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ABSTRACT 

There exists initial value problem whose solution possesses singularity. Studies 
show that conventional numerical method such as multistep method fail woefully 
near the singular point when solving problem whose solution possesses singularity. 
This is because a multistep method is based on the local representation of 
polynomial of the theoretical solution of an initial value problem. Therefore, a 

natural step would appear to be the replacement of the polynomial function for a 
multistep method, by a rational function due to its smooth behaviour in the 
neighbourhood of singularity. In this paper, we have developed a new class of two-
step numerical methods that are based on rational functions in solving general initial 
value problem and problem whose solution possesses singularity. These new 
methods are called rational multistep methods. The developments of these rational 
multistep methods, as well as the local truncation error and stability analysis for each 
rational multistep method are presented. We have found out that only the second 
order, third order and fourth order rational multistep methods are A-stable. 

Numerical experiments have showed that all newly developed rational multistep 
methods presented in this paper are suitable to solve general initial value problem, 
stiff problem and problem whose solution possesses singularity.    
 
Keywords: rational function, rational multistep method, initial value problem, stiff 
problem, problem whose solution possesses singularity. 

 

 

1. INTRODUCTION 

Conventional numerical methods for solving general initial value 

problems of the form 

 

( ) ( )( ),y x f x y x′ = , ( )y a η= ; ( ) ( )( ),  , Ry x f x y x ∈ , [ ], Rx a b∈ ⊂ ,    (1) 

 
that have been widely used nowadays are those from the class of linear 

multistep methods and the class of Runge-Kutta methods. Besides methods 

from these two classes, there are other options such as the predictor-
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corrector methods and hybrid methods. If the initial value problem whose 
solution possesses singularity, then numerical integration formulae that are 

based on rational functions will be much more effective. According to 

Lambert (1973), Van Niekerk (1988) and Ikhile (2001), conventional 
multistep methods that are based on the local representation of a polynomial 

of the theoretical solution to (1), will fail woefully near the singular points 

when solving problem whose solution possesses singularity. Therefore, a 

natural step would appear to be the replacement of the polynomial function 
for a multistep method, by a rational function due to its smooth behaviour 

in the neighbourhood of singularity (Ikhile (2001)). 

 
The literature reviews on numerical methods that are based on 

rational functions, or better known as rational methods, are very fruitful but 

many of them focus on the developments of single-step rational methods, 

see the works by Lambert and Shaw (1965), Lambert (1974), Wambecq 
(1976), Van Niekerk (1987), Van Niekerk (1988), Ikhile (2001), Ikhile 

(2002), Ikhile (2004), and Ramos (2007). On the other hand, there are only 

a few works that focus on the developments of multistep methods that are 
based on rational functions, see the works by Luke et al. (1975), Fatunla 

(1982), Fatunla (1986), Okosun and Ademiluyi (2007a), Okosun and 

Ademiluyi (2007b), and recently, Teh et al. (2011). Teh et al. (2011) had 
developed a class of 2-step p-th order rational methods which based on the 

rational function mentioned in Van Niekerk (1988). Teh et al. (2011) had 

named these 2-step p-th order methods as RMM2(2,p) with 2,3,p = … . 

 

Motivated by the successful developments of RMM2(2,p), we wish 

to develop another new class of multistep methods which give better 

numerical accuracy especially in solving problem whose solution possesses 
singularity. Hence, the objective of this study is to develop some explicit 2-

step rational methods from the rational function mentioned in Ikhile (2001). 

The developments of these new multistep methods have contributed to the 
body of knowledge as we suggest some alternatives that are more accurate 

compared to other existing rational methods in the previous studies. 

 

In Section 2, we have presented some theoretical frameworks which 
backup the developments of some 2-step rational methods discussed in 

Section 3 – Section 6. Numerical experiments and comparisons are carried 

out in Section 7. In Section 8, we have showed the generalization of the 
newly developed 2-step rational methods to r-step rational methods based 

on the rational function mentioned in Ikhile (2001). Lastly, a conclusion is 

given in Section 9. Throughout this paper, we have addressed multistep 
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methods that are based on rational functions as rational multistep methods, 
or in brief as RMMs. 

 

 

2.  THEORETICAL FRAMEWORKS OF THE NEW 

RATIONAL MULTISTEP METHODS 

Suppose that we have solved (1) numerically up to a point 
n

x  and 

have obtained a value 
n

y  as an approximation of ( )ny x , which is the 

theoretical solution of (1). From Lambert (1973) and Lambert (1991), by 

the localizing assumption that no previous truncation errors have been made 

i.e. ( )n ny y x= , we are interested in obtaining 2n
y +  as the approximation of 

( )2ny x + . For that purpose, we suggest an approximation to the theoretical 

solution ( )2ny x +  of (1) given by  

 

2

1

1
n K

j

j

j

Ah
y B

b h
+

=

= +

+∑
, 

1

1 0
K

j

j

j

b h
=

+ ≠∑ ,              (2) 

 

where B, A and 
j

b , 1, ,j K= …  are parameters that may contain 

approximations of ( )ny x  and higher derivatives of ( )ny x . 

 

RMM in (2) is defined as 2-step p-th order RMM3 or in brief as 

RMM3(2,p) with 2,3,p = … . With the RMM3 in (2), we associate the 

difference operator L defined by 
 

( ) ( )( )
RMM3

1

; 2 1
K

j

j

j

L y x h y x h B b h Ah
=

 
  = + − × + −  

 
∑ ,             (3) 

 

where ( )y x  is an arbitrary function, continuously differentiable on 

[ ], Rx a b∈ ⊂ . Expanding ( )2y x h+  as Taylor series and collecting terms 

in (3) give the following general expression: 

 

( ) 0 1 1

0 1 1RMM3
;

K K

K KL y x h C h C h C h C h
+

+  = + + + + +  ⋯ ⋯ .         (4) 
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We note that 
i

C , 0,1, , , 1i K K= +…  in (4) contain corresponding 

parameters which need to be determined in the derivation processes. 

