit with a model parameterized by x. Motivated by this context, we refer

to each component gi as a data block, and we refer to the entire function g = (gl,..., gin) as the

data set.

In problems where there are many data blocks, and particularly in neural network training

problems, gradient-like incremental methods are frequently used. In such methods, one does not

wait to process the entire data set before updating x; instead, one cycles through the data blocks

in sequence and updates the estimate of x after each data block is processed. Such methods

include the Widrow-Hoff LMS algorithm [WiH60], [WiS85], for the case where the data blocks

are linear, and its extension for nonlinear data blocks. A cycle through the data set of this

method starts with a vector xk and generates xk+l according to

Xk+ l
= Om,

where ?/ is obtained at the last step of the recursion

o k , i i--Okvgi(i-)i(i-1), i =- 1, , m, (2)

and ack is a positive stepsize. Thus the method has the form

Xk+l = Xk - ak S Vgi( 1i- 1 )gi(i- 11 ). (3)
i=l

We refer to this method, which is just the nonlinear version of the LMIS algorithm, as the incre-

mental gradient method.

The above method should be contrasted with the steepest descent method, where the data

blocks gi and their gradients are evaluated at the same vector xk, that is,

0o Xk, i = Hi--1 -i-Gkvgi(zk)gi(Xk), i 1,.,, (4)
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so that the iteration consisting of a cycle over the entire data set starting from xk has the form

m

Xk+l = Xk - ak > Vgi(xk)gi(xk) = Xk - cxkVf(xk). (5)

i=l

Incremental methods are supported by stochastic convergence analyses [PoT73], [Lju77],

[KuC78], [Pol87], [BeT89], [Whi89], [Gai93], as well as deterministic convergence analyses [Luo91],

[Gri93], [LuT93], [MaS93], [Man93]. It has been experimentally observed that the incremental

gradient method (2)-(3) often converges much faster than the steepest descent method (5) when

far from the eventual limit. However, near convergence, the incremental gradient method typically

converges slowly because it requires a diminishing stepsize aok = O(1/k) for convergence. If cak

is instead taken to be a small constant, an oscillation within each data cycle arises, as shown

by [Luo91]. By contrast, for convergence of the steepest descent method, it is sufficient that the

stepsize ak is a small constant (this requires that Vgi be Lipschitz continuous, see e.g. [Po187]).

The asymptotic convergence rate of steepest descent with a constant stepsize is typically linear

and much faster than that of the incremental gradient method.

The behavior described above is most vividly illustrated in the case where the data blocks

are linear and the vector x is one-dimensional, as shown in the following example:

Example 1:

Consider the least squares problem

minimize f(x) = (aix - b) 2

2 i=l (6)

subject to x E X,

where ai and bi are given scalars with ai 4 0 for all i. The minimum of each of the squared data

blocks

fi(x) = (aix - bi) 2 (7)

is
. bi

Xi -- -
ai

while the minimum of the least squares cost function f is

* Zi= aibi
= z, 2 -

ri=i ai

It can be seen that x* lies within the range of the data block minima

R =[minx, m axxi (8)

3
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and that for all x outside the range R, the gradient

Vfi(x) = ai(aix - bi)

has the same sign as Vf(x). As a result, the incremental gradient method given by

i = i- - akcVfi('Vi- 1) (9)

[cf. Eq. (2)], approaches x* at each step provided the stepsize ack is small enough. In fact it is

sufficient that

a < min I' (10)
i 2

However, for x inside the region R, the ith step of a cycle of the incremental gradient method,

given by (9), need not make progress because it aims to approach xz but not necessarily x*. It

will approach x* (for small enough stepsize cak) only if the current point Oi-1 does not lie in the

interval connecting xz and x*. This induces an oscillatory behavior within the region R, and as

a result, the incremental gradient method will typically not converge to x* unless ak -- 0. By

contrast, it can be shown that the steepest descent method, which takes the form

Xk+
l

= 
k

_- akE ai(aixk - bi),

i=l

converges to x* for any constant stepsize satisfying

Eo r < l (11)ji=1 ai

However, unless the stepsize choice is particularly favorable, for x outside the region R, a full

iteration of steepest descent need not make more progress towards the solution than a single step

of the incremental gradient method. In other words, far from the solution (outside R), a single

pass through the entire data set by the incremental gradient method is roughly as effective as m

passes through the data set by the steepest descent method.

