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Abstract

We propose a practical and flexible solution to introduce skewness in multivariate sym-

metrical distributions. Applying this procedure to the multivariate Student density leads to a

“multivariate skew-Student” density, for which each marginal has a different asymmetry coef-

ficient. Similarly, when applied to the product of independent univariate Student densities, it

provides a “multivariate skew density with independent Student components” for which each

marginal has a different asymmetry coefficient and number of degrees of freedom. Combined

with a multivariate GARCH model, this new family of distributions (that generalizes the

work of Fernández and Steel, 1998) is potentially useful for modelling stock returns, which

are known to be conditionally heteroskedastic, fat-tailed, and often skew. In an application

to the daily returns of the CAC40, NASDAQ, NIKKEI and the SMI, it is found that this

density suits well the data and clearly outperforms its symmetric competitors.
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1 Introduction

Many time series of asset returns can be characterized as serially dependent. This is revealed

by the presence of positive autocorrelation in the squared returns, and sometimes to a much

smaller extent by autocorrelation in the returns. The increased importance played by risk and

uncertainty considerations in modern economic theory, has necessitated the development of new

econometric time series techniques that allow for the modelling of time varying means, variances

and covariances. Given the apparent lack of any structural dynamic economic theory explaining the

variation in the second moment, econometricians have thus extended traditional time series tools

such as Autoregressive Moving Average (ARMA) models (Box and Jenkins, 1970) for the mean to

essentially equivalent models for the variance. Indeed, the dynamics observed in the dispersion is

clearly the dominating feature in the data. The most widespread modelling approach to capture

these properties is to specify a dynamic model for the conditional mean and the conditional

variance, such as an ARMA-GARCH model or one of its various extensions (see the seminal paper

of Engle, 1982).

Although there is a huge literature on univariate ARCH models, much less papers are concerned

with their multivariate extensions. For this reason, Geweke and Amisano (2001) argue that “while

univariate models are a first step, there is an urgent need to move on to multivariate modelling

of the time-varying distribution of asset returns”. Indeed, financial volatilities move together over

time across assets and markets. Recognizing this commonality through a multivariate modelling

framework can lead to obvious gains in efficiency and to more relevant financial decision making

than working with separate univariate models.

Among the most widespread multivariate GARCH models, we find the Constant Conditional

Correlations model (CCC) of Bollerslev (1990), the Vech of Kraft and Engle (1982) and Bollerslev,

Engle, and Wooldridge (1988), the BEKK of Engle and Kroner (1995), the Factor GARCH of Ng,

Engle, and Rothschild (1992), the General Dynamic Covariance (GDC) model of Kroner and Ng

(1998), the Dynamic Conditional Correlations (DCC) model of Engle (2001) and the Time-Varying

Correlation (TVC) model of Tse and Tsui (1998).1

The estimation of these models is commonly done by maximizing a Gaussian likelihood func-

tion. Even if it is unrealistic in practice, the normality assumption may be justified by the fact

that the Gaussian QML estimator is consistent provided the conditional mean and the conditional

variance are specified correctly. In this respect, Jeantheau (1998) has proved the strong conver-

gence of the QML estimator of multivariate GARCH models, extending previous results of Lee

and Hansen (1994) and Lumsdaine (1996).

1Alternatively, Harvey, Ruiz, and Shephard (1994) propose a multivariate stochastic variance model, which

has been extended in various ways. Even if this kind of model is also attractive, we only focus our attention to

multivariate GARCH models.
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However, another well established stylized fact of financial returns, at least when they are

sampled at high frequencies, is that they exhibit fat-tails, which corresponds to a kurtosis coef-

ficient larger than three. For instance, Hong (1988) rejected the conditional normality claiming

abnormally high kurtosis in the daily New York Stock Exchange stock returns. While the high

kurtosis of the returns is a well-established fact, the situation is much more obscure with regard

to the symmetry of the distribution. Many authors do not observe anything special on this point,

but other researchers (for instance Simkowitz and Beedles, 1980; Kon, 1984 and So, 1987) have

drawn the attention to the asymmetry of the distribution. French, Schwert, and Stambaugh (1987)

found also conditional skewness significantly different from 0 in the standardized residuals when

an ARCH-type model was fitted to the daily SP500 returns.

As far as financial applications are concerned, and in order to gain statistical efficiency, it is

of primary importance to base modelling and inference on a more suitable distribution than the

multivariate normal. On the first hand, Engle and González-Rivera (1991) show in a univariate

framework that the Gaussian QML estimator of a GARCH model is inefficient, with the degree

of inefficiency increasing with the degree of departure from normality. On the other hand, Peiró

(1999) emphasizes the relevance of modelling of higher-order features for asset pricing models2,

portfolio selection3 and option pricing theories4, while Giot and Laurent (2001b) and Mittnik and

Paolella (2000) show that for asset returns that are are skew and fat-tailed, it is crucial to account

for these features in order to obtain accurate Value-at-Risk forecasts.

The challenge to econometricians is to design multivariate distributions that are both easy to

use for inference and compatible with the skewness and kurtosis properties of financial returns.

Otherwise it is very likely that the estimators will not be consistent (see Newey and Steigerwald,

1997 in a univariate framework). To the best of our knowledge, asymmetric and fat-tailed k-variate

distributions with support on the full Euclidian space of dimension k are uncommon.

The main contribution of this paper is to propose a practical and flexible method to introduce

skewness in multivariate symmetric distributions. Applying this procedure to the multivariate

Student density leads to a “multivariate skew-Student” density, in which each marginal has a

specific asymmetry coefficient. Similarly, when applied to the product of independent univariate

Student densities, it provides a “multivariate skew density with independent Student components”

for which each marginal has a specific asymmetry coefficient and number of degrees of freedom.

Combined with a multivariate GARCH model, this new family of distributions is potentially useful

for modelling stock returns. In an application to the daily returns of the CAC40, NASDAQ,

2Asset pricing models are indeed incomplete unless the full conditional model is specified.
3Chunhachinda, Dandapani, Hamid, and Prakash (1997) find that the incorporation of skewness into the in-

vestor’s portfolio decision causes a major change in the construction of the optimal portfolio.
4Corrado and Su (1997) show that when skewness and kurtosis adjustment terms are added to the Black and

Scholes formula, improved accuracy is obtained for pricing options.
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NIKKEI and the SMI, it is found that this density suits well the data and clearly outperforms its

symmetric competitors.

The paper is organized as follows. In Section 2, we briefly review the univariate skew-Student

density proposed by Fernández and Steel (1998) and extended by Lambert and Laurent (2001).

In Section 3, we describe the new family of multivariate skew densities, and in Section 4 we use it

in a multivariate GARCH model of daily returns. Finally, we offer our conclusions and ideas for

further developments in Section 5.

2 Univariate case

A series of financial returns yt (t = 1, . . . , T ), known to be typically conditionally heteroscedastic,

is typically modelled as follows:

yt = µt + εt (1)

εt = σtzt (2)

µt = c(µ|Ωt−1) (3)

σt = h(µ, η|Ωt−1), (4)

where c(.|Ωt−1) and h(.|Ωt−1) are functions of Ωt−1 (the information set at time t− 1), depending

on unknown vectors of parameters µ and η, and zt is an independently and identically distributed

(i.i.d.) process, independent of Ωt−1, with E(zt) = 0 and V ar(zt) = 1. Assuming their existence,

µt is the conditional mean of yt and σ2
t is its conditional variance.

2.1 Skew-Student densities

To accommodate the excess of (unconditional) kurtosis, GARCH models have been first combined

with Student distributed errors by Bollerslev (1987). Indeed, although a GARCH model generates

fat-tails in the unconditional distribution, when combined with a Gaussian conditional density,

it does not fully account for the excess kurtosis present in many return series. The Student

density is now very popular in the literature due to its simplicity and because it often outperforms

the Gaussian density. However, the main drawback of this density is that it is symmetrical while

financial time series can be skewed. To create asymmetric unconditional densities, GARCH models

have been extended to include a leverage effect. For instance, the Threshold ARCH (TARCH)

model of Zakoian (1994) allows past negative (resp. positive) shocks to have a deeper impact

on current conditional volatility than past positive (resp. negative) shocks (see among others

Black, 1976; French, Schwert, and Stambaugh, 1987; Pagan and Schwert, 1990). Combined with

a Student distribution for the errors, this model is in general flexible enough to mimic the observe
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kurtosis of many stock returns but often fails in replicating the asymmetry feature of these series

(even if it can explain a small part of it). To account for both the excess skewness and kurtosis,

mixtures of normal or Student densities can be used in combination with a GARCH model. In

general, it has been found that these densities cannot capture all the skewness and leptokurtosis

(Ball and Roma, 1993; Beine and Laurent, 1999; Jorion, 1988; Neely, 1999; Vlaar and Palm,

1993), although they seem adequate in some rare cases. Liu and Brorsen (1995) and Lambert

and Laurent (2000) use the asymmetric stable density. A major drawback of the stable density is

that, except when the tail parameter is equal to two (corresponding to normality), the variance

does not exist, a fact that is neither usually supported empirically nor theoretically desirable.