Therefore, the order and local truncation errors of RMM3 based on (2) are 

defined as follows. 
 

Definition 1. The difference operator (3) and the associated rational 

multistep method (2) are said to be of order 1p K= +  if, in (4), 

0 1 1 0
K

C C C += = = =⋯ , 2 0
K

C + ≠ . 

 

Definition 2. The local truncation error at 2n
x +  of (2) is defined to be the 

expression ( )
RMM3

;nL y x h    given by (3), when ( )ny x  is the theoretical 

solution of the initial value problem (1) at a point 
n

x . The local truncation 

error of (2) is then 
 

( ) ( )2 3

2RMM3
;

K K

n KL y x h C h O h
+ +

+  = +  .              (5) 

 
 

3. 2-STEP SECOND ORDER RMM3 

In order to derive a second order RMM3, we have to take 1K =  in 

(3), expand ( )2y x h+  into series to obtain the following expression: 

 

( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )

( )

1 1RMM3

2 3

1 1

4

; 2

4
                            2 2 2

3

                            .

L y x h B y x h A Bb b y x y x

h b y x y x h b y x y x

O h

′  = − + + − − + + 

 
′ ′′ ′′ ′′′+ + + + 

 

+

        (6) 

 

Following Definition 1 and (4), it is readily deduced that: 

 

( ) ( ) ( ) ( ) ( ){

( ) ( )

0 1 1 1 2 1

3 1

, 2 , 2 2 ,

4
 2 .

3

C B y x C A Bb b y x y x C b y x y x

C b y x y x

′ ′ ′′= − + = − − + + = +

′′ ′′′= + 

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With 0 1 2 0C C C= = = , we obtain a system of three simultaneous equations 

which has the following solutions 

( ) ( )
( )
( )1, 2 ,

y x
B y x A y x b

y x

′′  
′= = = − 

′  
.             (7) 

 

Substituting the parameters in (7) into 3C , we obtain 

 

( )
( )

( )
2

3

2 4

3

y x
C y x

y x

′′
′′′= − +

′
.              (8) 

 

When ( )y x  is now taken as the theoretical solution of the initial 

value problem (1) at a point 
n

x  i.e. ( ) ( )ny x y x= , (7) can be written as 

 

1, 2 , n
n n

n

y
B y A y b

y

′′ 
′= = = − 

′ 
,              (9) 

 

where ( )n ny y x=  and ( ) ( ) ( )m m

n n
y y x= , 1, 2m =  by the localizing 

assumption. By taking 1K = , (2) becomes 

 

2

11
n

Ah
y B

b h
+ = +

+
, 11 0b h+ ≠ .            (10) 

 
We indicate (10) based on (9) as RMM3(2,2), expressed in the form of 

 

( )
2

2

2
n

n n

n n

h y
y y

y hy
+

′
= +

′ ′′−
.             (11) 

 

We note that RMM3(2,2) which presented in (11), is identical to 
RMM2(2,2) of Teh et al. (2011). From Definition 2 and (8), the local 

truncation error (in brief as LTE) of RMM3(2,2) is given by 

 

( )
( )

2

3 4

RMM3(2,2)

2 4
LTE ,

3

n

n

n

y
h y O h

y

 ′′
′′′ = − + +

 ′
 

           (12) 
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where ( ) ( ) ( )m m

n n
y y x= , 1,2,3m =  by the localizing assumption. 

 

If we apply RMM3(2,2) to the Dahlquist’s test equation y yλ′ = , 

( )Re 0λ < , we obtain the following difference equation 

 

2

1

1
n n

h
y y

h

λ

λ
+

+
=

−
.            (13) 

 

Setting z hλ= , 2

2n
y ξ+ =  and 0 1

n
y ξ= =  in (13), we obtain the following 

characteristic equation 

 

    2 1
0

1

z

z
ξ

+
− =

−
.             (14) 

 

The roots of (14) are 

 

(14,1)

1

1

z

z
ξ

+
= −

−
 and (14,2)

1

1

z

z
ξ

+
=

−
. 

 

By taking iz x y= +  in the roots of (14), we have plotted the region of 

absolute stability of RMM3(2,2) in Figure 1. 

 

 
 

 

 
 

 

 

 
 

 

 
 

Figure 1: Stability region of RMM3(2,2). 
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The shaded region in Figure 1 is the region of absolute stability of 

RMM3(2,2), where the conditions: ( )14,1
1ξ ≤  and ( )14,2

1ξ ≤  are satisfied. 

From Figure 1, we can see that the region of absolute stability of 

RMM3(2,2) contains the whole left-hand half plane, which show that 

RMM3(2,2) is A-stable. 
 

 

4. 2-STEP THIRD ORDER RMM3 

In order to derive a third order RMM3, we have to take 2K =  in 

(3), expand ( )2y x h+  into series to obtain the following expression: 

 

( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

RMM3

1 1

2

2 2 1

43 4

2 1 2 1

5

;

2

  2 2

4 4 2
  2 2 2

3 3 3

  .

L y x h

B y x h A Bb b y x y x

h Bb b y x b y x y x

h b y x b y x y x h b y x b y x y x

O h

  

′= − + + − − + +

′ ′′+ − + + +

   
′ ′′ ′′′ ′′ ′′′+ + + + + +   

   

+

  (15) 

 

Following Definition 1 and (4), it is readily deduced that: 
 

( ) ( ) ( ){

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 1 1 1

2 2 2 1 3 2 1

4

4 2 1

, 2 ,

4
  2 2 , 2 2 ,

3

4 2
 2 .