The analysis of the preceding example relies on x being one-dimensional, but in many

multidimensional problems the same qualitative behavior can be observed. In particular, a pass

through the ith data block gi by the incremental gradient method can make progress towards

the solution in the region where the data block gradient Vgi(i-_1)gi(Oi-_) mnakes an angle less

than 90 degrees with the cost function gradient Vf(bi_l). If the data blocks gi are not "too

dissimilar", this is likely to happen in a region that is not too close to the optimal solution set.

For example, consider the case where the data blocks are linear,

gi(x) = Zi - Cix,

where the vectors zi and the matrices Ci are given. Then, it can be shown that sufficiently far

from the optimal solution, the direction Vgi(x)gi(x) used at the ith step of a data cycle of the

4
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incremental gradient method will be a descent direction for the entire cost function f, if the

matrix QC, C j=l CjCj is positive definite in the sense that

/C/Ci E }z > O V' z 7 O. (12)

j=l 

This will be true if the matrices Ci are sufficiently close to each other with respect to some matrix

norm. One may also similarly argue on a heuristic basis that the incremental gradient method

will be substantially more effective than the steepest descent method far from the solution if the

above relation holds for a substantial majority of the indices i.

It is also worth mentioning that a similar argument can be made in favor of incremental

versions of the Gauss-Newton method for least squares problems. These methods are closely

related to the Extended Kalman filter algorithm that is used extensively in control and estimation

contexts; see e.g., [Ber951, [Bel94], [Dav76], [WaT90]. However, like the incremental gradient

method, incremental Gauss-Newton methods also suffer from slow ultimate convergence because

for convergence they require a diminishing stepsize [Ber95]. Furthermore, for difficult least squares

problems, such as many neural network training problems, it is unclear whether Gauss-Newton

methods hold any advantage over gradient methods.

In this paper we introduce a class of gradient-like methods parameterized by a single non-

negative constant /,. For the two extreme values / = 0 and / = oo, we obtain as special cases

the incremental gradient and steepest descent methods, respectively. Positive values of /t yield

hybrid methods with varying degrees of incrementalism in processing the data blocks. We also

propose a time-varying hybrid method, where At is gradually increased from it = 0 towards u = cc.

This method aims to combine the typically faster initial convergence rate of incremental gradient

with the faster ultimate convergence rate of steepest descent. It starts out as the incremental

gradient method (2)-(3), but gradually (based on algorithmic progress) it becomes less and less

incremental, and asymptotically it approaches the steepest descent method (5). In contrast to

the incremental gradient method, it uses a constant stepsize without resulting in an asymptotic

oscillation. We prove convergence and a linear rate of convergence for this method in the case

where the data blocks are linear. Similar results can be shown for the case of nonlinear data

blocks and a parallel asynchronous computing environment. In addition to a linear convergence

rate, the use of a constant stepsize offers another important practical advantage: it allows a more

effective use of diagonal scaling based for example on diagonal approximations of the Hessian

matrix. The convergence results suggest some practical ways of implementing the method. Our

test results show a much better performance for our method than both the incremental gradient

and the steepest descent method, particularly when diagonal scaling is used.

