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Introduction
The classical sets of orthogonal polynomials of Jacobi, Laguerre, and

Hermite satisfy second order differential equations, and also have the prop-
erty that their derivatives form orthogonal systems. There is a fourth class
of polynomials with these two properties, and similar in other ways to the
other three classes, which has hitherto been little studied. We call these the
Bessel polynomials because of their close relationship with the Bessel func-
tions of half-integral order. They are orthogonal, but not in quite the same
sense as the other three systems. The Bessel polynomials satisfy:

d2y dy
(1) x2 -~ + (2x + 2) -f = n(n + l)y.

dx2 dx

It will be shown that they occur naturally in the theory of traveling spherical
waves.

These polynomials seem to have been considered first by S. Bochner [l ]('),
who pointed out their connection with Bessel functions. They are also men-
tioned in a paper by W. Hahn [2]. H. L. Krall [4] treated them as orthogonal
polynomials in a generalized sense. In the present paper they are studied in
much greater detail. We derive their recurrence relations, weight function,
generating function, normalizing factors, and the analogue of the Rodrigues
formula. We discuss also their relation to Bessel functions and to the spher-
ical Bessel functions of Morse and Schelkunoff, as well as their applications to
spherical waves.

This paper is in two parts. The first part deals with Bessel polynomials
proper. The second part deals with generalized Bessel polynomials, which
satisfy the differential equation: V

(2) x2y" + (ax + b)y' = n(n + a - l)y.

These specialize to the Bessel polynomials when a = b = 2.

Part I. Bessel polynomials
1. The differential equation. We define the Bessel polynomial yn(x) to be

the polynomial of degree n, and with constant term equal to unity, which
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THE BESSEL POLYNOMIALS 101

satisfies the differential equation:

d2y dy
(1) x2 -f-t + (2x + 2) f = n(n + l)y,

doc ace

where n = 0, 1, 2, • • • . It is natural to extend this definition to negative sub-
scripts by defining y~n(x) to be y„_i(:x:). Thus y_i(x) =yo(x), y-2(x)=yx(x),
and so on.

Similarly, we define the generalized Bessel polynomial yn(x, a, b) to be the
polynomial of degree », and with constant term equal to unity, which satisfies
the differential equation:

d2y dy
(2) x2—+ (ax + b) — = n(n + a- l)y,

dx2 dx

where n is a non-negative integer, provided a is not a negative integer or zero,
and b is not zero. The special case a = b = 2 gives the Bessel polynomials
proper.

2. Explicit formulas for the Bessel polynomials. From the differential
equation (1) we derive at once the formula:

"(»+*)!   (x\*

'  2 (»- 1)1 \2/ »!    \2)

For convenience of reference we list the first six of these polynomials:

yo(x) = l,

yx(x) = l + x,

y2(x) = 1 + 3x + 3x2,

y,(x) = 1 + 6x + 15z2 + 15z3,
yt(x) = 1 + 10* + 45z2 + 105s3 + 105a;4,
y6(x) = 1 + 15» + 105x2 + 420»3 + 945s4 + 945s6.

These polynomials may be readily obtained from the recurrence relation:

yn+i = (2m + l)xyn + yn-x

which will be derived in §7. Note that the coefficients of the Bessel poly-
nomials are positive integers.

There is, of course, a second independent solution of the differential equa-
tion (1). This may be found by making the substitution y = v exp(2/x),
which gives the solution: y = exp(2/x)yn( — x); accordingly the general solu-
tion of (1) is:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



102 H. L. KRALL AND ORRIN FRINK [January

(4) y = Ayn(x) + Be2'*yn(- x).