Lee and Tse (1991), Knight, Satchell, and Tran (1995), and Harvey and Siddique (1999) propose

alternative skew fat-tailed densities, respectively the Gram-Charlier expansion, the double-gamma

distribution, and the non-central Student. However, as pointed out by Bond (2000) in a recent

survey on asymmetric conditional density functions, the estimation of these densities in a GARCH

framework often proves troublesome and highly sensitive to initial values. McDonald (1984, 1991)

introduced the exponential generalized beta distribution of the second kind (EGB2), a flexible

distribution that is able to accommodate both thick tails and asymmetry. The usefulness of

this density has been illustrated recently by Wang, Fawson, Barrett, and McDonald (2001) in

the GARCH framework. These authors show that a more flexible density than the normal and

the Student is required in the modelling of six daily nominal exchange rate returns. However,

goodness-of-fit tests clearly reject the EGB2 distribution for all the currencies that they consider,

even if it seems to outperform the normal and the Student densities. Alternatively, Brannas and

Nordman (2001) propose to use a log-generalized gamma distribution or a Pearson IV distribution

with three parameters to model NYSE-returns on a daily basis.

Hansen (1994) was the first to propose a skew-Student distribution for modelling financial

time series. His density nests the symmetric Student when the asymmetry parameter is equal to

0. Estimation with this density does not raise serious problems of convergence. More generally,

Fernández and Steel (1998) propose a method to introduce skewness in any continuous unimodal

and symmetric (about 0) univariate distribution g(.), by changing its scale at each side of the mode.

Applying this procedure to the Student distribution leads to another skew-Student density, that

may be assumed for the innovations of an ARCH model. In order to stay in the ARCH tradition,

Lambert and Laurent (2001) have modified this density in order to standardize it (i.e. to make it

zero mean and unit variance). Otherwise, it would be difficult to separate the fluctuations in the

mean and the variance from the fluctuations in the shape of the conditional density (see Hansen,

1994).

Following Lambert and Laurent (2001), the random variable zt is said to be SKST (0, 1, ξ, υ),

i.e. distributed as standardized skew-Student with parameters υ > 2 (the number of degrees of
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freedom) and ξ > 0 (a parameter related to the skewness, see below), if its density is given by

f(zt|ξ, υ) =



















2
ξ+ 1

ξ

s g [ξ (szt +m) |υ] if zt < −m/s

2
ξ+ 1

ξ

s g [(szt +m) /ξ|υ] if zt ≥ −m/s,

(5)

where g(.|υ) is a symmetric (zero mean and unit variance) Student density with υ (> 2) degrees

of freedom,5, denoted x ∼ ST (0, 1, υ), and defined by

g(x|υ) = Γ
(

υ+1
2

)

√

π(υ − 2) Γ
(

υ
2

)

[

1 +
x2

υ − 2

]−(υ+1)/2

, (6)

and Γ(.) is Euler’s gamma function.

In (5), the constants m = m(ξ, υ) and s =
√

s2(ξ, υ) are respectively the mean and the

standard deviation of the non-standardized skew-Student density SKST (m, s2, ξ, υ) of Fernández

and Steel (1998), and are defined as follows:

m(ξ, υ) =
Γ
(

υ−1
2

)√
υ − 2

√
π Γ

(

υ
2

)

(

ξ − 1

ξ

)

, (7)

and

s2(ξ, υ) =

(

ξ2 +
1

ξ2
− 1

)

−m2. (8)

It can be shown that in (5), ξ2 is equal to the ratio of probability masses above and below

the mode, which makes the use of this density very attractive because ξ2 can be interpreted as

a skewness measure. Notice also that the density f(zt|1/ξ, υ) is the “mirror” of f(zt|ξ, υ) with

respect to the (zero) mean, i.e. f(zt|1/ξ, υ) = f(−zt|ξ, υ). Therefore, as remarked by Lambert

and Laurent (2000), the sign of log ξ indicates the direction of the skewness: the third moment is

positive (negative), and the density is skew to the right (left), if log ξ > 0 (< 0).

The main advantages of this density are its ease of implementation, that its parameters have

a clear interpretation, and that it performs well on financial datasets (see Paolella 1997, Lambert

and Laurent 2001, Giot and Laurent, 2001a, and Giot and Laurent 2001b). Moreover, Lambert

and Laurent (2001) show how to obtain the cumulative distribution function (cdf) and the quantile

function of a standardized skew density from the cdf and quantile function of the corresponding

symmetric density.

Efficient estimation of the model defined by Eq. (1-4) under the assumption that zt ∼ i.i.d.

SKST (0, 1, ξ, υ) is performed by maximizing the log-likelihood function LT (θ) =
T
∑

t=1
lt(θ) where

5We choose on purpose to restrict the number of degrees of freedom to be larger than 2, since we want to

construct a distribution with zero mean and unit variance. Fernández and Steel (1998) and Lambert and Laurent

(2000) have considered the case when υ can be smaller than two. In this case the conditional distribution is

parameterized in terms of its mode and dispersion.
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θ = (µ′, η′, ξ, υ)
′
denotes the vector of parameters, and

lt(θ) = log

(

2

ξ + 1
ξ

)

+ log Γ

(

υ + 1

2

)

− 0.5 log [π(υ − 2)]− log Γ
(υ

2

)

+ log
s

σt
− 0.5 (1 + υ) log

[

1 +
(szt +m)2ξ−2It

υ − 2

]

(9)

with zt = (yt − µt)/σt, and

It =



















1 if zt ≥ −m
s

−1 if zt < −m
s .

In Eq. (9), µt, σt, m and s are functions of the parameters defined by Eq. (3), (4), (7), and

(8), respectively. The estimation of a highly non-linear model like Eq. (1-4) relies on numerical

techniques to approximate the derivatives of the likelihood function with respect to the parameter

vector. To avoid numerical inefficiencies and highly speed-up estimation, Laurent (2001) provides

numerically reliable analytical expressions for the score vector of Eq. (9).

Recently, Jones and Faddy (2000) have designed another skew-t distribution. Like the SKST

(0, 1, ξ, υ) density, it has two parameters (assuming zero location and unit scale parameters), say

a and b. If a = b, the distribution is the usual symmetrical Student one, as defined above by Eq.

(6), with υ = 2b (assuming b > 1). If a− b > 0 (< 0), the density is skew to the right (left): hence

a − b is a skewness parameter that, however, does not have an interpretation as clearcut as ξ2

(the ratio of probability masses above and below the mode). A property of this skew-t density is

that its long tail is thicker than its short tail (if a > b, the left tail behaves like x−(2a+1) at minus

infinity, the long tail like x−(2b+1) at plus infinity). On the contrary the SKST density has the

same thickness of tails at plus and minus infinity, where it behaves like x−(υ+1). While it may

be of interest to have a different tail behavior at the two extremities, for financial applications it

is not obvious that the thicker tail should be necessarily the long one. Jones and Faddy (2000)

also provide the moments and the cdf of their skew-t density. Which of the two densities is to be

preferred for modelling skew returns in a univariate GARCH model is an open question that is

beyond the objective of this paper.6

2.2 Empirical illustration

In this illustration, we consider four stock market indexes: the French CAC40, US NASDAQ,

Japanese NIKKEI and Swiss SMI from January 1991 to December 1998 (1816 daily observations;

source: Datastream). The daily return is defined as yt = 100× (log pt − log pt−1) where pt is the

stock index value of day t.

6In a multivariate GARCH model, the issue is clearly settled in favor of the multivariate generalization of the

SKST density that is proposed in Section 3.
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We use the model defined by Eq. (1-4) with the following conditional mean and variance

equations:

µt = µ+ φ(yt−1 − µ) (10)

σ2
t = ω + βσ2

t−1 + αε2t−1, (11)

where µ, φ, ω, β, and α are parameters to be estimated. An autoregressive (AR) model of order

one is chosen for the conditional mean to allow for possible autocorrelation in the daily returns,

while a GARCH(1,1) specification -see Bollerslev (1986)- is chosen for the conditional variance to

account for volatility clustering in a simple way. More sophisticated ARCH models could easily

be used, but this is not the focus of the paper.