5



2. The New Incremental Gradient Method

2. THE NEW INCREMENTAL GRADIENT METHOD

We embed the incremental gradient method (2)-(3) and the steepest descent method (5)

within a one-parameter family of methods for the least squares problem. For a fixed /P > 0, define

(i( 4) = I +/+... +/ m - i' i = 1,..., mn. (13)

Consider the method which given xk, generates xk + l according to

xk+l = -m, (14)

where Im is generated at the last step of the recursive algorithm

-i = Xk - aokhi, i = 1,...,m, (15)

i

hi - Ihi- 1 + j(IU),V(-1)gj( -), i =- 1, ... ,m, (16)
j=1

from the initial conditions

00 = Xk, ho = 0. (17)

It is easily verified by induction that an alternative formula for the vectors hi of Eq. (16) is

i

hi 1= E wij ()v7gj (03-1)g (g,- ), (18)
j=1

where
1 + I + . .+/i- -j

wij(Az ) 1 + 1 + ± ± -.. i=1, ... ,. m, l<j<i. (19)

Since wmj(p/) 1 for all j, it follows using Eqs. (15), and (18) that the vector -'m obtained at

the end of a pass through all the data blocks is

m

~ = Xk+l = xk _ akhm = Xk _ ak E vgj(oj-l)gj(0j-1). (20)
j=1

Note that in the special case where p = 0, we have wij(y) = 1 for all i and j, and by

comparing Eqs. (15), (18), (2), and (3), we see that the method coincides with the incremental

gradient method (2)-(3). In the case where p -+ oc, we have from Eqs. (15), (18), and (19),

wij(y) --+ O, hi > 0, and hi -* xk for i = 0, 1,..., m - 1, so by comparing Eqs. (20) and (5), we

see that the method approaches the steepest descent method (5). Generally, it can be seen that

as p increases, the method becomes "less incremental".

6
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We first prove a convergence result for the method (13)-(17) for the case where Au is fixed

and the data blocks are linear. In particular, we show that if the stepsize ak is a sufficiently

small constant, the algorithm asymptotically oscillates around the optimal solution. However,

the "size" of the oscillation diminishes as either ca -O 0 and p is constant, or as a is constant and

p -* oo. If the stepsize is diminishing of the form ak = 0(1/k), the method converges to the

minimum for all values of A.

Proposition 1: Consider the case of linear data blocks,

gi(x) = zi- Cix, i 1,.. .,m, (21)

and the method [cf. Eq. (13)-(17)]

xk+l =1 m, (22)

where

%o = xk , i =x k - a k h i , i = l, .. .. , m, (23)

ho = 0, hi = hhil + E j()Cj(CVj3_ -zj), i 1,..., m. (24)
j=1

Assume that ~i= Cj'Ci is a positive definite matrix and let x* be the optimal solution of the

corresponding least squares problem. Then:

(a) For each At > 0, there exists (/,u) > 0 such that if ak is equal to some constant a E

(O, 5(,p)] for all k, {xk} converges to some vector x(cz, u), and we have lim,-.o x(a, At) = :x*.

Furthermore, there exists 5 > 0 such that d < a(yt) for all At > 0, and for all a c (0, -], we

have lim,,, x(oa, p.) = x*.

(b) For each A > 0, if cak > 0 for all k, and

00 00

aO
k

= 0o, (Oak)2 < 00, (25)

k=O k=O

then {xk} converges to x*.

Proof: (a) We first note that from Eq. (20), we have

m

xk+l = Xk -a E Cj(Cj3J - 1 -zJ),
j=1

so by using the definition j_-1 = xk - ahjl, we obtain

m m

xk+1 = xk- E C(Cjxk - zJ) + a2 E cCjhj- .- (26)
j=1 j=1

7
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We next observe that from Eq. (18) and the definition Oj-1 = xk - ahj-1, we have for all i

i

hi =E wij () Cj (Cjoj-I zj)
j=1

j1i (27)

-=- E wij()CjCjxk - oa wij(]t)CjCj hj_1 - E Wij(lu)Cjzj.
j=1 j=t j=1

From this relation, it can be seen inductively that for all i, hi can be written as

i i

hi =-E wij(pt)CjCjxk - E wij (t)Czj -+ aRi(cS, a )xk + ari(a', ), (28)

j=l j=1

where Ri(a, /) and ri(a, A) are some matrices and vectors, respectively, depending on a and A,.