3 3

C B y x C A Bb b y x y x

C Bb b y x b y x y x C b y x b y x y x

C b y x b y x y x

′= − + = − − + +

′ ′′ ′ ′′ ′′′= − + + + = + +

′′ ′′′= + + 


 

 

With 0 1 2 3 0C C C C= = = = , we obtain a system of four simultaneous 

equations which has the following solutions: 

 

( ) ( )
( )
( )

( ) ( ) ( )

( )

2

1 2 2

3 2
, 2 , ,

3

y x y x y x y x
B y x A y x b b

y x y x

 ′′ ′′ ′ ′′′− 
′= = = − = 

′ ′  
.       (16) 
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Substituting the parameters in (16) into 4C , we obtain 

 

( )

( )

( ) ( )
( )

( ) ( )
3

4

4 2

2 8 2

3 3

y x y x y x
C y x

y xy x

′′ ′′ ′′′
= − +

′′
.           (17) 

 

When ( )y x  is now taken as the theoretical solution of the initial 

value problem (1) at a point 
n

x  i.e. ( ) ( )ny x y x= , (16) can be written as 

 

( )

( )

2

1 2 2

3 2
, 2 , ,

3

n n nn

n n

n n

y y yy
B y A y b b

y y

 ′′ ′ ′′′−′′ 
′= = = − = 

′ ′  
,         (18) 

 

where ( )n ny y x=  and ( ) ( ) ( )m m

n n
y y x= , 1,2,3m =  by the localizing 

assumption. By taking 2K = , (2) becomes 

 

2 2

1 21
n

Ah
y B

b h b h
+ = +

+ +
, 2

1 21 0b h b h+ + ≠ .           (19) 

 
We indicate (19) based on (18) as RMM3(2,3), expressed in the form of 

 

( )

( ) ( )

3

2 2 22 2

6

3 3 3 2

n

n n

n n n n n n

h y
y y

y hy y h y h y y
+

′
= +

′ ′ ′′ ′′ ′ ′′′− + −
.           (20) 

 

From Definition 2 and (17), LTE of RMM3(2,3) is given by 
 

( )

( )
( ) ( )

3

44 5

RMM3(2,3) 2

2 8 2
LTE ,

3 3

n n n

n

nn

y y y
h y O h

yy

 ′′ ′′ ′′′
 = − + +
 ′′ 

           (21) 

 

where ( ) ( ) ( )m m

n n
y y x=  , 1, 2,3,4m =  by the localizing assumption. 

 

If we apply RMM3(2,3) to the Dahlquist’s test equation y yλ′ = , 

( )Re 0λ < , we obtain the following difference equation: 

 

2 2

2 2 2

3 3

3 3
n n

h h
y y

h h

λ λ

λ λ
+

+ +
=

− +
.            (22) 
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Setting z hλ= , 2

2n
y ξ+ =  and 0 1

n
y ξ= =  in (22), we obtain the following 

characteristic equation 

 
2

2

2

3 3
0

3 3

z z

z z
ξ

+ +
− =

− +
.             (23) 

 

The roots of (23) are 
 

2

(23,1)
2

3 3

3 3

z z

z z
ξ

+ +
= −

− +
 and 

2

(23,2)
2

3 3

3 3

z z

z z
ξ

+ +
=

− +
. 

 

By taking iz x y= +  in the roots of (23), the region of absolute 

stability of RMM3(2,3) is exactly the one shown in Figure 1. The shaded 

region in Figure 1 becomes the region of absolute stability of RMM3(2,3), 

where the conditions: ( )23,1
1ξ ≤  and ( )23,2

1ξ ≤  are satisfied. We can see 

that the region of absolute stability of RMM3(2,3) contains the whole left-
hand half plane, which show that RMM3(2,3) is also A-stable. 

 

 

5. 2-STEP FOURTH ORDER RMM3 

In order to derive a fourth order RMM3, we have to take 3K =  in 

(3), expand ( )2y x h+  into series to obtain the following expression 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( ) ( )

( )

1 1RMM3

2

2 2 1

3

3 3 2 1

4

3 2

; 2

                            2 2

4
                            2 2

3

                            2 2

L y x h B y x h A Bb b y x y x

h Bb b y x b y x y x

h Bb b y x b y x b y x y x

h b y x b

′  = − + + − − + + 

′ ′′+ − + + +

 ′ ′′ ′′′+ − + + + + 
 

′+ + ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

4

1

4 55

3 2 1

6

4 2

3 3

4 2 4
                            2

3 3 15

                            .

y x b y x y x

h b y x b y x b y x y x

O h

 ′′ ′′′+ + 
 

 ′′ ′′′+ + + + 
 

+

  (24) 
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Following Definition 1 and (4), it is readily deduced that 
 

( ) ( ) ( ){
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0 1 1 1

2 2 2 1

3 3 3 2 1

4

4 3 2 1

4 5

5 3 2 1

, 2 ,

  2 2 ,

4
  2 2 ,

3

4 2
  2 2 ,

3 3

4 2 4
  2 .

3 3 15

C B y x C A Bb b y x y x

C Bb b y x b y x y x

C Bb b y x b y x b y x y x

C b y x b y x b y x y x

C b y x b y x b y x y x

′= − + = − − + +

′ ′′= − + + +

′ ′′ ′′′= − + + + +

′ ′′ ′′′= + + +


′′ ′′′= + + + 



 

 

With 0 1 2 3 4 0C C C C C= = = = = , we obtain a system of five simultaneous 

equations which has the following solutions 

 

( ) ( )
( )
( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

2

1 2 2

3 2 4

3 3

3 2
, 2 , , ,

3

3 4
  .

3

y x y x y x y x
B y x A y x b b

y x y x

y x y x y x y x y x y x
b

y x

 ′′ ′′ ′ ′′′−
′= = = − =

′ ′

′′ ′ ′′ ′′′ ′− + − 
= 

′ 

         (25) 

 

Substituting the parameters in (25) into 5C , we obtain 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )

( ) ( )

4 2 2 2 2 4

5 3

5

2 9 18 4 6

9

4
       .