3. The wave equation in spherical coordinates. The wave equation

i a2u
V2M =-

c2 at2

in spherical coordinates R, 6, <p, t becomes

1 r    a2 13/
— \R-(Ru) -\-— ( sin 6
R2 L   dR2 sin 6 dd \

i    a i.     du\       i    a2ui     i a2u
dd)     sin2 6 a<t>2] ~ c2  at2

If this is solved by separation of variables, the radial factor/(i?) is found to
satisfy the differential equation:

d2f df
dR2 dR

where kc = u, and exp (iut) is the time factor. (See J. A. Stratton. Electro-
magnetic theory, pp. 440-444.) If we let r = kR, this becomes:

d2f df
(6) r2 -L + 2r -j- + r2/ = n(n + 1)/.

dr2 dr

It is well known that equation (6) may transformed into Bessel's equation by
the substitution f(r) =r~ll2J(r), which yields:

(7) r2I" + rl + r2J = (n + 1/2) V.

If n is an integer, the solutions of (7) are Bessel functions of half-integral
order. It is well known that these are elementary functions.

However, it is simpler to treat equation (6) by making the substitution
f(r) =w(r)/r, which gives the equation:

(8) r2(w" + w) — n(n + l)w.

Now real solutions of the wave equation found by separating the vari-
ables represent standing waves. Two or more such solutions must be com-
bined to get traveling waves. There is, however, a standard method of ob-
taining traveling waves directly. This is to introduce the pure imaginary
variable z = ikR = ir. Then real and imaginary parts of a single solution of the
wave equation represent traveling waves. Accordingly, in (8) we let z = ir
= ikR and w(r) =e~'y(z) =e~iry(ir). We then get:

/d2y dy\(9) 8i^_£_2-iJ = „(„+l)y.

For integral values of n, (9) has solutions which are polynomials in 1/z.
Therefore we make the final substitution x = 1/z = 1/ikR, and obtain (1) :
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1949] THE BESSEL POLYNOMIALS 103

x2y" + (2x + 2)/ = n(n + l)y.

This is the equation for Bessel polynomials. It follows that the wave equation
in spherical coordinates has solutions of the form:

(10) u(R, 6, <t>, t) = R^P™ (cos 6) sin (m4> - a)eHalr~kB)yn(l/ikR),

where yn(x) =yn(l/ikR) is a Bessel polynomial, and kc = u. Note that the real
and imaginary parts of (10) represent waves traveling in the radial direction
with velocity c. Formula (10) makes evident the elementary nature of this
type of solution, and suggests a treatment of spherical waves based on a
theory of the functions yn(x) considered as a class of orthogonal polynomials,
rather than on the usual theory of Bessel functions.

4. The relation of Bessel polynomials to Bessel functions. In the preced-
ing §3, equation (7) is the differential equation for Bessel functions of order
«+ 1/2. Keeping track of the transformations connecting equations (1), (7),
(8), and (9), and comparing coefficients, we find the following formulas con-
necting the Bessel polynomials and Bessel functions:

yn(l/ir) = (T/2y2r^2e^[ir^Jn+xn(r) + inJ-n-x,2(r)].

(11) /n+i/2(0 - (2,rr)-i/2[¿-«-Vy„(-lAV) + i^e-"yn(l/ir)].
J-n-x,2(r) = (2Trr)-ll2[ine"yH(-l/ir) + i-"e-iryn(l/ir)].

Schelkunoff (Electromagnetic waves, pp. 51-52) and P. M. Morse (Vibra-
tion and sound, pp. 246-247) define spherical Bessel functions Jn(r), N(rn),
and jn(r), n„(r), which are solutions of our differential equations (8) and (6)
respectively. These functions are related to the Bessel functions of half-
integral order, and hence to the Bessel polynomials. The latter relations are :

yn(-l/ir) - <rir[i"+17„(r) - inWn(r)],

(12) Jn(r) = [t—Vytf-1/ír) + in+1e-iryn(l/ir)]/2,
Ñn(r) = - [i-neiryn(-l/ir) + ine-iryn(l/ir)}/2,

in the case of the Schelkunoff functions Jn(r) and Nn(r). Likewise we have:

Mr) = (l/2r)[i-n-1eiryn(-l/ir) + in+1e-iryn(l/ir)}.