Furthermore, using Eq. (27) and the fact that wij(p) c (0, 1] for all i, j, and t >Ž 0, we have

that for any bounded interval T of stepsizes a, there exist positive uniform bounds R and T for

IRi(ao, /tu) and Iri(a, a) I1, that is,

IIRi(,At) ,, < R, Iri(a, p)[l < T, V i, At > O, a c T. (29)

From Eqs. (26), (28), and (29), we obtain

xk+l = A(a, At)xk + b(a, t), (30)

where
m

A(a, At) = I-a CCj + a2 S(a, A), (31)
j=1

m

b(o, ) = a E jzj + a 2s(a, ), (32)
j=1

I is the identity matrix, and the matrix S(a, At) and the vector s(a, A) are uniformly bounded

over /t > 0 and any bounded interval T of stepsizes a; that is, for some scalars S and s,

IS(oa,/)l < S, IS(a,, L) •L <, V A > 0, a C T. (33)

Let us choose the interval T to contain small enough stepsizes so that for all t > 0 and a G I,

the eigenvalues of A(a, A) are all strictly within the unit circle; this is possible since Ejm=1 CjC3

is assumed positive definite and Eqs. (31) and (33) hold. Define

x(oa, A) = (I- A(a, A))- b(a, ). (34)

Then b(a, t) = (I - A(a, pL))x(a, At), and by substituting this expression in Eq. (30), it can be

seen that

Xk+l - x(C, A) = A(a, ) (Xk - X(a, A)),

8
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from which

xk+1 - x(a, h) = A(oa, [)k(xO - x(c, )), V k.

Since all the eigenvalues of A(a, g) are strictly within the unit circle, we have A(a, ,U)k O, so

xk -+ X(a, /).

To prove that lim,,o x((a, u) = x*, we first calculate x*. 'We set the gradient of llg(x)112 to

zero, to obtain
m

Z Cj((Cx* - Zj) =0,
j=1

so that

x- = E Ci~ Cjzy (35)
Z j=1 ; i=

Then, we use Eq. (34) to write x(a,/) = (I/o - A(a, At)/a) 1 (b(oa, a)/ca), and we see from Eqs.

(31) and (32) that

lim x(a, ) = CjCj Cjz = x*.
j=l i=1

To prove that limoo x(a, At) = x*, we note that since lim,,, wij (/) = 0 for i = 1,..., m-

1, it follows from Eqs. (27) and (28) that lim,_ + Ri(a,/t) = 0 and lim,,, r.i(o, /t) 0= for all

i = 1,..., m - 1. Using these equations in Eq. (26), it follows that

lim S(ca, A) = 0, lim s(a, AU) = 0.
I-o00 o/---oo

From Eqs. (31), (32), and (34), we then obtain

( m
lim x(a, /)O = aC / Sjj*.

(b) We need the foll O well kno C zjl Ze.

(b) We need the following well-known lemma.

Lemma 1: Suppose that {ek}, {(k}, and {dk} are nonnegative sequences such that for all

k = 0, 1...,

ek + l < (1- yk)ek + 6k, k < 1,

and
00 00

Yk =X 6k < oo.

k=O k=O

Then e
k o 0.

Proof: See [Luo91].