15

y x y x y x y x y x y x y x y x y x
C

y x

y x

′′ ′ ′′ ′′′ ′ ′′′ ′ ′′− + +
= −

′

+

                  (26) 
 

When ( )y x  is now taken as the theoretical solution of the initial 

value problem (1) at a point 
n

x  i.e. ( ) ( )ny x y x= , (25) can be written as 

 

( )

( )

( ) ( ) ( )

( )

2 3 2 4

1 2 32 3

3 2 3 4
, 2 , , , ,

3 3

n n n n n n n n nn
n n

n n n

y y y y y y y y yy
B y A y b b b

y y y

 ′′ ′ ′′′ ′′ ′ ′′ ′′′ ′− − + −′′ 
′= = = − = = 

′ ′ ′  
                  (27) 
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where ( )n ny y x=  and ( ) ( ) ( )m m

n n
y y x= , 1, 2,3,4m =  by the localizing 

assumption. By taking 3K = , (2) becomes 

 

2 2 3

1 2 31
n

Ah
y B

b h b h b h
+ = +

+ + +
, 2 3

1 2 31 0b h b h b h+ + + ≠ .           (28) 

 

We indicate (28) based on (27) as RMM3(2,4), expressed in the form of 
 

( )( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) )

4 3 2 2 32 3

2

2 2 42 3 3

6 3 3 3 3

                                        2 4 .

n n n n n n n n n

n n n n n n n

y y h y y h y y h y y h y

h y y h y y y h y y

+
′ ′ ′ ′′ ′ ′′ ′′= + − + −

′ ′′′ ′ ′′ ′′′ ′− + −
   (29) 

 

From Definition 2 and (26), LTE of RMM3(2,4) is given by 

 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

( ) ( )

RMM3(2,4)

4 2 2 2 2 4

5

3

5 6

LTE

2 9 18 4 6

9

4
         ,

15

n n n n n n n n n

n

n

y y y y y y y y y
h

y

y O h

 ′′ ′ ′′ ′′′ ′ ′′′ ′ ′′− + +
= −
 ′



+ +



            (30) 

 

where 
( ) ( ) ( )m m

n n
y y x= , 1, 2,3, 4,5m =  by the localizing assumption. 

 

If we apply RMM3(2,4) to the Dahlquist’s test equation y yλ′ = , 

( )Re 0λ < , we obtain the following difference equation 

 
2 2

2 2 2

3 3

3 3
n n

h h
y y

h h

λ λ

λ λ
+

+ +
=

− +
.            (31) 

 

Setting z hλ= , 2

2n
y ξ+ =  and 0 1

n
y ξ= =  in (31), we obtain the following 

characteristic equation 

 
2

2

2

3 3
0

3 3

z z

z z
ξ

+ +
− =

− +
.             (32) 
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The roots of (32) are 
 

2

(32,1)
2

3 3

3 3

z z

z z
ξ

+ +
= −

− +
 and 

2

(32,2)
2

3 3

3 3

z z

z z
ξ

+ +
=

− +
. 

 

By taking iz x y= +  in the roots of (32), the region of absolute 

stability of RMM3(2,4) is exactly the one shown in Figure 1. We note that 

the characteristic equation of RMM3(2,3) given by (23) is identical to the 

characteristic equation of RMM3(2,4) shown in (32). The shaded region in 
Figure 1 becomes the region of absolute stability of RMM3(2,4), where the 

conditions: ( )32,1
1ξ ≤  and ( )32,2

1ξ ≤  are satisfied. Therefore it is obvious 

that RMM3(2,4) is A-stable. 

 
 

6. 2-STEP FIFTH ORDER RMM3 

In order to derive a fifth order RMM3, we have to take 4K = in (3), 

expand ( )2y x h+ into series to obtain following expression 

 

( )

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

RMM3

1 1

2

2 2 1

3

3 3 2 1

44

4 4 3 2 1

45

4 3 2 1

;

2

  2 2

4
  2 2

3

4 2
  2 2

3 3

4 2 4
  2 2

3 3 15

L y x h

B y x h A Bb b y x y x

h Bb b y x b y x y x

h Bb b y x b y x b y x y x

h Bb b y x b y x b y x b y x y x

h b y x b y x b y x b y x y

  

′= − + + − − + +

′ ′′+ − + + +

 ′ ′′ ′′′+ − + + + + 
 

 ′ ′′ ′′′+ − + + + + + 
 

′ ′′ ′′′+ + + + + ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

5

4 5 66 7

4 3 2 1

4 2 4 4
  2 .

3 3 15 45

x

h b y x b y x b y x b y x y x O h

 
 
 

 
′′ ′′′+ + + + + + 

 

  (33) 
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Following Definition 1 and (4), it is readily deduced that 
 

( ) ( ) ( ){
( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

0 1 1 1

2 2 2 1

3 3 3 2 1

4

4 4 4 3 2 1

4 5

5 4 3 2 1

6 4

, 2 ,

  2 2 ,

4
  2 2 ,

3

4 2
  2 2 ,

3 3

4 2 4
  2 2 ,

3 3 15

4
  2

C B y x C A Bb b y x y x

C Bb b y x b y x y x

C Bb b y x b y x b y x y x

C Bb b y x b y x b y x b y x y x

C b y x b y x b y x b y x y x

C b y x

′= − + = − − + +

′ ′′= − + + +

′ ′′ ′′′= − + + + +

′ ′′ ′′′= − + + + + +

′ ′′ ′′′= + + + +

′′= + ( ) ( ) ( ) ( ) ( ) ( ) ( )4 5 6

3 2 1

2 4 4
.

3 3 15 45
b y x b y x b y x y x


′′′ + + + 



 

 

With 0 1 2 3 4 5 0C C C C C C= = = = = = , we obtain a system of six 

simultaneous equations which has the following solutions 

 

( ) ( )
( )
( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( ) ( ) ( ) ( ) ( )) ( )

2

1 2 2

3 2 4

3 3

4 2 2 2

4

2 3 44 5

3 2
, 2 , , ,

3

3 4
  ,

3

  45 90 20
.

           30 6 45

y x y x y x y x
B y x A y x b b

y x y x

y x y x y x y x y x y x
b

y x

b y x y x y x y x y x y x

y x y x y x y x y x y x

 ′′ ′′ ′ ′′′−
′= = = − =

′ ′

′′ ′ ′′ ′′′ ′− + −
=

′

′′ ′ ′′ ′′′ ′ ′′′= − +



′ ′′ ′ ′+ − 


         (34) 

 

Substituting the parameters in (34) into 6C , we obtain 

 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )(
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ))

( )( ) ( ) ( )

2 2

6

2 2 34 5

4 6

30 2 3 2

          10 9 4 24

4
        45 .