To account for possible skewness and fat tails, we estimated the AR(1)-GARCH(1,1) model

assuming a skew-Student density for the innovations. In order to assess the practical relevance

of this density, we compare the estimation results with two other assumptions regarding the

innovations density: the normal (obtained when υ tends to infinity and ξ = 1), and the symmetric

Student (obtained by setting ξ = 1). Results concerning the CAC40 and the NASDAQ are

gathered in Table 1 and those concerning the NIKKEI and the SMI are reported in Table 2.

Several comments are in order:

- The AR(1)-GARCH(1,1) specification seems to be adequate for capturing the dynamics of the

four series. Indeed, looking at the Box-Pierce statistics with 20 lags on the standardized

residuals (Q20) and the squared standardized residuals (Q2
20), one cannot reject the assump-

tion of lack of autocorrelation in the innovation process and its square (except perhaps for

the CAC40 where the standardized residuals are still slightly serially correlated);

- The estimated number of degrees of freedom υ is about 6 for the NASDAQ, NIKKEI and SMI

and about 9 for the CAC40, which indicates that the returns are fat-tailed. Moreover, the

differences between the likelihood of the normal and the Student densities are so big that

there is little doubt that the latter should be preferred to the former (despite the fact that

the LR test is presumably non-standard);

- The estimated skewness parameter log ξ is negative and different from 0 at conventional levels

of significance for the NASDAQ and the SMI, while it is not different from 0 for the CAC40

and the NIKKEI. The distribution of returns of the NASDAQ and the SMI is therefore char-

acterized by negative skewness, while the other series appear to be symmetrically distributed

over the period under consideration. Notice however that since the skew-Student density

has the symmetric Student density as a limiting case, it is also adequate for the CAC40 and

the NIKKEI (resulting perhaps in a small loss of efficiency);
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Table 1: ML Estimation Results of AR-GARCH models for the CAC40 and the NASDAQ

Normal Student skew-Student

CAC40; NASDAQ CAC40 ; NASDAQ CAC40 ; NASDAQ

µ 0.051 ; 0.111 0.057 ; 0.137 0.053 ; 0.099

[0.029] ; [0.027] [0.027] ; [0.023] [0.027] ; [0.023]

φ 0.052 ; 0.177 0.044 ; 0.171 0.044 ; 0.152

[0.026] ; [0.026] [0.023] ; [0.024] [0.023] ; [0.024]

ω 0.094 ; 0.092 0.043 ; 0.055 0.042 ; 0.053

[0.074] ; [0.036] [0.028] ; [0.026] [0.027] ; [0.025]

β 0.860 ; 0.766 0.915 ; 0.827 0.915 ; 0.826

[0.076] ; [0.063] [0.037] ; [0.052] [0.037] ; [0.052]

α 0.078 ; 0.153 0.056 ; 0.124 0.056 ; 0.128

[0.034] ; [0.043] [0.022] ; [0.035] [0.022] ; [0.035]

log ξ 0 ; 0 0 ; 0 -0.014 ; -0.158

[0.031] ; [0.034]

υ ∞ ; ∞ 8.657 ; 5.685 8.714 ; 5.938

[1.918] ; [0.753] [1.933] ; [0.817]

Q20 27.511 ; 17.830 30.652 ; 17.925 27.289 ; 19.526

Q2
20 8.682 ; 7.815 11.302 ; 10.720 10.990 ; 10.983

P20 30.608 ; 62.344 10.531 ; 37.815 17.782 ; 12.338

(0.044) ; (0.000) (0.938) ; (0.006) (0.537) ; (0.870)

SIC 3.229 ; 2.802 3.197 ; 2.728 3.202 ; 2.720

Log-Lik -2911.6 ; -2524.6 -2879.9 ; -2453.7 -2879.8 ; -2442.9

Each column reports the ML estimates of the model defined by Eq. (1)-(2)-(10)-(11), with

robust standard errors underneath in brackets. The column headed “Normal” corresponds to

zt ∼ N(0, 1), “Student” to zt ∼ ST (0, 1, υ) as in (6), “Skew-Student” to zt ∼ SKST (0, 1, ξ, υ)

as in (5), and in all cases zt is an i.i.d. process. Q20 is the Box-Pierce statistic of order 20 on

the standardized residuals, Q2
20 is the same for their squares, P20 is the Pearson goodness-of-fit

statistic (using 20 cells) with the associated p-value underneath in parentheses (see footnote

7). SIC is the Schwarz information criterion (divided by the sample size), and Log-Lik is the

log-likelihood value at the maximum. The sample size is equal to 1816.
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Table 2: ML Estimation Results of AR-GARCH models for the NIKKEI and the SMI

Normal Student skew-Student

NIKKEI; SMI NIKKEI ; SMI NIKKEI ; SMI

µ -0.004 ; 0.110 -0.021 ; 0.123 -0.031 ; 0.102

[0.030] ; [0.023] [0.026] ; [0.020] [0.028] ; [0.021]

φ -0.014 ; 0.070 -0.026 ; 0.039 -0.028 ; 0.028

[0.025] ; [0.026] [0.023] ; [0.025] [0.023] ; [0.026]

ω 0.061 ; 0.147 0.040 ; 0.063 0.039 ; 0.058

[0.036] ; [0.066] [0.016] ; [0.024] [0.015] ; [0.022]

β 0.894 ; 0.731 0.902 ; 0.810 0.903 ; 0.817

[0.035] ; [0.058] [0.018] ; [0.049] [0.018] ; [0.047]

α 0.080 ; 0.141 0.082 ; 0.136 0.082 ; 0.134

[0.024] ; [0.028] [0.016] ; [0.035] [0.016] ; [0.033]

log ξ 0 ; 0 0 ; 0 -0.035 ; -0.101

[0.034] ; [0.034]

υ ∞ ; ∞ 5.950 ; 6.273 5.895 ; 6.364

[0.845] ; [1.085] [0.825] ; [1.096]

Q20 14.198 ; 12.271 14.29 ; 11.212 14.372 ; 11.836

Q2
20 5.876 ; 1.377 6.617 ; 2.433 6.662 ; 2.454

P20 47.225 ; 51.567 13.837 ; 26.818 15.843 ; 16.570

(0.000) ; (0.000) (0.793) ; (0.108) (0.667) ; (0.618)

SIC 3.562 ; 2.894 3.494 ; 2.788 3.498 ; 2.787

Log-Lik -3214.1 ; -2607.9 -3148.9 ; -2507.6 -3148.4 ; -2503.2

Note: see Table 1.
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- Using the Schwarz information criterion to discriminate between the three densities, one should

select the skew-Student for the NASDAQ and the SMI and the Student for the others;

- Finally and more importantly, the relevance of the skew-Student distribution is also confirmed by

the Pearson goodness-of-fit statistics.7 This test is in fact equivalent to an in-sample density

forecast test, as proposed recently by Diebold, Gunther, and Tay (1998). While the normal

and the Student distributions are clearly rejected for the NASDAQ (the p-values being very

small), the skew-Student density seems to be supported (p-value = 0.87). Similarly, one

can see that the skew-Student density is appropriate for modelling the SMI. Unsurprisingly,

the normal density is rejected for the CAC40 and the NIKKEI while the Student and the

skew-Student are not rejected at conventional levels of significance.

This example illustrates the potential usefulness of the skew-Student distribution in a univariate

volatility model. The skewness parameters of the four series are different, and although the

numbers of degrees of freedom are almost identical for the NASDAQ, NIKKEI and SMI, the

innovations of the CAC40 seem to have less kurtosis. For modelling jointly the four series, it

could therefore be useful to have a multivariate density that would allow for different skewness

and perhaps different tail properties on each series.

3 Multivariate case

Consider a time series vector yt, with k elements, yt = (y1t, y2t, . . . , ykt)
′. A multivariate dynamic

regression model with time-varying means, variances and covariances for the components of yt

generally takes the form:

yt = µt +Σ
1/2
t zt (12)

µt = C(µ|Ωt−1) (13)

Σt = Σ(µ, η|Ωt−1) (14)

where zt ∈ ℜk is an i.i.d. random vector independent of Ωt−1 with zero mean and identity variance

matrix and C(.|Ωt−1) and Σ(.|Ωt−1) are functions of Ωt−1. It follows that E(yt|µ,Ωt−1) = µt and

V ar(yt|µ, η,Ωt−1) = Σ
1/2
t (Σ

1/2
t )′ = Σt, i.e. µt is the conditional mean vector (of dimension k× 1)

and Σt the conditional variance matrix (of dimension k × k).

7For a given number of cells denoted g, the Pearson goodness-of-fit statistics is P (g) =
g
∑

i=1

(ni−Eni)
2

Eni
, where ni

is the number of observations in cell i and Eni is the expected number of observations (based on the ML estimates).