(13) nn(r) = (l/2r)[i«eiryn(-l/ir) + *-*-**(l/*)].

yn(l/ir) = reir[i-n~ljn(r) + innn(r)],

for the Morse functions jn(r) and w„(r). These functions are connected with
the Bessel functions of half-integral order by the relations:

(14) Mr) = (Tr/2y'Un+x/2(r),        ff,(f) - <-l)'*if>r/2)1',/-~-i/»(r)
Mr) = (T/2ryi2Jn+1/2(r),        nn(r) = (*/2r)i/2.7_n_i/2(r).

5. Orthogonality and the weight function. We shall now show that the
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104 H. L. KRALL AND ORRIN FRINK [January

Bessel polynomials form an orthogonal system, the weight function being
e~2lx and the path of integration the unit circle in the complex plane. The
weight function and the path are not unique; an arbitrary analytic function
may be added to the weight function, the weight function may be multiplied
by a nonzero constant, and the unit circle may be replaced by an arbitrary
curve around the origin. Formula (10) shows that in applications to spherical
waves we are interested in pure imaginary values of the argument x. This
suggests a path of integration along the imaginary axis ; but we find the unit
circle a more convenient path for deriving formulas.

To prove orthogonality we first note that the differential equation (1)
may be written in the form:

(15) (x2e-2'xy„)' = n(n + l)e-2/ly„.

Integrating by parts counter-clockwise around the unit circle we find:

(16) n(n + 1) f ymyne-2txdx = f (x2e-2'xy'n)'ymdx = - f x2e~2<*yñyLdx.
Ju Jv Ju

Interchanging m and n and subtracting, we get :

(17) I ymyne-2lxdx = 0, m ^ n.
J u

This is the required orthogonality relation.
6. The analogue of Rodrigues' formula. Corresponding to Rodrigues'

formula for the Legendre polynomials, and to similar well known formulas
for the Hermite, Laguerre, and Jacobi polynomials, we now express the
Bessel polynomials yn(x) in terms of the wth derivative of a multiple of the
weight function e~2lx:

dn
(18) yn(x) = 2-V*-(x2"e-2'x).

dx"

Here the factor 2~n is to make the constant term equal to unity. Note that
the right side of (18) is a polynomial of degree n. For k<n, this polynomial
is orthogonal to xk, with weight function and path as before, that is:

(19) - f xk2-n-(x2ne-2lx)dx = 0,
2ttí Ju dxn

for k = 0, 1, 2, ••• , n — 1. This may be seen by integrating by parts k + 1
times around the unit circle. But by formula (17), the Bessel polynomial
yn(x) is also orthogonal to x* with the same path and weight function. Since
this property determines uniquely up to a multiplicative constant a poly-
nomial of degree n, and since the constant terms are both unity, it follows that
the two sides of (18) are identical. Formula (18) may also be verified directly,
using the explicit formula (3).
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1949] THE BESSEL POLYNOMIALS 105

In the same manner it may be shown more generally that with k an in-
teger, ¥n)=k(k-l) • • • (k-n + l):

1     c ( — 2)k+1k(n)
(20) ■-■ I   xky„(x)e-2'xdx =-

J 2wiJu (n+k+l)l

7. Recurrence relations for the Bessel polynomials. Among the infinitely
many recurrence relations for the Bessel polynomials, we list the following five
as being the most useful or interesting. They resemble in some ways the rela-
tions for the Bessel functions, and in other ways the relations for the classical
orthogonal polynomials.

yn+i = (2n + l)xyn + yn-x,

x2y'n = (nx — l)yn + y„-i,

(21) x2y'n-x = y» - (nx + l)y„-i,

x(y'n + yi-x) = n(yn - yn-x),

(nx + l)y'n + y'n-x = n2yn.