9



2. The New Incremental Gradient Method

Returning to the proof of Prop. 1, from Eqs. (20), (30)-(32), we have

m

xk+l = -k - -k Cj (Cjxk - zj) + (ak)2 S(cak, L)(Xk - x*) + (ak )2 ek, (36)
j=1

where

ek = S(ak, 8)x* + s(ak, /A). (37)

Using also the expression (35) for x*, we can write Eq. (36) as

xk+l -X* = I-ok cC j 3 + (k) 2 S(ak,/I) (xk - x*) + (ok) 2 ek. (38)

j=l

Let k be large enough so that a positive number -y is a lower bound to the minimum eigenvalue

of Ejm = CjOj - akS(ak,,U), while ak-y < 1. Let also 3 be an upper bound to 1Iekll. Then from

Eq. (38) we obtain

11xk+1 - x*l < (1 - aky)ljxk - x*|| + (Ck)26

Lemma 1, together with this relation, and the assumptions k°°=0 k = o and ko0(c)2 < co,

imply that xk -4 x*. Q.E.D.

The following proposition shows that if y is increased towards oo at a sufficiently fast rate,

the sequence {xk} generated by the method with a constant stepsize converges at a linear rate.

Proposition 2: Suppose that in the kth iteration of the method (13)-(17), a k-dependent

value of /, say /(k), and a constant stepsize Ok = a are used. Under the assumptions of Prop.

1, if for some q > 1 and all k greater than some index k, we have g(k) > qk, then there exists

oT > 0 such that for all a c (0,-] and k, we have flxk - x*11 < p(a)/3(a)k, where p(a) > 0 and

3(a) C (0, 1) are some scalars depending on oa.

Proof: We first note that if for some q > 1, we have Au(k) > qk for k after some index k, then

for all i < m and j < i, we have

wij ([(k)) = O(yk), (39)

where 7y is some scalar with y c (0, 1).

We next observe that similar to the derivation of Eq. (38), we have

Xk+1 -xZ* a(i- Z E CjCj + ±a2S(a, t(k))) (Xk -"x*) + a2 ek. (40)
j=l

where

ek = S((a, 0(k))x* + s (a, (k)). (41)

10
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From Eq. (28), we see that hi can be written as a finite number of terms of bounded norm,

which are multiplied by some term wij(tu(k)). Thus, in view of Eq. (39), for i < Tm we have

[1hill = O(yk). It follows that

IIS(o(, ,(k))11 = o(yk), Is(a, ,L(k))1 = O("k). (42)

From Eq. (41) we then obtain

I,1 -ll= O(yk). (43)

From Eqs. (40), (42), and (43), we obtain

Ilxk+1 - X*11 < (11 - C6I + o(Yk))flXk - x*11 + 20o(yk),

where 6 is the minimum eigenvalue of j=l 1 CjCj. This relation implies the desired rate of

convergence result. Q.E.D.

There are a number of fairly straightforward extensions of the methods and the results just

presented.

(1) When the data blocks are nonlinear, stationarity of the limit points of sequences {xk}

generated by the method (13)-(17) can be shown under certain assumptions (including

Lipschitz continuity of the data block gradients) for the case of a fixed j/ and the stepsize

a k = yl(k + 1), where a is a positive scalar. Contrary to the case of linear data blocks, -

may have to be chosen sufficiently small to guarantee boundedness of {x k). The convergence

proof is similar to the one of the preceding proposition, but it is technically more involved.

In the case where the stepsize is constant, /p -. oc, and the data blocks are nonlinear, it

is also possible to show a result analogous to Prop. 2, but again the proof is technically

complex and will not be given.

(2) Convergence results for parallel asynchronous versions of our method can be given, in

the spirit of those in [TBA86], [BeT89] (Ch. 7), and [MaS93]. These results follow well-

established methods of analysis that rely on the stepsize being sufficiently small.

(3) Variations of our method involving a quadratic momentum term are possible. The use of

such terms dates to the heavy ball method of Polyak (see [Po187]) in connection with the

steepest descent method, and has become popular in the context of the incremental gradient

method, particularly for neural network training problems (see [MaS93] for an analysis).