For i.i.d. observations, Palm and Vlaar (1997) show that under the null of a correct distribution the asymptotic

distribution of P (g) is bounded between a χ2(g − 1) and a χ2(g − k − 1) where k is the number of estimated

parameters. Since our conclusions hold for both critical values, we report the significance levels relative to the first

one.
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Under the assumption of correct specification of the conditional mean and conditional variance

matrix, the efficient estimation of the above model is obtained by the ML method, assuming zt to

be i.i.d. with a correctly specified distribution that may depend upon a few unknown parameters.

When the distribution of zt is assumed to be the standard normal, the ML estimator obtained from

the corresponding likelihood function is consistent even if the normality assumption is incorrect (see

Bollerslev and Wooldridge, 1992). This well-known Gaussian QML procedure has the advantage

of robustness with respect to the distributional assumption of the model. The QML estimator

relying on a normal distribution is, however, inefficient, with the degree of inefficiency increasing

with the degree of departure from normality (see Engle and González-Rivera, 1991 in a univariate

framework).

3.1 Multivariate symmetrical densities

Like in the univariate case, a natural candidate, apart from the normal density, is the multivariate

Student density with at least two degrees of freedom υ (in order to ensure the existence of second

moments). It may be defined as:

g(zt|υ) =
Γ
(

υ+k
2

)

Γ
(

υ
2

)

[π(υ − 2)]
k
2

[

1 +
z′tzt

υ − 2

]−
k+υ

2

, (15)

where Γ(.) is the Gamma function. This density is denoted ST (0, Ik, υ).

The density function of yt, easily derived from the density of zt by using the transformation

in Eq. (12), is given by:

f(yt | µ, η, υ,Ωt−1) =
Γ(υ+k

2 )

Γ(υ
2 )[π(υ − 2)]

k
2

| Σt |−
1
2

[

1 +
(yt − µt)

′Σ−1
t (yt − µt)

υ − 2

]−
k+υ

2

. (16)

While genuine ML methods provide more efficient estimators than the Gaussian QML when

the assumption made on the innovation process holds, it has the main disadvantage that unlike

the Gaussian QML, it does not provide a consistent estimator when this assumption does not

hold.

Consequently, recalling the findings of the previous section, there is a need for skew densities

in the multivariate case. Such densities can be defined by introducing skewness in symmetric

densities by means of new parameters, such that the symmetric density results as a particular

case. In Section 3.2, we propose a simple and intuitive method to introduce skewness into a

multivariate “symmetric” unimodal density (with zero mean and unit variance). Before that, we

define the notion of symmetry that we rely on.

In the univariate case, the symmetry property corresponds to g(x) = g(−x) assuming g(x)

is a unimodal probability density function and E(x) = 0. In the multivariate case, we use the

following definition of symmetry of a standardized density g(x):
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Definition 1 (M-symmetry): The unimodal density g(x) defined on ℜk, such that E(x) = 0,

and V ar(x) = Ik, is symmetrical if and only if for any x, g(x) = g(Qx), for all diagonal matrices

Q whose diagonal elements are equal to +1 or to -1. If x is a random vector with a density

satisfying this definition, we write

x ∼ M -Sym(0, Ik, g). (17)

In the bivariate case, this definition means that

g(x1, x2) = g(−x1, x2) = g(x1,−x2) = g(−x1,−x2), (18)

and in the trivariate case

g(x1, x2, x3) = g(−x1, x2, x3) = g(−x1,−x2, x3) = g(−x1,−x2,−x3) (19)

= g(x1,−x2, x3) = g(x1,−x2,−x3) = g(x1, x2,−x3) = g(−x1, x2,−x3).

Spherically symmetric (SS) densities, defined by the property that the density depends on x

through x′x only, i.e.

g(x) ∝ k(x′x), (20)

for an appropriate integrable positive function k(.), are M-symmetric. The most well known

examples of SS-densities8 are the standard normal density and the standard Student density

ST (0, Ik, υ). However, there exist other distributions that have the desired property while not

being spherically symmetric. A large class is defined by

g(x) =

k
∏

i=1

gi(xi), (21)

where gi(.), ∀i, is a univariate symmetric density (unimodal, with mean 0 and unit variance). If

gi(.) (∀i) is standard normal, there is no difference between (21) and (20) with g(.) = N(0, Ik).

Nevertheless, if gi(.) = ST (0, 1, υ) (∀i) and g(.) = ST (0, Ik, υ), there is a difference between (21)

and (20) since the elements of (20) are not mutually independent whereas those of (21) are. Notice

however that both multivariate densities have the same univariate marginal densities.

3.2 Multivariate skew densities

3.2.1 Literature review

Jones (2000) has generalized the univariate skew-t density of Jones and Faddy (2000), briefly

described at the end of Section 2.1, to the multivariate case. His multivariate skew-t density is

such that each marginal is a univariate skew-t as defined by Jones and Faddy (2000). However,

8Johnson (1987), chapter 6, provides graphical illustrations of several bivariate SS-densities.
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his multivariate density has necessarily positive covariances, and is therefore useless for a model

such as defined by Eq. (12), where it is essential that Var(zt) = Ik.

Mauleón and Perote (1999) use the bivariate Edgeworth-Sargan density for zt in a bivariate

constant correlation GARCHmodel, where each conditional variance is specified like in a univariate

GARCH(1,1) model. The Edgeworth-Sargan density has as leading term a bivariate standard

normal density, to which are added terms that create the non-normality (these terms involve

Hermite polynomials in each of the marginal densities of the leading term). However, they use

only a symmetrical version of their density, because they choose not to include odd-order terms in

the expansion (such terms would induce asymmetry). Actually they include four even-order terms

in the expansion on each element of zt, under the motivation that these terms induce fatter tails

than for the leading normal density. This appears to us to be a costly way, in term of the number of

parameters, to introduce the possibility of having fat tails. A multivariate Student density requires

just one extra parameter, with the drawback of constraining the same thickness of tails on each

element of zt, but this is easily extended by taking a product of independent Student densities in

the spirit of Eq. (21) (the last solution would require 2 parameters instead of 8 in the bivariate

case). Moreover, Mauleón and Perote (1999) report some difficulties in obtaining the convergence

of the numerical maximization of the log-likelihood function based on their Edgeworth-Sargan

density. At least for the time being, this does not seem to be a fruitful approach.

Another recent paper, by Branco and Dey (2000), introduces a general class of multivariate

skew-elliptical distributions, and is therefore related to our work.9 Their work generalizes to the

full class of elliptically contoured (EC) densities earlier results by Azzalini and Capitanio (1996),

who have defined a multivariate skew-normal distribution. Any EC-density is obtained by linear

transformation of a SS-density: if z (of dimension k × 1) is SS-distributed with density g(z), µ is

a vector of location parameters, and Ω is a k × k positive-definite symmetric scale matrix, then

x = µ + Ω1/2z is elliptically contoured, which is denoted x ∼ EC(µ,Ω; g) (where g denotes the

density of x). To obtain a skew version of an EC-density, Branco and Dey (2000) start from

x∗ ∼ EC(µ∗,Ω∗; g∗), where x∗ = (x0, x
′)′ is a vector of k+1 elements. They partition µ∗ and Ω∗

as x∗, i.e.

µ∗ =











0

µ











, Ω∗ =











1 δ′

δ Ω











, (22)

where µ and δ are k × 1 vectors, and Ω is a k × k matrix. Then they define the distribution of

x conditional on x0 > 0 to be the skew-elliptical distribution based on the density g∗(.), with

parameters µ (location, or mean if it exists), Ω (scale matrix, or variance matrix if it exists), and

9Sahu, Dey, and Branco (2001) use the skew-elliptical density in Bayesian regression analysis, by assuming the

error terms to have this kind of distribution, rather than a symmetrical distribution.
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δ (a vector of skewness parameters), i.e. x ∼ SKE(µ,Ω, δ; g). They show that the density of this

random vector (call it z) is given by

f(z) = 2g(z)G∗[λ
′(z − µ)], (23)

where g(.) is the marginal density of x derived from the density of x∗ (by properties of EC-

distributions, it has the same functional form as g∗), G∗(.) is the (univariate) cdf of an EC(0, 1; g∗),

with g∗ appropriately defined (essentially from the conditional density of x0 given x), and

λ =
δ′Ω−1

(1− δ′Ω−1δ)1/2
. (24)