45

C y x y x y x y x y x y x y x

y x y x y x y x y x y x y x y x

y x y x

′′ ′′ ′ ′′′ ′′ ′ ′′′= − −

′ ′′ ′ ′′′ ′ ′′+ − −

′ +

                  (35) 
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When ( )y x is now taken as the theoretical solution of the initial 

value problem (1) at a point 
n

x  i.e. ( ) ( )ny x y x= , (34) can be written as 

( )

( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1

2 3 2 4

2 32 3

4 2 2 2 2 34 5

4 4

, 2 , ,

3 2 3 4
  , ,

3 3

45 90 20 30 6
  ,

45

n

n n

n

n n n n n n n n n

n n

n n n n n n n n n n n

n

y
B y A y b

y

y y y y y y y y y
b b

y y

y y y y y y y y y y y
b

y

′′
′= = = −

′

′′ ′ ′′′ ′′ ′ ′′ ′′′ ′− − + −
= =

′ ′

′′ ′ ′′ ′′′ ′ ′′′ ′ ′′ ′− + + − 
= 

′ 
                  (36) 
 

where ( )n ny y x=  and 
( ) ( ) ( )m m

n n
y y x= , 1, 2,3, 4,5m =  by the localizing 

assumption. By taking 4K = , (2) becomes 

 

2 2 3 4

1 2 3 41
n

Ah
y B

b h b h b h b h
+ = +

+ + + +
, 2 3 4

1 2 3 41 0b h b h b h b h+ + + + ≠ .   (37) 

 

We indicate (37) based on (36) as RMM3(2,5), expressed in the form of 
 

( )( ) ( ) ( ) ( ) ( ) ( )(
( ) ( ) ( )

( ) ( ) ( )

2

5 4 3 2 2 32 3

4 3 3 24 2

2 2 24 4

90 45 45 45 45

                                45 30 60

                                90 20

n

n n n n n n n n n

n n n n n n

n n n n n

y

y h y y h y y h y y h y y

h y h y y h y y y

h y y y h y y

+

′ ′ ′ ′′ ′ ′′ ′ ′′= + − + −

′′ ′ ′′′ ′ ′′ ′′′+ − +

′ ′′ ′′′ ′ ′′′− + − ( ) ( )

( ) ( ) ( ) ( ) )

3 43

2 34 54 4

15

                                30 6 .

n n

n n n n n

h y y

h y y y h y y

′

′ ′′ ′+ −

  (38) 

 

From Definition 2 and (35), LTE of RMM3(2,5) is given by 
 

( )( ) ( )( ) ( ) ( ) ( )( )((
( ) ( ) ) ( ) ( ) ( )

RMM3(2,5)

2 2 2 246

3 45 6 7

LTE

30 2 3 2 10 9 4

4
           24 45 ,

45

n n n n n n n n n n n

n n n n n

h y y y y y y y y y y y y

y y y y y O h

′′ ′′ ′ ′′′ ′′ ′ ′′′ ′ ′′ ′ ′′′= − − + −


′ ′′ ′− + +



  (39) 

 

where 
( ) ( ) ( )m m

n n
y y x= , 1, 2,3,4,5,6m =  by the localizing assumption. 
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If we apply RMM3(2,5) to the Dahlquist’s test equation y yλ′ = , 

( )Re 0λ < , we obtain the following difference equation 

 
2 2 4 4

2 2 2 4 4

45 45 15

45 45 15
n n

h h h
y y

h h h

λ λ λ

λ λ λ
+

+ + −
=

− + −
.            (40) 

 

Setting z hλ= , 2

2n
y ξ+ =  and 0 1

n
y ξ= =  in (40), we obtain the following 

characteristic equation 

 
2 4

2

2 4

45 45 15
0

45 45 15

z z z

z z z
ξ

+ + −
− =

− + −
.            (41) 

 
The roots of (41) are 

 

2 4

(41,1)
2 4

45 45 15

45 45 15

z z z

z z z
ξ

+ + −
= −

− + −
 and 

2 4

(41,2)
2 4

45 45 15

45 45 15

z z z

z z z
ξ

+ + −
=

− + −
. 

 

By taking iz x y= +  in the roots of (41), we have plotted the region 

of absolute stability of RMM3(2,5) in Figure 2. 

 

 
 

 

 
 

 

 

 
 

 

 
 

Figure 2: Stability region of RMM3(2,5). 

 

The shaded region in Figure 2 is the region of absolute stability of 

RMM3(2,5), where the conditions: ( )41,1
1ξ ≤  and ( )41,2

1ξ ≤  are satisfied. 

From Figure 2, we can see that the region of absolute stability of 
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RMM3(2,5) does not contain the whole left-hand half plane which suggest 
that it is not A-stable. 

 

 

7. NUMERICAL EXPERIMENTS AND COMPARISONS 

In this section, some test problems are used to check the 

performance of all newly derived 2-step RMM3 using different number of 
integration steps. We present the maximum absolute errors over the 

integration interval given by ( ){ }
0
max

n n
n N

y x y
≤ ≤

−  where N is the number of 

integration steps. We note that ( )ny x  and 
n

y  are the exact solution and 

numerical solution of a test problem at point 
n

x , respectively. The 

numerical results obtained from our new proposed methods are compared 
with the numerical results obtained from the RMM2(2,p) of Teh et al. 