The recurrence relations (21) may be derived from the well known recur-
rence relations for the Bessel functions, using the relations (11). They may
also be derived from the explicit formula (3), or by making use of the ortho-
gonality of the Bessel polynomials. The latter method is described below in
§16, where the recurrence relations (51) for the generalized Bessel poly-
nomials are obtained. These correspond to the first two relations of (21),
which are included as the special case where a = 0 = 2. Consequently the
details of the derivation of relations (21) will be omitted.

Other recurrence relations for the Bessel polynomials may be derived from
the relations (21). It should be noted that these relations continue to hold for
negative values of n, as may be verified by using the definition y_„(x) =yn-x(x)

8. The normalizing factor. If a function f(x) is formally expanded in an
infinite series of Bessel polynomials:

00

/(*) ~ 2Zfnyn(x),
n—0

the coefficients fn are given by

ff(x)yn(x)e-2'*dx
(22) fn

fyl(x)e-2ix,r2'*dx

Hence it is desirable to know the value of the integral in the denominator. We
evaluate this integral by using formula (20) with n=k. This gives:
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106 H. L. KRALL AND ORRIN FRINK [January

1      C    2 -2/* 1      C     2w! / X\n _2/i n+l
(23)    — \yn(x)e   'dx = — I    —{-)yn(x)e   ' dx = (-1)"+ -

2m Ju 2iriJu   n\ \ 2 / .2n+ 1

It is curious to note that except for the alternating sign, this is the same as
the normalizing factor for the Legendre polynomials. It follows from (23) that
the polynomials:

(1 + i)in/2n+ ly'2

form an orthonormal set with weight function e~2lx and path of integration
the unit circle.

9. The generating function for Bessel polynomials. In view of formula
(3), a generating function G(x, t) of the usual kind would have the form:

" "        (2n)\(xt)ng(x, t) = E y»(x)t« = E ^-
„tí ' to  *12-(1 - /)2»+i

However, since this series converges only for t/(l —1)=0, we replace tn by
t"/nl, which gives:

/l - (1 - 2xi)1'2\        -
(25) exp (-) =  22 yn-x(x)tn/n\.

\ x /       „=0

Hence the desired generating function is the function on the left side of (25).
Formula (25) may be obtained from the following formulas due to Glaisher:

00

E Jn-xn(r)tn/n\ = (2/«-)1'2 cos (r2 - 2rt)1'2,
.      , n-0
(26)

2~2Jw-n(r)tn/nl = (2/Trr)1'2 sin (r2 + 2ri)1/2-
n—0

These may be found in G. N. Watson, A treatise on the theory of Bessel func-
tions, p. 140. Multiplying the first relation of (11) by tn/nl gives:

/ yn-x(l/ir)f/n\ = (xf/2)1/2ei'[î-"/„_i/2(r) + »—»/i/t-W ]<"/»!
(27)

= (Tr/2yi2eir[(t/i)"Jn-x/2(r)/nl - i(it)»Jx,2-n(r)/nl}.

Combining (26) and (27) then gives:
oo

E yn-x(lIir)tnIn\ = eir(cos (r2 + 2irty2 - i sin (r2 + 2ÎV/)1'2)
(28) n=0

=  gt(r-(r2+2iri)I/2)

from which formula (25) may be obtained. An interesting consequence of
(25) is found by setting t = z — xz2/2:
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1949] THE BESSEL POLYNOMIALS 107

(29) = E Jn-i(x)(z - xz2/2)n/n\.
n-0

Formula (25) for the generating function may also be verified directly,
without the use of formulas from the theory of Bessel functions, by substitu-
ing the power series for (1 — (1 — 2xt)ll2)/x in the power series for e', and com-
paring coefficients with those given by formula (3).

10. The moments of the weight function. If we consider the weight func-
tion to be e~2lx/2iri rather than e~2,x, then its moments, with the unit circle as
path of integration, are given by:

(30)
2iriJ u

x"e-2lxdx = (-2)"+V(« + 1)!.