It is therefore clear that the parameters δ (a set of covariances) create the skewness. If they are

all equal to 0, G∗[λ
′(z − µ)] = G∗(0) = 1/2, by symmetry of EC(0, 1; g∗), and the density (23)

becomes symmetrical. However, there is a constraint linking these skewness parameters, namely

that δ′Ω−1δ must be smaller than unity, see Eq. (24). This is a constraint that is likely to

complicate inference. In the context of GARCH models with standardized innovations, Ω is an

identity matrix (and µ = 0), hence δ is a vector of correlation coefficients, and the constraint is that

the sum of squared correlations is less than one. To what extent this constraint limits the degree

of skewness is not known.10 Another drawback of this approach is that if one wants to introduce

some dynamics in the skewness parameters, the constraint would be different for each observation,

which would complicate the estimation dramatically. We conclude on this class of skew densities

by saying that it seems an interesting, though seemingly more difficult to implement, alternative

to the class of skew densities that we propose below, and that more work is needed to compare

the different classes of skew densities

To accommodate both the skewness and kurtosis of six weekly rates of the European Monetary

System (EMS) expressed in terms of the Deutsche mark, Vlaar and Palm (1993) propose to use

a (Bernoulli) mixture of two multivariate normal densities (coupled with an MA(1)-GARCH(1,1)

model with constant correlations, see Bollerslev, 1990). The size and the variance of the jumps

are allowed to differ across currencies. However, to render the estimation feasible, they assume

identical jump probability for all the series arguing that a stochastic shock leading to a jump

is likely to simultaneously affect all of the currencies in the system. Even if this assumption is

realistic for currencies that belong to the EMS, it is unrealistic for stock returns, for instance.

Moreover, even if this density is expressed in such a way that E(zt) = 0, the covariance matrix

of zt is not an identity matrix in their specification. Another drawback of this density is that the

parameters that govern the skewness and kurtosis have not a clear interpretation because for each

margin the jump probability, the size and the variance of the jumps explain at the same time the

10If k = 1, the constraint is not limitative.
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variance, skewness and kurtosis in an highly non-linear way (see Vlaar and Palm, 1993 for more

details). To conclude about this density, it suffers from a problem of non-identification of several

parameters when the mixture is not relevant (for instance when the jump probability equals 0 or

1), which makes the testing procedures non-standard.

Finally, we cannot refrain from mentioning a class of multivariate densities that could be of

interest: the so-called poly-t densities that contain the multivariate Student density as a particular

case. Poly-t densities arise as posterior densities in Bayesian inference, see Drèze (1978), and can

be heavily skew, have fat tails and even be multimodal. However, more work is required to discover

how the skewness of these densities depends on their parameters (see Richard and Tompa, 1980

for results on moments of poly-t densities).

3.2.2 New skew densities

We generalize to the multivariate case the method proposed by Fernández and Steel (1998) to

construct a skew density from a symmetrical one. Let us consider the k-dimensional random

vector z∗ defined by:

z∗ = λ(τ) |x|, (25)

where

|x| = (|x1|, . . . , |xk|)′ , (26)

and

x ∼ M -Sym(0, Ik, g). (27)

Moreover, λ(τ) is a k × k diagonal matrix defined by:

λ(τ) = τξ − (Ik − τ) ξ−1, (28)

where

τ = diag(τ1, . . . , τk), with τi ∈ {0, 1},

τi ∼ Ber

(

ξ2
i

1 + ξ2
i

)

, with ξi > 0,

ξ = (ξ1, . . . , ξk).

Ξ = diag(ξ).

Ber
(

ξ2
i

1+ξ2
i

)

denotes a Bernoulli distribution with probability of success
ξ2

i

1+ξ2
i

. It is also assumed

that the elements of τ are mutually independent.

For ease of exposition, we give the details of the derivation of the density of z∗ in the bivariate

case, before giving the general formula.

16



Bivariate case

We can write the density of z∗ as a discrete mixture with respect to the distribution of τ :

f(z∗|ξ) = Pr(τ1 = 1, τ2 = 1)f(z∗|ξ, τ1 = 1, τ2 = 1)

+ Pr(τ1 = 1, τ2 = 0)f(z∗|ξ, τ1 = 1, τ2 = 0)

+ Pr(τ1 = 0, τ2 = 1)f(z∗|ξ, τ1 = 0, τ2 = 1)

+ Pr(τ1 = 0, τ2 = 0)f(z∗|ξ, τ1 = 0, τ2 = 1). (29)

By dividing the range of all possible values of z∗ ∈ ℜ2 into the four quadrants, we can write the

right hand side of Eq. (29) in terms of the original M-symmetric density g(.):

f(z∗|ξ) = 22Pr(τ1 = 1, τ2 = 1) |λ(1, 1)|−1 g[λ(1, 1)−1z∗] I(z∗

1
≥0;z∗

2
≥0)

+ 22Pr(τ1 = 1, τ2 = 0) |λ(1, 0)|−1g[λ(1, 0)−1z∗] I(z∗

1
≥0;z∗

2
<0)

+ 22Pr(τ1 = 0, τ2 = 1) |λ(0, 1)|−1g[λ(0, 1)−1z∗) I(z∗

1
<0;z∗

2
≥0)

+ 22Pr(τ1 = 0, τ2 = 0) |λ(0, 0)|−1g[λ(0, 0)−1z∗) I(z∗

1
<0;z∗

2
<0), (30)

where e.g. λ(1, 1) stands for λ(τ1 = 1, τ2 = 1) and for instance I(z∗

1
≥0;z∗

2
≥0) = 1 when z∗1 ≥ 0 and

z∗2 ≥ 0, 0 otherwise. After some algebraic manipulations of (30) using (28) and the assumption of

independence of τ1 and τ2, we obtain:

f(z∗|ξ) = 22 ξ1
1 + ξ2

1

ξ2
1 + ξ2

2

{

g[λ(1, 1)−1z∗] I(z∗

1
≥0;z∗

2
≥0)

+ g[λ(1, 0)−1z∗] I(z∗

1
≥0;z∗

2
<0) + g[λ(0, 1)−1z∗] I(z∗

1
<0;z∗

2
≥0)

+ g[λ(0, 0)−1z∗] I(z∗

1
<0;z∗

2
<0)

}

, (31)

and finally,

f(z∗|ξ) = 22 ξ1
1 + ξ2

1

ξ2
1 + ξ2

2

g(κ∗), (32)

where

κ∗ = (κ∗1, κ
∗
2)

′
(33)

κi = z∗i ξ
−Ii

i (i = 1, 2) (34)

Ii =



















1 if z∗i ≥ 0

−1 if z∗i < 0.

Applying this procedure to the bivariate Student distribution given by Eq. (15) with k = 2

and x instead of zt, i.e. x ∼ ST (0, I2, υ), yields a “bivariate skew-Student” density, in which both

marginals have different asymmetry parameters, ξ1 and ξ2.
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Multivariate case

It is straightforward to show that for any dimension k,

f(z∗|ξ) = 2k

(

k
∏

i=1

ξi

1 + ξ2
i

)

g(κ∗), (35)

where κ∗ is given in Eq. (33)-(34) for the bivariate case and is easily extended to the multivariate

case. Recall that for each margin z∗i , ξi has a clear interpretation since ξ2
i is equal to the ratio of

probability masses above and below the mode. Remark also that when k = 1, one recovers the

family of skew densities proposed by Fernández and Steel (1998).

Moments

A convenient property of this new family of skew densities is that the marginal moments are

obtained by the same method and actually correspond to the same formulas as in the univariate

case. The r-th order moment of f(z∗|ξ) exists if the r-th order moment of g(.) exists. In particular,

E (z∗i
r|ξ) = Mi,r

ξr+1
i + (−1)r

ξr+1

i

ξi +
1
ξi

(36)

where

Mi,r =

∫ ∞

0

2urgi(u)du, (37)

and gi(.) is the marginal of xi extracted from g(x), while Mi,r is the r-th order moment of gi(.)

truncated to the positive real values. Provided that these quantities are finite, we obtain:

E(z∗i |ξi) = Mi,1

(

ξi −
1

ξi

)

= mi (38)

Var(z∗i |ξi) =
(

Mi,2 −M2
i,1

)

(

ξ2
i +

1

ξ2
i

)

+ 2M2
i,1 −Mi,2 = s2i (39)

Sk(z∗i |ξi) =

(

ξi − 1
ξi

)

(

Mi,3 + 2M3
i,1 − 3Mi,1Mi,2

)

(

ξ2
i + 1

ξ2
i

)

+ 3Mi,1Mi,2 − 4M3
i,1

Var (z∗i |ξi)
3
2

(40)

Ku(z∗i |ξi) =
E
(

z∗i
4|ξi

)

− 4E (z∗i |ξi) E
(

z∗i
3|ξi

)

+ 6E
(

z∗i
2|ξi

)

E (z∗i |ξi)
2 − 3E (z∗i |ξi)

4

Var (z∗i |ξi)
2 (41)

where Sk(.) and Ku(.) denote the skewness and kurtosis coefficients, respectively.11

Finally, it is obvious that the elements of z∗ are uncorrelated (since those of x are uncorrelated

by assumption), so that it is easy to transform z∗ so as to have any specified covariance matrix.