(2011) and the RMMs of Okosun and Ademiluyi (2007a), and Okosun and 

Ademiluyi (2007b). RMM2(2,p) can be easily identified from Teh et al. 
(2011). The following are those existing RMMs developed by Okosun and 

Ademiluyi (2007a), and Okosun and Ademiluyi (2007b): 2-step second 

order method given by 

 

( )( )
3

2 22 22 4 2

n
n

n n n n n n

y
y

y hy y h y y y
+ =

′ ′ ′′− + −
,           (42) 

 

3-step third order method given by 

 

( )

( ) ( ) ( )( ) ( ) ( )

3

4

3 2 32 3

2
,

2 3 2 3 18 3 54

n

n

n n n n n n n n n n

y

y

y h y y h y hy h y y y hy h y

+

=
′ ′′ ′′′ ′ ′ ′′ ′− + + + + −

 

          (43) 
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4-step fourth order method given by 
 

( ) ( ) ( ) ( ) ( ) ( )( )(
( ) ( ) ( )( )
( ) ( ) ( ) ( )(

5 4 3 2 2 32

4

2 3 33

4 2 2 24

3 3 12 48 24

                        192 192 32

                        768 1152 192

                                 

n n n n n n n n n

n n n n n n n

n n n n n n

y y y h y y h y y y y

h y y y y y y y

h y y y y y y

+
′ ′ ′′= − + −

′ ′′ ′ ′′′+ − −

′ ′ ′′ ′′+ − +

( ) ( ) ( ) ))2 3 4
256 32 ,n n n n ny y y y y′ ′′′+ −

 (44) 

 

and 5-step fifth order method given by 
 

( ) ( ) ( ) ( ) ( )( )(
( ) ( ) ( )( )

( ) ( ) ( )(

5

6 5 4 3 22

2 3 23

2 4 24

24 24 120 300 2

                    500 6 6

                    625 36 24 8

                                       

n

n n n n n n n n

n n n n n n n

n n n n n n n n

y

y y h y y h y y y y

h y y y y y y y

h y y y y y y y y

+

′ ′′ ′= − − −

′ ′ ′′ ′′′− − +

′ ′′ ′ ′ ′′′− − −

( ) ( ) ( )( ))
( ) ( ) ( ) ( )(
( ) ( ) ( )( ) ( ) ( )( )))

2 24

5 3 2 25

2 2 34 5

6

                    625 120 240 60

                                  10 9 20 .

n n n n

n n n n n n n

n n n n n n n n n n

y y y y

h y y y y y y y

y y y y y y y y y y

′′+ −

′ ′ ′′ ′ ′′′− − +

′ ′′ ′′ ′′′− − + −

(45) 

 

The first step to implement the 2-step RMM3 (as well as 2-step 

RMM2) of order 2 until order 5, and RMMs in (42) – (45), is to choose a 

suitable method to calculate the value of 1y . It is desirable that 1y  should 

be calculated to an accuracy at least as high as the local accuracy of the 

RMMs (Lambert (1973)). Since RMM3(2,5) and RMMs in (45) possess the 
highest order of accuracy i.e. fifth order, then we choose the 6-stage fifth 

order Kutta-Nyström method showed on page 122 of Lambert (1973) to 

calculate the value of 1y  for 2-step RMM3 (as well as 2-step RMM2) of 

order 2 until order 5 and RMMs in (42) – (45). 

 

 
 

 



Teh Yuan Ying & Nazeeruddin Yaacob 

 

48 Malaysian Journal of Mathematical Sciences 
 

The next step is to obtain the necessary higher derivatives of initial 

value problem in (1). To obtain the second order derivative 
n

y′′ , we just 

need to differentiate the initial value problem (1) once, that is 

 

( )
( )( ),

n

n

nx x

x x

df x y x
y x y

dx=

=

′′ ′′= ≈ . 

 

Similarly, to obtain the third order derivative 
n

y′′′ , we need to differentiate 

the initial value problem (1) twice, that is 

 

( )
( )( )2

2

,

n

n

nx x

x x

d f x y x
y x y

dx=

=

′′′ ′′′= ≈ . 

 

The fourth order and fifth order derivatives given by 
( )4

n
y  and 

( )5

n
y , 

respectively, can be easily obtain in this similar approach. On substituting 

the required derivatives into a particular RMM, then this RMM is ready to 
be used. 

 

Problem 1 (Ramos (2007)) 

 

( ) ( ) 2100 99 xy x y x e′ = − + , ( )0 0y = , [ ]0,0.5x∈ . 

 

The exact solution is given by ( ) ( )2 10033

34

x xy x e e−= − . The maximum 

absolute errors for each method of different order are presented in Table 1 – 
Table 4. 

 

Problem 2 (Yaakub and Evans (2003)) 

 

( ) ( ) ( )101 100 0y x y x y x′′ ′+ + = , ( )0 1.01y = , ( )0 2y′ = − , [ ]0,10x∈ . 

 

The exact solution is given by ( ) 1000.01 x xy x e e− −= + . Problem 2 can also 

be written as a system, i.e. 
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( ) ( )1 2y x y x′ = , ( )1 0 1.01y = , [ ]0,10x∈ ; 

( ) ( ) ( )2 1 2100 101y x y x y x′ = − − , ( )2 0 2y = − , [ ]0,10x∈ . 

 

The exact solutions of this system are given by 

( ) ( ) 100

1 0.01 ,x xy x y x e e− −= = + ( ) ( ) 100

2

x xy x y x e e− −′= = − − . The 

maximum absolute errors for each method of different order are presented 
in Table 5 – Table 8. 

 

Problem 3 (Ramos (2007)) 

 

( ) ( )
2

1 ,y x y x′ = +  ( )0 1y = , [ ]0,0.8x∈ . 

 
Problem 3 is a problem whose solution possesses singularity. The exact 

solution is ( ) ( )tan 4y x x π= + . From the exact solution, we have noticed 

that the solution becomes unbounded in the neighbourhood of the 

singularity at 4 0.785398163367448x π= ≈ . The maximum absolute 

errors for each method of different order are presented in Table 9 – Table 

12. 
 