In the theory of orthogonal polynomials it is often important to know the
value of determinant:

(31) A„ =

ao      ai

ax      a2

Oin-X

«n

an-x  a„ a2n-2

This determinant is discussed in H. L. Krall [3, 4]. In particular we wish to
verify that it is never zero, in order to conclude that polynomials which are
orthogonal with the given weight function and path of integration are
uniquely determined, up to a multiplicative constant, by this property. This
was assumed in deriving the Rodrigues' formula in §6. Accordingly, we sub-
stitute the value of an from (30) into (31) and evaluate the resulting de-
terminant by repeated subtraction of rows. We omit the details of this evalua-
tion and give only the result:

(32) A„ = (-l)«c«-w2(-2)"2n*!/ II si

We conclude from formula (32) that A„ is never zero.

Part II. Generalized Bessel polynomials
11. The differential equation. As defined in §1, the generalized Bessel

polynomial yn(x, a, b) is the polynomial of degree n and with constant term
equal to unity, which satisfies the differential equation (2). Equation (1) for
the Bessel polynomials proper is the special case of (2) where a = b = 2. We
assume that b is not zero. With b = 0, the general solution of (2) is y = Axn
+Bxl~"~n. We exclude also the cases where a is zero or a negative integer,
since the theory developed below breaks down in those cases, and a special
treatment is required. The value of the constant b is not important, since re-
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108 H. L. KRALL AND ORRIN FRINK [January

placing x by a constant multiple of x changes b without changing the rest
of the equation.

Note that the derivative y' of a solution of (2) satisfies the equation:

d2y' dy'
(33) x2 -^- + (ax + 2x + b) — « n(n + a + 1)/,

dx2 dx

which has the form of (2), but with a replaced by a + 2. It follows that the
derivatives of generalized Bessel polynomials are generalized Bessel poly-
nomials, and also that the polynomials in the excluded cases where a = 0, —1,
— 2, • • • can be obtained by repeated integration from the polynomials with
a = l or 2.

We proceed now to develop a theory of the generalized Bessel polynomials
roughly parallel to that given for the Bessel polynomials proper. When a is an
integer, the two theories are very similar. There are certain differences, how-
ever, when a is nonintegral.

12. Explicit formulas for the generalized Bessel polynomials. Instead of
the notation y„(x, a, b) for these polynomials, we shall often use the shorter
forms yn(x) or y„. Solving (2) in the usual manner we find the explicit formula:

(34) y„(x, a,b) = 2Z C».*(« + k + a - 2)<*> (—) ,
i=o \ b /

where Cn,k is a binomial coefficient, and (x)(i> as usual means x(x —1) • • •
(x — k + 1). The first five of these polynomials are therefore given by:

yo(x) = l,

yx(x) = 1 + a(-r)>

y2(x) -1 + 2(0+1) (y) + (a + l)(a + 2) Cj) ,

ys(x) = 1 + 3(0 + 2) Cj\ + 3(o + 2)(a + 3) (^\

+ (fl+2)(0 + 3)(0 + 4)(y)    ,

y4(x) -11 + 4(0 + 3) (jj + 6(0 + 3)(0 + 4) (j\

+ 4(0 + 3)(0 + 4)(a + 5)(y)

+ (0 + 3)(0 + 4)(0 + 5)(0 + 6) i~j .

(35)
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1949] THE BESSEL POLYNOMIALS 109

The coefficients are no longer necessarily integral, as was the case with the
Bessel polynomials proper. Note that in the excluded cases 0 = 0, — 1,
— 2, • • • one or more of the polynomials y„(x) are of degree less than n.

If a is not an integer, the second solution of (2) is not an elementary func-
tion, but it may be represented by an infinite series, or in terms of integrals
of elementary functions.