Standardized skew densities

The main drawback of the skew density defined by Eq. (35) is that it is not centered on 0 and

the covariance matrix is a function of ξ (and of υ if g(.) is a multivariate Student density). As in

the univariate case, one can solve this problem by standardizing z∗.

11An explicit expression of the kurtosis in terms of the Mi,r and ξi is too cumbersome.
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Let us consider the following random vector:

z = (z∗ −m)./s (42)

where m = (m1, . . . ,mk) and s = (s1, . . . , sk) are the vectors of unconditional means and standard

deviations of z∗, and ./ means element by element division. The above transformation amounts

to standardize each component of z∗.

Note that if g(.) is the multivariate Student density as described in Eq. (15), its marginal

gi(.|υ) is a univariate standardized Student and following Lambert and Laurent (2001),

mi =
Γ
(

υ−1
2

)√
υ − 2

√
πΓ

(

υ
2

)

(

ξi −
1

ξi

)

(43)

and

s2i =

(

ξ2
i +

1

ξ2
i

− 1

)

−m2
i . (44)

Definition 2 If (i) z is defined by Eq. (42-44), and (ii) z∗ has a density given by Eq. (35), where

g(x) is the Student density given by Eq. (15), then z is said to be distributed as (multivariate)

standardized skew-Student with asymmetry parameters ξ = (ξ1, . . . , ξk), and number of degrees of

freedom υ(> 2). This is denoted z ∼ SKST (0, Ik, ξ, υ). The density of z is given by:

f(z|ξ, υ) =
(

2√
π

)k
(

k
∏

i=1

ξisi

1 + ξ2
i

)

Γ(υ+k
2 )

Γ(υ
2 )(υ − 2)

k
2

(

1 +
κ′κ

υ − 2

)−
k+υ

2

. (45)

where

κ = (κ1, . . . , κk)
′

(46)

κi = (sizi +mi) ξ
−Ii

i (47)

Ii =



















1 if zi ≥ −mi

si

−1 if zi < −mi

si
.

By construction, E(z) = 0 and Var(z) = Ik. If ξ = Ik, the SKST (0, Ik, ξ, υ) density becomes

the ST (0, Ik, υ) one, i.e. the symmetric Student density.

Assuming that yt is specified as in Eq. (12) and zt ∼ SKST (0, Ik, ξ, υ), the density of yt is

straightforwardly obtained (see how Eq. (16) is obtained from Eq. (15)).

To illustrate, Figure 1 shows a graph of the SKST (0, I2, ξ, 6) density with ξ1 = 1, ξ2 = 1.3,

and the Panel A of Figure 2 shows its contours.

The first graph is oriented to show the asymmetry to the right along the z2−axis, while the

density is symmetric in the direction of the first coordinate (z1). The contours show more clearly

the skewness properties of the density in the direction of z2, and its symmetry in the direction of

z1. One also clearly sees that the mode is not centered in zero (unlike in the non-standardized

version).
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Figure 1: Graph of the SKST (0, I2, (1, 1.3), 6) density

3.3 Simulation

In order to assess the practical applicability of the ML method to the estimation of the skew-

Student distribution, we present the results of a small simulation study. It is not our intention

to provide a comprehensive Monte Carlo study. Our results, however, provide some evidence on

the properties of the ML estimator when a multivariate standardized skew-Student distribution is

assumed for the innovations. Consider the bivariate case with yt = (y1,t, y2,t). The data generating

process is given by Eq. (12), with µt = µ = (0, 0)′, Σt = Σ a correlation matrix with off-diagonal

element equal to -0.2, zt ∼ SKST (0, I2, ξ, υ), where (log ξ1, log ξ2) = (0.2,−0.2) and υ = 8. This

configuration implies that the innovations are skew (with skewness amounting to 0.53 and -0.53

respectively for z1 and z2) and have fat-tails (the kurtosis equals 4.80 for both). The sample size is

set to 20,000. Table 3 reports the DGP as well as the estimation results under three assumptions

for the innovations: normal, Student and (standardized) skew-Student densities.

From Table 3, it is clear that the ML method, under the correct density (i.e. the skew-Student,

see column 5), works reasonably well in the sense that the estimates are very close to the “true”

values. Table 3 also illustrates the well known result of Weiss (1986) and Bollerslev and Wooldridge

(1992) that (if the mean and the variance are specified correctly) the Gaussian QML estimator is

consistent (but inefficient). Moreover, this table also confirms the result of Newey and Steigerwald
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Figure 2: Panel A refers to the contours of the bivariate SKST (0, I2, (1, 1.3), 6) density illustrated

in Figure 1. Panel B refers to the contours of a SKST -IC(0, Ik, (1, 1.3), (6, 6)) (see Section 3.4)
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Table 3: QML Estimation Results of Simple skew-Student DGP

DGP Normal Student skew-Student

µ1 0.0 -0.001 -0.037 -0.000

[0.007] [0.007] [0.007]

µ2 0.0 0.004 0.046 0.003

[0.007] [0.007] [0.007]

σ2
1 1.0 0.985 0.982 0.992

[0.014] [0.012] [0.012]

σ2
2 1.0 0.994 0.989 0.998

[0.013] [0.012] [0.012]

ρ 0.2 -0.226 -0.219 -0.213

[0.008] [0.007] [0.007]

log ξ1 0.2 - - 0.184

[0.010]

log ξ2 -0.2 - - -0.194

[0.010]

υ 8.0 - 7.903 8.316

[0.284] [0.306]

Q20 and Q2
20(ẑ1) - 14.791 ; 18.893 14.763 ; 17.884 14.743; 17.275

Q20 and Q2
20(ẑ2) - 21.942 ; 14.492 21.852 ; 13.826 21.773; 9.936

P40(ẑ1) - 475.768 (0.000) 316.240 (0.000) 34.504 (0.675)

P40(ẑ2) - 585.384 (0.000) 355.068 (0.000) 30.496 (0.833)

DGP: yt = µ + Σ1/2zt, t = 1, . . . , 20000, with µ = (µ1, µ2)′, zt ∼ SKST (0, I2, ξ, υ) as

in (45), with ξ = (ξ1, ξ2); σ2
i is the variance of yi (i = 1, 2), and ρ is the correlation

coefficient between y1 and y2. The last four columns report the ML estimates (with the robust

standard errors underneath in brackets) of the parameters of the model corresponding to the

DGP with different assumptions on the distribution of zt. The column headed “Normal”

corresponds to zt ∼ N(0, I2), “Student” to zt ∼ ST (0, I2, υ) as in (15), “skew-Student” to

zt ∼ SKST (0, I2, [ξ1, ξ2], υ). Q20(ẑi) and Q20(ẑ2
i ) are the Box-Pierce statistics of order 20 on

the innovations ẑi and their squares. P40(ẑi) is the Pearson goodness-of-fit statistic (using 40

cells) with the associated p-value beside (see footnote 7). ẑ is given by Σ̂−1/2(yt − µ̂), where

Σ̂ and µ̂ are obtained by replacing the parameters by their estimates in the corresponding

formulas and Σ̂−1/2 is obtained from the spectral decomposition of Σ̂.
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(1997) that the QML estimator with a Student pseudo-likelihood is inconsistent when innovations

are skew. One can see that µ is rather strongly biased under the Student density, whereas the

other parameters seem less affected in this experiment. To check the model adequacy, we use the

same diagnostic tools (on each innovation separately)12 as in the empirical illustration of Section

2.2. These statistics suggest that the normal and Student densities are not appropriate, while the

skew-Student is. Notice that rejecting that the margins are not correctly specified is sufficient

to reject the assumption that the whole density is not appropriate. However, the converse is

obviously not true. Indeed, accepting that the margins are well specified is necessary to accept

that the whole density is appropriate, but it is not sufficient.

3.4 Multivariate skew densities with independent components

An obvious variation with respect to the previous class of multivariate skew densities is obtained

by starting from the product of k independent ST (0, 1, υi) and applying to it the transformation

defined by Eq. (25)-(26)-(28).

Definition 3 If (i) z is defined by Eq. (42-44), where υ is simply replaced by υi, and (ii) z∗

has a density given by Eq. (21), where gi(x) is the Student density given by Eq. (6), then z is

said to be distributed as a (multivariate) skew density with independent Student components, with

asymmetry parameters ξ = (ξ1, . . . , ξk), and degrees of freedom υ = (υ1, . . . , υk) (with υi > 2).