TABLE 1: Maximum Absolute Errors for Various Second Order Methods with respect to 
Number of Steps (Problem 1) 

 

N RMM in (42) RMM2(2,2) RMM3(2,2) 

64 - 7.81545(-02) 7.81545(-02) 

128 - 1.78169(-02) 1.78169(-02) 

256 - 4.14749(-03) 4.14749(-03) 

512 - 1.03195(-03) 1.03195(-03) 

 
TABLE 2: Maximum Absolute Errors for Various Third Order Methods with respect to 

Number of Steps (Problem 1) 

 

N RMM in (43) RMM2(2,3) RMM3(2,3) 

64 - 2.97028(-02) 5.85265(-03) 

128 - 2.95546(-03) 6.14396(-04) 

256 - 3.28246(-04) 7.41153(-05) 

512 - 3.91259(-05) 9.17512(-06) 
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TABLE 3: Maximum Absolute Errors for Various Fourth Order Methods with respect to 
Number of Steps (Problem 1) 

 

N RMM in (44) RMM2(2,4) RMM3(2,4) 

64 - 3.39927(-03) 3.31737(-03) 

128 - 2.13926(-04) 2.03507(-04) 

256 - 2.16793(-05) 1.29112(-05) 

512 - 2.35624(-06) 8.11981(-07) 

 
TABLE 4: Maximum Absolute Errors for Various Fifth Order Methods with respect to 

Number of Steps (Problem 1) 
 

N RMM in (45) RMM2(2,5) RMM3(2,5) 

64 - 5.93616(-04) 3.16484(-04) 

128 - 1.64123(-05) 9.19695(-06) 

256 - 4.76120(-07) 2.94052(-07) 

512 - 1.45048(-08) 9.35850(-09) 

 

Table 1 – Table 4 have showed that existing RMMs in (42) – (45) 

cannot solve Problem 1 with initial value equals to zero, but RMM2 of Teh 
et al. (2011) and RMM3 do not face such difficulty. From Table 2 and 

Table 4, we can see that the third order and fifth order 2-step RMM3 are 

more accurate than the third order and fifth order 2-step RMM2. However, 

results from Table 3 showed that both fourth order 2-step RMM2 and 2-step 

RMM3 are found to have comparable accuracy except for 512N = . 

 
TABLE 5: Maximum Absolute Errors for Various Second Order Methods with respect to 

Number of Steps (Problem 2) 
 

N RMM in (42) RMM2(2,2) RMM3(2,2) 

2560 1.20431(-03) 8.25702(-04) 8.25702(-04) 

5120 2.88964(-04) 2.19023(-04) 2.19023(-04) 

10240 7.04627(-05) 5.63484(-05) 5.63484(-05) 

 
TABLE 6: Maximum Absolute Errors for Various Third Order Methods with respect to 

Number of Steps (Problem 2) 
 

N RMM in (43) RMM2(2,3) RMM3(2,3) 

2560 2.59963(-03) 1.18777(-03) 1.21408(-03) 

5120 6.90425(-04) 3.33834(-04) 3.36962(-04) 

10240 1.79972(-04) 8.86875(-05) 8.90599(-05) 
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TABLE 7: Maximum Absolute Errors for Various Fourth Order Methods with respect to 
Number of Steps (Problem 2) 

 

N RMM in (44) RMM2(2,4) RMM3(2,4) 

2560 2.43180(-03) 1.19841(-03) 1.19380(-03) 

5120 8.32097(-04) 3.34438(-04) 3.34102(-04) 

10240 2.42351(-04) 8.87017(-05) 8.86790(-05) 

 
TABLE 8: Maximum Absolute Errors for Various Fifth Order Methods with respect to 

Number of Steps (Problem 2) 
 

N RMM in (45) RMM2(2,5) RMM3(2,5) 

2560 3.30441(-03) 1.18719(-03) 1.18609(-03) 

5120 1.05235(-03) 3.33575(-04) 3.33545(-04) 

10240 3.11077(-04) 8.86222(-05) 8.86403(-05) 

 

From Table 5, existing second order RMM in (42), RMM2(2,2) and 

RMM3(2,2) are found to have comparable accuracy except for 2560N = . 

Results from Table 6 showed that existing third order RMM in (43), 

RMM2(2,3) and RMM3(2,3) have comparable accuracy for 2560N =  and 

5120N = , but not for 10240N = . For 10240N = , only RMM2(2,3) and 

RMM3(2,3) have comparable accuracy, and they are more accurate than the 

RMM in (43). The same pattern from Table 6 also emerges in Table 7. 
From Table 8, the fifth order RMM2(2,5) and RMM3(2,5) are more 

accurate than the existing RMM in (45) for 5120N =  and 10240N = . 

However, both RMM2(2,5) and RMM3(2,5) are found to have comparable 

accuracy for any number of integration steps. 

 
TABLE 9: Maximum Absolute Errors for Various Second Order Methods with respect to 

Number of Steps (Problem 3) 
 

N RMM in (42) RMM2(2,2) RMM3(2,2) 

64 7.85505(+01) 3.95730(+01) 3.95730(+01) 

128 1.78097(+01) 9.46824(+00) 9.46824(+00) 

256 1.74431(+01) 9.62127(+00) 9.62127(+00) 

512 1.61376(+01) 8.81944(+00) 8.81944(+00) 

 
TABLE 10: Maximum Absolute Errors for Various Third Order Methods with respect to 

Number of Steps (Problem 3) 
 

N RMM in (43) RMM2(2,3) RMM3(2,3) 

64 4.96315(+00) 1.35285(-01) 1.52254(-03) 

128 5.99106(-01) 1.72803(-02) 9.67085(-05) 

256 3.01238(-01) 8.96655(-03) 2.53049(-05) 

512 1.35801(-01) 4.03688(-03) 5.71518(-06) 
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TABLE 11: Maximum Absolute Errors for Various Fourth Order Methods with respect to 
Number of Steps (Problem 3) 

 

N RMM in (44) RMM2(2,4) RMM3(2,4) 

64 5.86819(-01) 1.52254(-03) 1.52254(-03) 

128 3.89199(-02) 9.67086(-05) 9.67085(-05) 

256 1.00813(-02) 2.53043(-05) 2.53048(-05) 

512 2.28366(-03) 5.71485(-06) 5.71529(-06) 

 
TABLE 12: Maximum Absolute Errors for Various Fifth Order Methods with respect to 

Number of Steps (Problem 3) 
 

N RMM in (45) RMM2(2,5) RMM3(2,5) 

64 9.07345(-02) 3.68169(-05) 1.97451(-08) 

128 3.12186(-03) 1.40410(-06) 1.45553(-09) 

256 3.97995(-04) 1.95575(-07) 4.97948(-10) 

512 4.31393(-05) 3.14233(-08) 2.69665(-10) 

 
From Table 9, second order RMM2(2,2) and RMM3(2,2) are more 

accurate than the existing RMM in (42), except for 64N = , where all three 

RMMs are found to have comparable accuracy. From Table 10, we can see 

that RMM3(2,3) generated the most accurate numerical results in solving 

Problem 3, followed by RMM2(2,3), and lastly, the existing RMM in (43). 