13. The weight function and its moments. We shall show that the general-
ized Bessel polynomials form an orthogonal system, with path of integration
an arbitrary curve surrounding the zero point, and with weight function p(x)
given by:

1    - T(0) /      b\n
(36) P(x)=--.2ZV(     ,W     „(--)•

2« „_o T(0 + n — 1) \      x /

The series in (36) clearly converges for all x except zero. Expanding (36)
gives :

p(x) =-\a - 1 + (-N) + — (-\ +-(-\
2iri L \      x /       a \      x /       a(a + 1) \      x /

(37)

0(0+l)(0 + 2)\      x) + '"la(a + 1)(0 + 2)

Formula (37) would clearly have to be modified for the excluded cases
a = 0, —1, —2, •••. Note that p(x) reduces to the previous weight function
e~2lx/2iri for the case a = b = 2 of Bessel polynomials proper.

The function p(x) differs, except when a = l or 2, from the function o(x)
given by

(38) <r(x) = xa-2e-b'x/2Ti,

which is the factor needed to make equation (2) self-adjoint, and which is
therefore a natural candidate for a weight function. However, o(x) is multi-
ple-valued when a is not an integer, and this is inconvenient if we wish to
integrate around the point x = 0. The function a(x) satisfies the differential
equation:

(39) (x2o-)' = (ax + b)o-,

while p(x) satisfies the related nonhomogeneous equation:

(a - I)(a - 2)
(40) (x2p)' = (ax + b)p

2«

These equations are the same if a is 1 or 2, which suggests that the special
case where a is 1 may be of equal importance with the case where a is 2 which
we have treated in Part I.
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110 H. L. KRALL AND ORRIN FRINK [January

Formula (36) for p(x) may be obtained by finding the solution of equation
(40) of the form p(x) = En-o cnx~n. However, formula (36) for p(x) was
actually arrived at as follows: The moments an=Ju xnp(x)dx for.a set of
orthogonal polynomials satisfying (2) obey the recurrence relation:

(41) (n + 0 - IK + ban-x = 0

(see H. L. Krall [3, 4]). Hence, taking a0= —b, the moments must be given
by:

T(a)
(42) a-1 = fF^-ü(-b)n-

T(a + n — 1)

From (42) the coefficients in (36) may be obtained immediately by multiply-
ing by x" and integrating around the unit circle. Conversely, it may be veri-
fied that the function p(x) as given by (36) has the moments given by (42).

Since we now have a formula for the moments, we may calculate the de-
terminant An as defined by formula (31) for the generalized Bessel poly-
nomials. Substituting the value of a„ from (42) into (31) and evaluating as
before by repeated subtraction of rows, we find:

(43) An = (-l)«(«-')i«(-})«1ÜJ!/ ß (a + s)('+1).
«=1       I       «=-n-2

It can be seen from (43) that An is never zero except in the excluded cases
a = 0, -1, -2, •••.

14. Orthogonality of the generalized Bessel polynomials. If equation (2)
is multiplied by p(x), it may be written in the form:

(44) (x2pyl)' + x(a - l)(a - 2)yn'/2« = n(n + a - l)Pyn.

This follows from the fact that p(x) satisfies equation (40). If we now multi-
ply equation (44) by y¡¡ and integrate around the unit circle we get:

/r                  (« - i)(i - 2) rynykpdx =  I  (x2pynl)'ykdx-\-;- I   xyñykdx
u                   J v                                      2iri J u

(45)
= —  I   x2pyñyk'dx.

J v

Interchanging n and k in (45) and subtracting gives:

(46) I  ynykpdx = 0, n ?± k,
J v

which shows that the polynomials are orthogonal with p(x) as weight func-
tion.

15. The Rodrigues' formula. For the generalized Bessel polynomials the
analogue of Rodrigues' formula is:
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1949] THE BESSEL POLYNOMIALS 111

(47) y„(x, a, b) - b-nx2-"eblx dn (x2n+*-2e-blx)/dxn.