(4) Diagonal scaling of the gradients of the squared norm terms 1lgi(x)lI2 is possible and should

be helpful in many problems. Such scaling can be implemented by replacing the equation
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xi = xk - akhi [cf. Eq. (15)] with the equation

Oi = x k - akDhi, i = 1,..., m, (44)

where D is a diagonal positive definite matrix. A common approach is to use a matrix

D that is a diagonal approximation to the inverse Hessian of the cost function. For the

linear least squares problem of Prop. 1, this approach uses as diagonal elements of D the

inverses of the corresponding diagonal elements of the matrix I CiCi'. An important

advantage of this type of diagonal scaling is that it simplifies the choice of a constant

stepsize; a value of stepsize equal to 1 or a little smaller typically works well. Diagonal

scaling is often beneficial for steepest descent-like methods that use a constant stepsize, but

is not as helpful for the incremental gradient method, because the latter uses a variable

(diminishing) stepsize. For this reason diagonal scaling should be typically more effective

for the constant stepsize methods proposed here than for the incremental gradient method.

This was confirmed in our computational experiments. For this reason we believe that for

problems where diagonal scaling is important for good performance, our constant stepsize

methods have a decisive advantage over the LMS and the incremental gradient methods.

We finally note that incremental methods, including the methods proposed here, apply to

cost functions that are sums of general nonlinear functions, and not just to cost functions that

are the sum of squared norms.

12
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3. IMPLEMENTATION AND EXPERIMENTATION

Let us consider algorithms where [t is iteration-dependent and is increased with k towards

oo. While Prop. 2 suggests that a linear convergence rate can be obtained by keeping Oa constant,

we have found in our experimentation that it may be important to change a simultaneously

with At when At is still relatively small. In particular, as the problem of Example 1 suggests,

when Au is near zero and the method is similar to the incremental gradient method, the stepsize

should be larger, while when /t is large, the stepsize should be of comparable magnitude to the

corresponding stepsize of steepest descent.

The formula for ~i(p) suggests that for At < 1, the incremental character of the method is

strong, so we have experimented with a /-idependent stepsize formula of the form

a Adf Y if A > 1,

'(t) = (1 + O(/))y if / c [0, 1]. (45)

Here 3y is the stepsize that works well with the steepest descent method, and should be determined

to some extent by trial and error (if diagonal scaling is used, then a choice of '7 close to 1 often

works well). The function 0(Au) is a monotonically decreasing function with

0(0) = 0, O(1) = 0, (46)

where ( is a scalar in the range [0, m - 1]. Examples are

0(U) = 0(1 - /), 0(U) = (1 - /2), 0(A): ((1 - V/r). (47)

In some of the variations of the method that we experimented with, the scalar ( was decreased

by a certain factor each time Au was increased. Generally, with A-dependent stepsize selection of

the form (45) and diagonal scaling, we have found the constant stepsize methods proposed here

far more effective than the incremental gradient method that uses the same diagonal scaling and

a diminishing stepsize.

Regarding the rule for increasing At, we have experimented with schemes that start with

/t = 0 and update A according to a formula of the form

A := /A + a,

where / and 6 are fixed positive scalars with / > 1. The update of A takes place at the start of

a data cycle following the computation of xk+ l if either

IlXk + l -- Xk11 • E, (48)

13
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where e is a fixed tolerance, or if fi data cycles have been performed since the last update of /u,

where ni is an integer chosen by trial and error. This criterion tries to update ,i when the method

appears to be making little further progress at the current level of L, but also updates L/ after a

maximum specified number i of data cycles have been performed with the current [L.

We noted one difficulty with the method. When the number of data blocks nz is large, the

calculation of ji(li) using Eq. (13) involves high powers of Mu. This tends to introduce substantial

numerical error, when p is substantially larger than 1. To get around this difficulty, we modified

the method, by lumping together an increasing number of data blocks (the minimum number

of terms in a data block was incremented by 1) each time Lu was increased to a value above 1.

This device effectively reduces the number of data blocks m and keeps the power I/m bounded.

In our computational experiments, it has eliminated the difficulty with numerical errors without

substantially affecting the performance of the method.
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