From Table 11, fourth order RMM2(2,4) and RMM3(2,4) are more accurate 
than the existing RMM in (44). Results from Table 12 have showed that 

RMM3(2,5) is the most accurate fifth order method compared to the 

existing RMM2(2,5) and RMM in (45). 
 

From the numerical results shown in Table 1 – Table 9, we can 

summarize that RMM3(2,3) and RMM3(2,5) outperform RMM2(2,3), 
RMM2(2,5), RMM in (43) and RMM in (45) when solving initial value 

problem with single ordinary differential equation such as Problem 1 and 

Problem 3. When solving initial value problem with coupled ordinary 

differential equations, all RMM3(2,p) and RMM2(2,p) have comparable 
accuracy. Therefore, the strength of RMM3(2,p) becomes apparent when 

solving initial value problem with single differential equation. 

 
 

8. GENERALIZATIONS TO r-STEP p-TH ORDER RMM3 

 In the previous sections, we have showed the existence of some 2-
step p-th order RMM3. Therefore it is reasonable to deduce that 2-step p-th 

order RMM3 can be generalized to r-step p-th order RMM3. From (2), we 

generalize 2-step RMM3 to r-step RMM3 given by 
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1

1
n r K

j

j

j

Ah
y B

b h
+

=

= +

+∑
, 

1

1 0.
K

j

j

j

b h
=

+ ≠∑             (46) 

 

With the r-step RMM3 in (46), we associate the difference operator 

L defined by 

( ) ( )( )
RMM3

1

; 1 ,
K

j

j

j

L y x h y x rh B b h Ah
=

 
  = + − × + −  

 
∑            (47) 

 

where ( )y x  is an arbitrary function, continuously differentiable on 

[ ], Rx a b∈ ⊂ . Expanding ( )y x rh+  as Taylor series and collecting terms 

in (47) give the following expression: 

 

( ) 0 1 1

0 1 1RMM3
; .

K K

K KL y x h C h C h C h C h
+

+  = + + + + +  ⋯ ⋯        (48) 

 

We note that 
i

C , 0,1, , , 1,i K K= +… …  in (48) contain corresponding 

parameters which need to be determined in the derivation processes. 

Therefore, the order and local truncation error of r-step p-th order RMM3 

based on (46) are defined as follows. 
 

Definition 3. The difference operator (47) and the associated rational 

multistep method (46) are said to be of order 1p K= +  if, in 

(48),
0 1 1

0
K

C C C += = = =⋯ , 
2

0
K

C + ≠ . 

 

Definition 4. The local truncation error at 
n r

x +  of (46) is defined to be the 

expression ( )
RMM3

;nL y x h    given by (47), when ( )ny x  is the theoretical 

solution of the initial value problem (1) at a point 
n

x . The local truncation 

error of (46) is then 
 

( ) ( )2 3

2RMM3
; .

K K

n KL y x h C h O h
+ +

+  = +              (49) 

 

 

From Definition 3 and Definition 4, we have noticed that the order 

of accuracy of a r-step RMM3 is not affected by the number of step r. 
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Lastly, Table 13 shows those r-step RMM3 which have more values in 
computational practice, and can be considered in future studies. 

 
TABLE 13: Potential r-step RMM3 of Order p. 

 

r 
p 

2 3 4 5 6 ⋯⋯  

2 √      

3 √ √     

4 √ √ √    

5 √ √ √ √   

6 √ √ √ √ √  

7 √ √ √ √ √ ⋯⋯  

⋮  

⋮  

⋮  

⋮  

⋮  

⋮  

⋮  

⋮  

⋮  

⋮  

⋮  

⋮  
⋱  

 
 

9. CONCLUSION 

In this article, we have presented the developments and 

applications of a new class of 2-step p-th order RMMs known to be 

RMM3(2,p). The general formulation of RMM3(2,p) is given in 

equation (2) while the order condition and local truncation error of 

RMM3 based on equation (2) are explained in Definition 1 and 

Definition 2. Absolute stability analysis showed that RMM3(2,2), 

RMM3(2,3) and RMM3(2,4) are A-stable, which make them suitable 

to solve stiff problems. 

 

We have chosen three test problems to evaluate the 

effectiveness of RMM3(2,p) and other existing RMMs in terms of 

numerical accuracy. Most of the time, RMM3(2,3) and RMM3(2,5) 

generated more accurate numerical results compared to existing 

RMMs in solving initial value problem with single ordinary 

differential equation (such as Problem 1 and Problem 3). However, 

RMM3(2,p) did not outperform the existing RMM2(2,p) when 

solving initial value problem with coupled ordinary differential 

equations (such as Problem 2). From these numerical 

experimentations, we can say that RMM3(2,p) is more reliable in 

solving problem with single ordinary differential equation. 
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Finally, we have showed that 2-step p-th order RMM3 can be 

generalized to r-step p-th order RMM3. The general formulation of a 

r-step p-th order RMM3 is given in equation (46) while the order 

condition and local truncation error of a r-step p-th order RMM3 are 

explained in Definition 3 and Definition 4. Future studies should 

discuss the properties of convergence, consistency, zero-stability and 

absolute stability of r-step p-th order RMM3. The generalization of 

the parameters in r-step p-th order RMM3 also constitutes a good 

problem for future study. 
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