Since this involves the function <r(x) defined by formula (38) rather than the
weight function p(x), it is not an easy consequence of orthogonality, as was
the Rodrigues' formula (18) for Bessel polynomials proper. We shall prove
it by expanding the right side of (47) and identifying it with formula (34) for
yn(x, a, b). We get:

d»
b~nx2~aeblx-(x2n+a~2e~b,x)

dxn

(48)

= b-nx2~"eblx E ■L-*-L (2n + a - 2 - s)^xn+a-2~'
»=o     si

"    "    (-l)»ô'+<(2« + 0 - 2 - »)<«>«*-*-'

= E -E (-l)*C*..(2n + 0 - 2 - »)<«>.
*-o kl ,_o

But since we have:

* (0, for k > n,
(49) 2Z(-i)'C*,(A-sy»)= \ ',_o {.nw(A — ¿)(n_*>, for k g »,

the final expression in (48) reduces to:
n xn~k

E -n<-kU2n + 0 - 2 - £)<»-*>
(50)   M k-b

= ¿ C.,*(« + 0 - 2 - *)<*> (^-) = yn(x, 0, b)
fe-o \ 6 /¡fe=0

Consequently we have (47).
16. Recurrence relations for the generalized Bessel polynomials. The

recurrence relations given by formulas (21) have analogues for the general-
ized Bessel polynomials. However, some of these are much more compli-
cated than those for the Bessel polynomials proper, although they simplify
considerably for certain integral values of a. Because they are so compli-
cated we shall give only the following two:

(»+0- l)(2« + 0- 2)yn+i

= |  (2w + a) (2n + a- 2) (jj + a - 21 (2« + a - l)y„

+ n (2n + 0)yn-i,

x\2n + 0 — 2)yn' = [n(2n + a — 2)x — bn]yn + bnyn-x-
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These correspond to the first two relations of (21), as may be seen by plac-
ing a = b = 2. The first relation of (51) has the standard form:

(52) y„+i = (Ax + B)yn + Cy„_i,

which is the usual type of recurrence relation for orthogonal polynomials.
Since the method of determining the coefficients A, B, and C by using
orthogonality is familiar, we shall prove only the second relation of (51).
The first relation may be proved in a similar manner.

To prove the second relation of (51), we first select the constant A so
that x2y„' —Axyn is a polynomial of degree n. It then has an expansion of the
form:

n

(53) x2yñ — Axyn= E B^k-

We now multiply both sides of (53) by pyk and integrate around the unit
circle. Since y„' is orthogonal, with weight function x2p, to any polynomial of
degree less than n — 1, we find that all the coefficients Bk are zero except Bn
and Bn-x- Hence:

(54) x2yn' = (Ax + Bn)yn + Bn-xyn-x.

We now determine A, B„, and Bn-x by equating the coefficients of xn+1 and
xB, as well as the constant terms, using formula (34). This gives:

n(2n + 0 - 2)Mxn+1lrn + n(n - l)(2n + a - 3)("-1)x"ô1-" + • • •

(55) = A(2n + 0 - 2)(n)xn+1ô-" + An(2n + a - 3)<-n-l)xnbl~n + • • •

+ Bn(2n + 0 - 2)<->*»0— + •••+£„+••• + Bn-x.

Hence we have:

«(2m + 0 - 2)(n)
A =-= n,

(2n + a - 2)<">

(56)

/n(n - l)(2n + a - 3)<"-1>     An(2n + a- 3)<«-»\

"      \ (2» + a-2)<»> (2» + <z-2)<»>    /
— bn

Bn-x = - Bn

2w + 0 - 2

bn
2» + a - 2

From (56) and (54) we get the second relation of (51). This completes the
proof. Other recurrence relations may be derived and proved in the same
manner.