This is denoted z ∼ SKST -IC(0, Ik, ξ, υ). The density of z is given by:

f(z|ξ, υ) =
(

2√
π

)k




k
∏

i=1

ξisi

1 + ξ2
i

Γ(υi+1
2 )

Γ(υi

2 )
√
υi − 2

(

1 +
κ2

i

υi − 2

)−
1+υi

2



 , (48)

where κi is defined in Eq. (47).

Note that Eq. (48) is obtained equivalently by taking the product of k independent SKST

(0, 1, ξi, υi). The main advantage of (48) with respect to (45) is that it enables a different tail

behavior for each marginal, at the cost of introducing k − 1 additional parameters. However,

nothing prevents to constrain several degrees of freedom parameters to be equal. If all the degrees

of freedom parameters υi are equal to the degrees of freedom υ of (45), the densities (48) and

(45) have exactly the same marginal moments. The fact that the components of (45) are not

independent implies that its cross-moments of order 4 or higher are functions of a common single

parameter υ and are thus less flexible than those of (48).

To illustrate, Panel B of Figure 2 shows the contours of the bivariate skew density with inde-

pendent Student components whose parameters are ξ1 = 1, ξ2 = 1.3, υ1 = υ2 = 6. One can notice

12Multivariate tests of adequacy of a distribution are more appropriate tools but are usually difficult to implement.

This is the reason why we use simple diagnostic tools, which should at least help to detect a major misspecification.
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the difference with respect to the contours of the Panel A of the same figure, which corresponds

to the skew-Student with non-independent margins. In Panel B, the contours look like less “ellip-

tic” than in Figure Panel A (see also the graphs in Johnson, 1987, Chapter 6, for the symmetric

versions of these densities).

4 Empirical application

In this section, we model jointly the four series already used in the univariate application. The spec-

ification used to model the first two conditional moments is the time-varying correlation GARCH

model (TVC-GARCH) proposed by Tse and Tsui (1998), with first-order ARMA dynamics in the

conditional variances and the conditional correlation, and an AR(1) equation for each conditional

mean. This AR(1)-TVC(1,1)-GARCH(1,1) model is defined as follows:

yt = µt +Σ
1/2
t zt (49)

µt = (µ1,t, . . . , µ4,t)
′, zt = (z1,t, . . . , z4,t)

′ (50)

µi,t = µi + φi(yi,t−1 − µi) (i = 1, . . . , 4) (51)

Σt = DtΓtDt (52)

Dt = diag(σ1,t, . . . , σ4,t) (53)

σ2
i,t = ωi + βiσ

2
i,t−1 + αiε

2
i,t−1 (i = 1, . . . , 4) (54)

εt = (ε1,t, . . . , ε4,t)
′ = yt − µt (55)

Γt = (1− θ1 − θ2)Γ + θ1Γt−1 + θ2Ψt−1 (56)

Γ =













1 ρ12 ρ13 ρ14

ρ12 1 ρ23 ρ23

ρ13 ρ23 1 ρ34

ρ14 ρ23 ρ34 1













(57)

Ψt−1 = B−1
t−1Et−1E

′
t−1B

−1
t−1 (58)

B−1
t−1 = diag

(

m
∑

h=1

ǫ21,t−h, . . . ,
m
∑

h=1

ǫ24,t−h

)1/2

(59)

Et−1 = (ǫt−1, . . . , ǫt−m) (60)

ǫt = (ǫ1,t, . . . , ǫ4,t)
′ = D−1

t εt (61)

where µi, φi, ωi, βi, αi (i = 1, . . . , 4), ρij (1 ≤ i < j ≤ 4), and θ1, θ2 are parameters to be

estimated.13 Ψt−1 is thus the sample correlation matrix of {ǫt−1, . . . , ǫt−m}. Since Ψt−1 = 1 if

m = 1, we must take m ≥ 4 to have a non-trivial correlation. In this application, we set m = 4.

Note that the TVC-MGARCH model nests the constant correlation GARCH model of Bollerslev

13The parameters θ1 and θ2 are assumed to be nonnegative with the additional constraint that θ1 + θ2 < 1.
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(1990). Therefore, we can test θ1 = θ2 = 0 to check wether the constant correlation assumption is

appropriate.

The estimation results of this model are gathered in Tables 4 and 5. A QML estimation

procedure has been done with four different likelihoods: normal and Student in Table 4, skew-

Student and skew density with independent Student components in Table 5.

The results are in line with those obtained in the univariate case. The AR(1)-TVC(1,1)-

MGARCH(1,1) specification seems adequate in describing the dynamics of the series, witness the

small values of the Box-Pierce statistics of order 20 on the residuals and their squares, Q20(ẑi)

and Q20(ẑ
2
i ) respectively. The residual vector ẑt = (ẑi,t, . . . , ẑ4,t) is defined as:

ẑt = Σ̂
−1/2
t (yt − µ̂t), (62)

where Σ̂t and µ̂t are obtained by replacing the parameters by their estimates in the model for-

mulas. Σ̂
−1/2
t has been obtained from the spectral decomposition of Σ̂t (alternatively, a Cholesky

factorization can be used).

A time-varying and very persistent correlation between the series is strongly supported if one

looks at the estimates of θ1 and θ2 and the corresponding standard errors. On the first hand this

justifies the use of a time-varying correlation specification and on the other hand the use of a

multivariate model (comparing the sum of the univariate log-likelihoods with the corresponding

multivariate likelihood, one can see that the multivariate approach increases the likelihood by

more than 600 in all cases). Note that to facilitate the reading of the results concerning the

unconditional correlation parameters (the matrix Γ), they are reported as in a 4 by 4 matrix. The

upper triangle part of the matrix gives the estimated parameters while the lower triangle matrix

(below the diagonal of ones) gives the associated standard errors. For instance, the estimated

unconditional correlation between the CAC40 and the NIKKEI (ρ̂13) obtained with a Gaussian

QML equals 0.374, with standard error 0.111.

It is clear from the estimation results reported in Table 4 that, apart from the dynamics in the

first two conditional moments, the dominating feature of the four series is their fat-tail property.

Indeed, the Student density increases the log-likelihood value by about 230 for only one additional

parameter. Note that when comparing the standard errors related to the unconditional correlation

parameters one can see that they are slightly reduced when switching from a Gaussian a a Student

density. The normality assumption is also clearly rejected by the Pearson goodness-of-fit statistics

(with very small p-values).14 As in the univariate case, the Student density is clearly rejected for

the NASDAQ (the p-value of the Pearson goodness-of-fit statistics being equal to 0.001).

This is confirmed by the results concerning the skew-Student density (see Table 5). First,

14The normality assumption is less questioned for the CAC40. This is in line with the result obtained in the

univariate analysis.
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Table 4: ML Estimation Results of AR-TVC-GARCH model: normal and Student distributions

Normal Student

CAC40 NASDAQ NIKKEI SMI CAC40 NASDAQ NIKKEI SMI

µi 0.089 0.130 0.014 0.128 0.087 0.139 0.003 0.136

[0.028] [0.025] [0.031] [0.025] [0.026] [0.022] [0.028] [0.021]

φi 0.014 0.092 0.024 0.085 0.017 0.103 0.012 0.064

[0.022] [0.026] [0.025] [0.023] [0.020] [0.024] [0.023] [0.021]

ωi 0.053 0.087 0.052 0.103 0.049 0.045 0.037 0.043

[0.030] [0.033] [0.027] [0.069] [0.024] [0.029] [0.014] [0.022]

βi 0.922 0.782 0.906 0.822 0.928 0.866 0.909 0.885

[0.032] [0.058] [0.025] [0.089] [0.025] [0.062] [0.015] [0.044]

αi 0.042 0.142 0.073 0.083 0.039 0.090 0.077 0.070

[0.013] [0.040] [0.017] [0.035] [0.011] [0.036] [0.013] [0.023]

ρij

CAC40 1 0.383 0.374 0.749 1 0.286 0.234 0.663

NASDAQ [0.103] 1 0.219 0.397 [0.038] 1 0.122 0.287

NIKKEI [0.111] [0.088] 1 0.383 [0.038] [0.037] 1 0.247

SMI [0.069] [0.087] [0.117] 1 [0.027] [0.038] [0.039] 1

θ1 0.992 0.964

[0.005] [0.033]

θ2 0.004 0.013

[0.002] [0.007]

log ξi 0 0

υ ∞ 7.664

[0.680]