17. The normalizing factor. As in §8, it is desirable to have formulas for
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fylpdx and fxkynpdx, corresponding to formulas (23) and (20). These are:

r (-b)k+1kM
(57) xkyn(x)p(x)dx = ———-—-*

Ju (k + a + n — l)k+n

r   2 (~l)n+1(b)nl
(58) I   yn(x)p(x)dx =-
V    ' Ju (2n+a- 1)(» + 0 - 2)<"-1>

We prove (57) as follows:

x*y„(x)p(x)Jx = -       IE (-l)'+1Cn,/
J u 2m J u p—o «=o

= Ê (-i)*+p+1cB

(_J)W-1£C«>

" (k + a + n- 1) <*+•»>'

which gives the formula (57). Note that the right side of (57) is zero for k<n.
We prove (58) from (57), using the orthogonality relation (46) together with
the explicit formula (34) for y«(x). This gives:

(s + a - 1) <•>&*—-1

(n + p + a - 2)^bk+1

(k + p + a- iyk+p>

(59) |  y„pdx = (2m +0 — 2)    b     I   x ynpdx,
J u J u

and replacing the integral on the right side by its value from (57) gives for-
mula (58). It follows from (58) that the functions:

(60) [(2m + 0 - 1)(m + 0 - 2)<"-1V*»!]1/2in+1y»(s)

are orthonormal with weight function p(x).
18. Conclusion. In Part I we have given a fairly complete theory of the

Bessel polynomials proper. Other topics that suggest themselves in this case
are the location of the roots of these polynomials, and the actual expansion
of particular functions in terms of them.

It should be noted that formula (10), which expresses traveling spherical
waves in terms of the Bessel polynomial yn(l/ikR), indicates that this func-
tion, when multiplied by e~ikR/R, bears the same relation to traveling spherical
waves that the Hankel function, or Bessel function of the third kind, given by:

Hn(kr) = Jn(kr) + iNn(kr)

bears to traveling cylindrical waves. Thus the Bessel polynomials may be
thought of as spherical Hankel functions.

Our investigation of the generalized Bessel polynomials in Part II has not
been quite so complete. In particular, we have not succeeded in finding a
generating function for these polynomials. The general case is more difficult
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to treat, one reason being that here one does not have the entire theory of
Bessel functions to rely on to derive results.

As we have indicated, the special case of the generalized Bessel poly-
nomials where o = l seems to have particular importance, and may deserve
as detailed a treatment as we have given in Part I for the case a = 2. For
example, the polynomials corresponding to integral values of a, whose theory
is particularly simple, may all be obtained by differentiation from the poly-
nomials with a — 1 or 2. We have as yet found no application for the case a = 1,
however.

The cases we have excluded where a = 0, —1, —2, • • • may also be worth
studying. More attention could be given to the theory of the second solution
of the differential equation (2). The weight function p(x), given by formula
(36), may also be worth further investigation. It is definable in terms of the
function y(x, a) given by:

y(x, a) = x*(l/a + x/a(a + 1) + x2/a(a + 1)(0 + 2) + • • • ).

This function satisfies the differential equation: y'—y = xa~l, and is expres-
sible for positive a by the formula:

y(x, a) = ex J    z0_1e_2áz.
J 0

It is thus related to the incomplete gamma function, and has various inter-
esting properties.

It would also be useful to have weight functions with respect to which the
Bessel functions are orthogonal with path of integration along the real axis
or the imaginary axis. Since in the first recurrence relations of (21) and (51)
the coefficients of yn_i are positive, it follows from known results that no
non-negative weight function exists with path of integration along the real
axis (see O. Perron, Die Lehre von den Kettenbrüchen, Leipzig 1929, p. 376).
On the other hand it follows from results of Pólya [8] and Boas [14] that
infinitely many weight functions of Stieltjes type do exist for the real axis.

Still another question concerns the solutions of the differential equations
(1) and (2) for non-integral values of n. The solutions of (1) for half-integral n
are expressible in terms of the Bessel functions of integral order. For non-
integral values of n, the attempt to solve equations (1) and (2) in series of
powers of x leads to merely asymptotic series which are divergent. In the case
of equation (1) with half-integral values of n, this procedure leads to the well-
known asymptotic series for the Bessel functions. The appearance of these
asymptotic series is related to the fact that the equations (1) and (2) have a
nonregular singular point at x = 0. The differential equations for the classical
orthogonal polynomials of Jacobi, Laguerre, and Hermite have no finite
irregular singular points.
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