Q20(ẑi) 19.445 21.551 19.394 18.068 24.742 16.953 13.601 7.585

Q20(ẑ
2
i ) 19.445 21.551 19.394 18.068 24.244 11.814 8.133 4.197

P20(ẑi) 26.708 79.909 45.661 52.074 10.663 43.809 17.319 16.548

(0.111) (0.000) (0.000) (0.000) (0.934) (0.001) (0.568) (0.620)

SIC 11.726 11.478

Log-Lik -10544.3 -10315.2

Each column reports the ML estimates of the model defined by Eq. (49)-(61), with robust standard errors underneath

in brackets. The column headed “Normal” corresponds to zt ∼ N(0, I4) and “Student” to zt ∼ ST (0, I4, υ) as in

(15). In both cases zt is an i.i.d. process. Q20(ẑi) is the Box-Pierce statistic of order 20 on the standardized

residuals ẑi, Q20(ẑ2
i ) is the same for their squares, P20(ẑi) is the Pearson goodness-of-fit statistic (using 20 cells)

with the associated unadjusted p-value beside. SIC is the Schwarz information criterion (divided by the sample size

T = 1816), and Log-Lik is the log-likelihood value at the maximum.
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Table 5: ML Estimation Results of AR-TVC-GARCH model: skew-Student and skew-Student

with IC distributions

Skew-Student IC-Skew-Student

CAC40 NASDAQ NIKKEI SMI CAC40 NASDAQ NIKKEI SMI

µi 0.085 0.103 -0.002 0.119 0.079 0.111 -0.014 0.116

[0.027] [0.023] [0.029] [0.022] [0.028] [0.023] [0.029] [0.023]

φi 0.015 0.081 0.011 0.058 0.011 0.075 0.005 0.060

[0.020] [0.024] [0.023] [0.022] [0.021] [0.024] [0.023] [0.022]

ωi 0.049 0.043 0.036 0.043 0.050 0.050 0.036 0.053

[0.024] [0.027] [0.014] [0.022] [0.029] [0.024] [0.014] [0.028]

βi 0.928 0.863 0.908 0.884 0.923 0.841 0.908 0.860

[0.025] [0.057] [0.014] [0.043] [0.032] [0.050] [0.016] [0.054]

αi 0.039 0.095 0.077 0.071 0.043 0.114 0.080 0.087

[0.011] [0.034] [0.013] [0.023] [0.014] [0.032] [0.014] [0.030]

ρij

CAC40 1 0.288 0.234 0.661 1 0.311 0.272 0.679

NASDAQ [0.037] 1 0.118 0.286 [0.049] 1 0.145 0.314

NIKKEI [0.038] [0.037] 1 0.245 [0.050] [0.044] 1 0.280

SMI [0.027] [0.037] [0.039] 1 [0.038] [0.047] [0.051] 1

θ1 0.961 0.973

[0.037] [0.032]

θ2 0.013 0.010

[0.007] [0.007]

log ξi 0.035 -0.186 -0.013 -0.085 0.025 -0.172 -0.016 -0.076

[0.034] [0.037] [0.036] [0.036] [0.034] [0.037] [0.036] [0.037]

υ/υi 7.757 10.339 6.159 6.266 6.479

[0.696] [2.172] [0.834] [0.906] [1.095]

Q20(ẑi) 24.825 20.409 13.552 7.657 25.182 21.561 12.874 7.437

Q20(ẑ
2
i ) 24.415 11.005 8.138 4.170 23.810 9.820 8.432 4.211

P20(ẑi) 11.435 18.730 16.989 18.906 10.708 17.121 22.741 14.829

(0.908) (0.474) (0.590) (0.462) (0.934) (0.581) (0.248) (0.733)

SIC 11.473 11.515

Log-Lik -10296.1 -10322.4

Each column reports the ML estimates of the model defined by Eq. (49)-(61). The column headed “Skew-Student”

corresponds to zt ∼ SKST (0, I4, ξ, υ) as in (45), and “IC-Skew-Student” to zt ∼ Eq. (48) (with k = 4). In both cases

{zt} is an i.i.d. process. Q20(ẑi) is the Box-Pierce statistic of order 20 on the standardized residuals ẑi, Q20(ẑ2
i )

is the same for their squares, P20(ẑi) is the Pearson goodness-of-fit statistic (using 20 cells) with the associated

unadjusted p-value beside. SIC is the Schwarz information criterion (divided by the sample size T = 1816), and

Log-Lik is the log-likelihood value at the maximum.
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comparing the log-likelihood values and the information criterion values suggests that this density

outperforms the symmetric Student (the log-likelihood is increased by about 19 for 4 additional

parameters). Second, the Pearson goodness-of-fit statistics suggest that the skew-Student is ad-

equate in capturing the skewness of the NASDAQ and in general that all the marginals are well

described by our model specification.

The last part of Table 5 gives the results for the skew density with independent Student

components (see Section 3.4). Recall that unlike the skew-Student, this density has different

degrees of freedom. The results suggest that the υi are about 6 for the last three series (the

NASDAQ, NIKKEI and SMI) and are not statistically different. Even if the number of degrees

of freedom of the CAC40 is higher (about 10) the precision of this estimator is even worse and

one can hardly distinguish it from the other. Note that one cannot use a LR test to discriminate

between the skew-Student and the skew-Student with independent components since the models

are not nested. Finally, looking at the Pearson goodness-of-fit statistics one cannot reject the

assumption that this last density is also adequate for modelling the excess skewness and kurtosis

observed on the four marginals.

To assess the irrelevance of the normal density and the adequacy of the skew-Student density,

Figures 3 and 4 plot the histogram of the probability integral transform ζ̂i =
∫ ẑi

−∞
fi(t)dt with the

95% confidence bands.

Under weak conditions (see Diebold, Gunther, and Tay, 1998), the adequacy of a density

implies that the sequence of ζi is independent and identically uniformly distributed on the unit

interval. Departure from uniformity is directly observable in the Gaussian case for the NASDAQ,

NIKKEI and SMI. On the other hand, one cannot reject the assumption that the probability

integral transforms of the skew-Student density are uniformly distributed.15

5 Conclusion

It is broadly accepted that high-frequency financial time series are heteroscedastic, fat-tailed and

volatilities are related over time across assets and markets. To accommodate these stylized facts

in a parametric framework a natural approach would be to rely on a multivariate GARCH or SV

specification coupled with a Student density.

However, most asset returns are also skewed, which invalidates the choice of this density (it

would lead to inconsistent estimates). To overcome this problem, we propose a practical and

flexible method to introduce skewness in a wide class of multivariate symmetric distributions. By

introducing a vector of skewness parameters, the new distributions bring additional flexibility for

15Confidence intervals for the ζi-histogram can be obtained by using the properties of the histogram under the

null hypothesis of uniformity.
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Figure 3: Histogram of the Probability Integral Transform of the CAC40, NASDAQ, NIKKEI and

SMI innovations with a normal likelihood (with 20 cells).
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Figure 4: Histogram of the Probability Integral Transform of the CAC40, NASDAQ, NIKKEI and

SMI innovations with a skew-Student likelihood (with 20 cells).
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modelling time series of asset returns with multivariate volatility models. Applying the procedure

to the multivariate Student density leads to a “multivariate skewed Student” density, in which each

marginal has a different asymmetry coefficient. An easy variant provides a multivariate skewed

density that can have different tail properties on each coordinate. These densities are found to

outperform their symmetric competitors (the multivariate normal and Student) for modelling four

daily stock market indexes, and therefore are of great potential interest for the empirical modelling

of several asset returns together.

Additional empirical studies based on these flexible distributions should be carried out to

explore deeply the skewness and kurtosis properties of asset returns, including the co-skewness

and co-kurtosis aspects in a multivariate framework (see Hafner, 2001).

Another potential area of application of the new densities is in Bayesian inference, for the design

of simulators for Monte-Carlo integration of posterior densities that are characterized by different

skewness and tail properties in different directions of the parameter space. In this respect, some

of the densities we have proposed are related to the split-Student importance function proposed

by Geweke (1989). This is obviously a different research topic, that we leave for further work.

Finally, a natural extension of this paper would be to generalize the GARCH specification to

higher moments. Indeed, in a univariate framework Hansen (1994), introduces dynamics through

the 3rd and 4th order moments by conditioning the asymmetry and fat-tail parameters on past

errors and their square. In the same spirit, Harvey and Siddique (1999) and Lambert and Laurent

(2000) provide alternative specifications to introduce dynamics in higher order moments.

To conclude, this new family of multivariate skewed densities and in particular the multivariate

skewed Student density seems to be a promising specification to accommodate both the high

kurtosis and the skewness inherent in most asset returns.
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